Práctica 4

- 1. Analizar en cada caso la existencia de $\int_a^b f \ d\alpha$ y calcularla cuando corresponda.
 - (a) $\alpha:[a,b]\to\mathbb{R}$ una función arbitraria y f una función constante sobre [a,b].
 - (b) $\alpha: [a,b] \to \mathbb{R}$ una función continua con $\alpha(a) = a_0$, $\alpha(b) = b_0$; $c \in (a,b)$ y $f: [a,b] \to \mathbb{R}$ dada por $f(x) := \begin{cases} 5 & \text{si } x \in [a,c) \\ 3 & \text{si } x = c \\ -1 & \text{si } x \in (c,b] \end{cases}$

¿Qué sucede si en lugar de tomar α continua sólo se sabe que α es continua en un entorno de c?

- (c) f como en el ítem anterior y $\alpha(x) = \begin{cases} 1 & \text{si } x \in [a, c] \\ -1 & \text{si } x \in (c, b] \end{cases}$.
- (d) $f(x) = x^3$, $\alpha(x) = x^2$ y [a, b] = [-1, 3].
- (e) $f(x) = \alpha(x) = \cos(x)$ y $[a, b] = [0, \frac{\pi}{4}]$.
- 2. Sean $f, \alpha : [a, b] \to \mathbb{R}$, tales que f es continua e integrable respecto de α en [a, b] y sea c en (a, b). Si $\beta : [a, b] \to \mathbb{R}$ satisface $\beta(x) = \alpha(x)$ para todo $x \neq c$, probar que $f \in \Re(\beta)$ en [a, b] y $\int\limits_a^b f \ d\alpha = \int\limits_a^b f \ d\beta$. Ω Qué sucede si c = a o c = b?.
- 3. Dadas las funciones siguientes definidas en el intervalo [0, 2]:

$$f(x) = |x - 1|$$
 , $\alpha(x) = \begin{cases} 5 & \text{si } x = 0 \\ e^x & \text{si } x \in (0, 2], \end{cases}$

demostrar que $f \in \Re(\alpha)$ en [0,2] y hallar el valor de $\int_{0}^{2} f \ d\alpha$.

- 4. Sean $f, \alpha : [a, b] \to \mathbb{R}$ y sea $c \in (a, b)$ tales que $f \in \Re(\alpha)$ en [a, c] y $f \in \Re(\alpha)$ en [c, b]. Demostrar que $f \in \Re(\alpha)$ en [a, b] y $\int_a^b f \ d\alpha = \int_a^c f \ d\alpha + \int_c^b f \ d\alpha$.
- 5. Supongamos que $\int_a^b f d\alpha$ existe y es igual a 0 para toda función monótona creciente f. ¿Qué puede decir sobre la función α ? Sugerencia. Para cada $c \in [a, b]$ considere la función monótona f_c definida como $f_c(x) = 0$ si $a \le x \le c$ y $f_c(x) = 1$ sino.
- 6. Sean $f, \alpha : [a, b] \to \mathbb{R}$. Para cada partición $\pi = \{x_0, ..., x_n\}$ del intervalo [a, b], se define $s_{\pi} := \sum_{k=1}^{n} f(t_k)[\alpha(x_k) \alpha(x_{k-1})]$, donde $t_k \in [x_{k-1}, x_k]$.

Demostrar que si $f \in \Re(\alpha)$ entonces existe una sucesión de particiones $(\pi_m)_{m \in \mathbb{N}}$ que cumple las condiciones:

- (a) $(\pi_m)_{m \in \mathbb{N}}$ es monótona en el sentido siguiente: si m < m' entonces $\pi_m \subset \pi_{m'}$.
- (b) $\lim_{m\to\infty} \parallel \pi_m \parallel = 0.$
- (c) $\lim_{\substack{m\to\infty\\s_{\pi_m}}} s_{\pi_m} = \int\limits_a^b f\ d\alpha$, independientemente de la elección de los t_k en cada suma
- (d) Si $(\sigma_m)_{m\in\mathbb{N}}$ es otra sucesión monótona de particiones tal que $\pi_m\subset\sigma_m$ para todo $m\in\mathbb{N}$ suficientemente grande, entonces cumple las condiciones (b) y (c) precedentes.

Si ahora $g, \beta : [a, b] \to \mathbb{R}$ son otras funciones, tales que $g \in \Re(\beta)$ y para cada partición π notamos $r_{\pi} := \sum_{k=1}^{n} g(t_k)[\beta(x_k) - \beta(x_{k-1})]$, donde $t_k \in [x_{k-1}, x_k]$, deducir

que entonces existe una sucesión de particiones $(\pi_m)_{m\in\mathbb{N}}$ tal que $\lim_{m\to\infty} s_{\pi_m} = \int_a^b f d\alpha$

$$y \lim_{m \to \infty} r_{\pi_m} = \int_a^b g \ d\beta.$$

- 7. Sea $f:[a,b]\to\mathbb{R}$ y sea $\alpha:[a,b]\to\mathbb{R}$ monótona creciente. Demostrar que si $f\in\Re(\alpha)$ en [a,b] y $[c,d]\subset[a,b]$, entonces $f\in\Re(\alpha)$ en [c,d].
- 8. Sea $f:[a,b]\to\mathbb{R}$ continua y sea $\alpha:[a,b]\to\mathbb{R}$ monótona creciente.
 - (a) Demostrar que existe $c \in (a, b)$ tal que $\int_a^b f \ d\alpha = f(c) (\alpha(b) \alpha(a))$.
 - (b) Suponiendo que α es además derivable en (a,b),(pero no necesariamente de clase C^1), demostrar que la función

$$\psi(x) = \int_{a}^{x} f \ d\alpha$$

es derivable en (a,b) y que $\psi'(x)=f(x)\alpha'(x)$ para todo $x\in(a,b)$.

9. Sean $f,g:[a,b]\to\mathbb{R}$ y sea $\alpha:[a,b]\to\mathbb{R}$ monótona creciente. Demostrar que si $f,g\in\Re(\alpha)$ y $f(x)\leq g(x)$ para todo $x\in[a,b]$, entonces $\int\limits_a^b f\ d\alpha\leq\int\limits_a^b g\ d\alpha$.

Deducir que si $f \in \Re(\alpha)$ entonces $\left| \int_a^b f \ d\alpha \right| \le \int_a^b |f| \ d\alpha$.

10. Para cada $x \in \mathbb{R}$ vamos a notar con $\lfloor x \rfloor$ a la parte entera de x, es decir: $\lfloor x \rfloor := \max \{ n \in \mathbb{Z} \ / \ n \leq x \}$.

Analizar la existencia de las integrales que siguen y en caso afirmativo calcularla:

(a)
$$\int_{0}^{4} x^{2} d(\lfloor x \rfloor)$$
 (b)
$$\int_{0}^{2} x d(x - \lfloor x \rfloor)$$
 (c)
$$\int_{0}^{2} x^{2} d(|x|)$$

11. Demostrar que si $f:[a,b]\to\mathbb{R}$ es una función de variación acotada entonces es integrable Riemann.

2

- 12. Sea $f:[a,b] \to \mathbb{R}$ una función de clase C^1 en [a,b].
 - (a) Demostrar que f es de variación acotada.
 - (b) Demostrar que vale la igualdad $V_f(a,b) = \int_a^b |f'(x)| dx$.
- 13. Sea $f, \alpha: [a,b] \to \mathbb{R}$ tales que f es una función continua y α es de variación acotada.
 - (a) Demostrar que $|f| \in \Re(V_{\alpha})$.
 - (b) Demostrar que vale la desigualdad $\left| \int_a^b f \ d\alpha \right| \leq \int_a^b |f| \ dV_{\alpha}$. Sugerencia. Tener en cuenta el ejercicio 6.
 - (c) Deducir de (b) que $\left| \int_a^b f \ d\alpha \right| \le V_{\alpha}(a,b) \max_{x \in [a,b]} |f(x)|$.
 - (d) Para cada $x \in [a,b]$ se define $\psi(x) = \int_a^x f \ d\alpha$ (observar que ψ está bien definida). Probar que ψ es de variación acotada.
 - (e) Si α es Lipschitz en [a,b], probar que la función ψ definida en el ítem anterior también es Lipschitz en [a,b].