Geometría Proyectiva

SEGUNDO CUATRIMESTRE 2009

Práctica 1 y medio - Cuádricas (Ejercicios optativos)

1. **Proyección estereográfica.** Sea $Q = (F = 0) \subset \mathbb{R}^n$ una cuádrica. Tomemos $p \in Q$ un punto no singular y un hiperplano $H \subset \mathbb{R}^n$ que no contiene a p. Definimos $\pi : Q - \{p\} \to H$ por $\pi(x) = L(x,p) \cap H$, donde L(x,y) denota la recta que pasa por $x \in y$. En realidad, esta relación no es necesariamente una función ya que para algunos $x \in Q - \{p\}$ puede ser que $L(x,p) \cap H = \emptyset$.

Determinar el dominio, imagen y región de inyectividad de π . Calcular su inversa en donde tenga sentido.

(Se sugiere comenzar por los casos n=2 y n=3 y F una forma canónica.)

- 2. Secciones hiperplanas. Si Q = (F = 0) es una cuádrica en \mathbb{R}^{n+1} , ¿cuáles son los tipos de cuádricas en \mathbb{R}^n que se obtienen intersecando Q con diversos hiperplanos afines de \mathbb{R}^{n+1} ? (Podemos suponer que Q es una de las formas canonicas.)
- 3. Subespacios isotrópicos. Sea Q = (F = 0) una cuádrica en \mathbb{R}^n . Si S es un subespacio afín de \mathbb{R}^n , decimos que S es isotrópico (respecto a Q) si $S \subset Q$, o sea, $F(S) = \{0\}$. Definimos el numero natural $\delta(F)$ como el máximo de las dimensiones de los espacios isotrópicos de Q = (F = 0) (si Q no tiene espacios isotrópicos entonces definimos $\delta(F) = -1$). Calcular δ para cada una de las formas canónicas.
- 4. **Degeneraciones de cuádricas.** Sea X el conjunto de polinomios reales de grado dos en n variables, provisto de la acción usual del grupo afín $G = A(n, \mathbb{R})$. Las órbitas de la acción de G en X corresponden a las formas canónicas del Teorema de Clasificación. Para cada órbita $\alpha \subset X$ determinar cuáles son las órbitas $\beta \subset X$ tales que β está contenida en la clausura de α (o sea, las cuádricas de tipo β son límite de cuádricas de tipo α , o como también se dice, las cuádricas de tipo α degeneran en cuádricas de tipo β).