ANALISIS NUMERICO — Práctica 3

Segundo Cuatrimestre de 2009

Ejercicio 1. i) Probar que la función definida como $h(x) = \exp(-1/x^2)$ para x > 0, h(x) = 0 para $x \le 0$, pertenece a $C^{\infty}(\mathbb{R})$.

- ii) Probar que la función g(x) = h(x-a)h(b-x), a < b es $C^{\infty}(\mathbb{R})$ con soporte en [a,b].
 - iii) Construir una función en $C_0^{\infty}(\mathbb{R}^n)$ con soporte en una bola o en un intervalo.

Ejercicio 2. Sea I = (-1, 1). Comprobar que:

i) La función $u(x) = \frac{1}{2}(x + |x|)$ pertenece a $W^{1,p}(I)$ para todo $1 \le p \le \infty$ y que u' = H, donde H es la función de Heaviside:

$$H(x) = \begin{cases} 1 & \text{si} & 0 < x < 1 \\ 0 & \text{si} & -1 < x < 0 \end{cases}$$

ii) La función $H \notin W^{1,p}$ para $1 \le p \le \infty$.

Ejercicio 3. i) Sea $f \in L^2(I)$ tal que $\int_I fg \ dx = 0$ para toda $g \in L^2(I)$. Probar que f = 0 c.t.p.

- ii) Sea $f \in L^2(I)$ tal que $\int_I fg \ dx = 0$ para toda $g \in C_0^k(I)$. Probar que f = 0 c.t.p.
- iii) Sea $f \in L^2(I)$ tal que $\int_I fg \ dx = 0$ para toda $g \in C_0^{\infty}(I)$. Probar que f = 0 c.t.p.

Ejercicio 4. 1. Demuestre que si $f, g \in L^p$ son tales que $\int_I f \phi' = -\int_I g \phi$ para toda $\phi \in C_0^1(I)$ entonces g es única.

2. Si la $f \in L^p$ del item previo es derivable entonces f' = g.

Ejercicio 5. 1. Considere una función $\psi \in C_0^0(I)$ tal que $\int_I \psi = 1$ pruebe que $\theta = \omega - (\int_I \omega) \psi \in C_0^0(I)$ para todo $\omega \in C_0^1(I)$, ademas $\int_I \theta = 0$.

- 2. Si I=(a,b), defina $\phi(x)=\int_a^x\theta$ y pruebe que $\phi(x)\in C_0^1(I)$, más aún $\phi'=\theta$.
- 3. Si f en L^1_{loc} y $\int_I f \phi' = 0$ para toda $\phi \in C^1_0(I)$ entonces f = cte c.t.p. (Sug. tome ϕ como en el item previo y utilice el Ejercicio 3).

Ejercicio 6. Si $g \in L^1_{loc}(I)$ tome $c \in I$ cualquiera, y escriba para $x \in I$ $\int_c^x g = v(x)$, entonces $\int_I v \phi' = -\int_I g \phi$ para todo $\phi \in C^1_0(I)$.

Ejercicio 7. Utilizando el ejercicio previo y tomando f y g como en el ejercicio 4 deduzca la identidad $f(x) = f(c) + \int_c^x g$ para casi todo x.

Ejercicio 8. Utilizando el ejercicio previo demuestre que si $f \in H^1(I)$ entonces $||f||_{\infty} \le C||f||_{H^1}$.

Ejercicio 9. Usando el ejercicio previo demuestre que si $u \in H_0^1(I)$, con I = (a, b) entonces u(a) = u(b) = 0. Pruebe utilizando este hecho que para I acotado en Rexiste una constante C (dependiente de |I|) tal que

$$||u||_{L^2} \le C||u'||_{L^2} \quad \forall u \in H_0^1$$
 (Designaldad de Poincaré)

y por ende

$$||u||_{H^1(0,1)} \le C||u'||_{L^2} \quad \forall u \in H^1_0$$

Ejercicio 10. Sea

$$u(x,y) = \frac{1}{\|(x,y)\|^{\epsilon}}$$

con $0 < \epsilon < 1$ y $(x, y) \in B_R(0)$.

Probar que u tiene derivadas generalizadas de primer orden en $L^2(B_R(0))$; $u \in H^1(B_R(0))$ pero u no tiene representante continuo en $B_R(0)$.

Ejercicio 11. i) Demuestre que la función

$$u(x,y) = |\ln(x^2 + y^2)|^{\frac{1}{3}}$$

está en $H^1(B_{\frac{1}{2}})$ donde $B_{\frac{1}{2}}=\{(x,y)\in \mathbb{R}^2, x^2+y^2<\frac{1}{2}\}.$

ii) Para que valores de α la función

$$u(x,y) = |\ln(x^2 + y^2)|^{\alpha}$$

está en $H^1(B_{\frac{1}{2}})$?

Concluir que las funciones de H^1 no son necesariamente acotadas y por ende el resultado del ej. 8 no se extiende a más dimensiones.

Notación: Designaremos con $V = \{v : v \text{ es una función continua definida en } [0,1], que tiene derivada <math>v'$ continua a trozos y acotada en [0,1], y que satisface v(0) = v(1) = 0}. Notaremos $< u, v >= \int_0^1 uv \ dx$.

Llamaremos (D) al siguiente problema de valores de contorno para la ecuación diferencial ordinaria:

$$\left\{ \begin{array}{ll} -u''(x) = f(x) & 0 < x < 1 \\ u(0) = u(1) = 0 \end{array} \right.$$

donde f es una función continua dada.

Con (M) designaremos al problema de minimización:

Hallar $u \in V$ tal que $F(u) \le F(v) \ \forall v \in V$

y con (V) llamaremos al problema variacional:

Encontrar $u \in V$ tal que $\langle u', v' \rangle = \langle f, v \rangle \ \forall v \in V$.

En todos los casos $F(v) = \frac{1}{2} < v', v' > - < f, v > .$

Ejercicio 12. Probar que si w es continua en [0,1] y $\int_0^1 wv \ dx = 0 \quad \forall v \in V$, entonces $w(x) = 0 \ \forall x \in [0,1]$.

Ejercicio 13. Probar que si u satisface el problema (V), y u'' existe en el sentido habitual y es continua, u es también solución del problema (D).

Ejercicio 14. Demuestre que las siguientes formas bilineales son continuas y coercivas en los respectivos espacios V

- 1. $V = \mathbb{R}^n$, $a(u, v) = vAu^t$ con $A \in \mathbb{R}^{n \times n}$, A definida positiva.
- 2. $V = L^2(0,1), a(u,v) = \int_0^1 u(x)v(x)\rho(x)dx$, con $\rho(x) > 0$ y continua en [0,1].
- 3. $V = H^1(0,1), \ a(u,v) = \int_0^1 (u(x)v(x)\rho_1(x) + u'(x)v'(x)\rho_2(x))dx$, con $\rho_i(x) > 0$ y continuas en [0,1].
- 4. $V = H_0^1(0,1), \ a(u,v) = \int_0^1 u'(x)v'(x)\rho(x)dx, \ \rho(x) > 0$, continua en [0,1].
- 5. $V = H^1(0,1)$, $a(u,v) = \int_0^1 (u'(x)v'(x)\rho_1(x) + ku'(x)v(x) + u(x)v(x)\rho_2(x))dx$ con ρ_i como en los items previos, y k constante suficientemente chico. Es esta forma bilineal simétrica?

Ejercicio 15. Considerar el problema:

$$\begin{cases} -u'' + u = f & \text{en } I = (0, 1) \\ u(0) = u(1) = 0 \end{cases}$$

con f una función prefijada en $C(\overline{I})$.

- i) ¿Qué se considera una solución clásica del problema?
- ii) ¿Cómo definiría una solución débil?
- iii) Probar que toda solución clásica es una solución débil.
- iv) Probar que existe una solución única en $H_0^1(I)$ de la formulación débil.
- v) Probar que la solución débil es suficientemente regular (esto es, que pertenece a $C^2(\overline{I})$), y que proporciona una solución clásica.

Ejercicio 16. Realizar el análisis del ejercicio anterior para el problema no homogéneo:

$$\begin{cases} -u'' + u = f & \text{en } I = (0, 1) \\ u(0) = \alpha, \ u(1) = \beta \end{cases}$$

con α y $\beta \in \mathbb{R}$, y f una función prefijada en $C(\overline{I})$.

Ejercicio 17. Realizar un análisis similar para el problema con condiciones de Neumann homogéneas:

$$\begin{cases} -u'' + u = f \text{ en } I = (0, 1) \\ u'(0) = u'(1) = 0 \end{cases}$$

con f una función prefijada en $C(\overline{I})$.

Ejercicio 18. Considerar el problema de contorno:

$$-u'' + ku' + u = f$$
 en $[0,1]$ $u'(0) = u'(1) = 0$

Hallar una formulación variacional, y probar que para k suficientemente pequeño el problema variacional tiene solución única. Hallar un valor de k tal que a(v,v)=0 pero $v\not\equiv 0$ para algún $v\in H^1$.

Ejercicio 19. Probar que el espacio vectorial V de las poligonales con vértices en $a = x_0 < x_1 < \cdots < x_n = b$ es un espacio de Hilbert con el producto escalar $(\phi, \psi) = \sum_{i=0}^{n} \phi(x_i) \psi(x_i)$.

Ejercicio 20. Considere una partición uniforme del intervalo (0,1), $\bigcup_{1}^{N} I_{i} = (0,1)$. Construya el sistema lineal resultante, para las ecuaciones dadas en los Ejercicios 15, 17, al realizar aproximaciones de Galerkin con

$$V_h = \{ \phi \in \mathcal{C}^0(0,1), \text{ tales que } \phi \text{ es lineal en cada } I_i \}$$

defininiendo las condiciones de borde adecuadas en cada caso.

Ejercicio 21. Encontrar la solución discreta correspondiente al problema variacional:

$$hallar \ u \in H_0^1(I) \ tal \ que < u', v'> = < 1, v > \ \forall v \in H_0^1(I)$$

utilizando discretizaciones con 2, 4, 8 y 16 elementos. Usar elementos lineales, y cuadráticos. En cada caso calcular las normas $||u-u_h||_{L^{\infty}}$, $||u-u_h||_{L^2}$, y $||u-u_h||_{H^1(I)}$ (donde u es la solución clásica), y graficarlas en función de h.

Ejercicio 22. Para el espacio

$$V_h = \{ \phi \in \mathcal{C}^0(0,1), \text{ tales que } \phi \text{ es cuadrática en cada } I_i \}$$

construya bases adecuadas y obtenga la matriz de rigidez para el problema

$$\begin{cases} -u''(x) = f(x) & 0 < x < 1 \\ u(0) = u(1) = 0 \end{cases}$$

Ejercicio 23. Sea I = (0, 1) y sean x_i tales que $0 = x_0 < x_1 < \cdots < x_{N-1} < x_N = 1$ una partición de I.

1. Definimos para cada $1 \le i \le N - 1$, $G_i(x) = \begin{cases} (1 - x_i)x & 0 \le x \le x_i \\ x_i(1 - x) & x_i \le x \le 1 \end{cases}$

verifique que $G_i \in H_0^1(0,1)$ y que $\forall w \in H_0^1(0,1)$ se tiene que

$$\int_0^1 w'(s)G_i'(s)ds = w(x_i)$$

2. Dada $f \in L^2(0,1)$ considere el problema

$$\begin{cases} -u'' = f \\ u(0) = u(1) = 0 \end{cases}$$

escríbalo en forma variacional sobre H_0^1 y escriba la formulación aproximada de Galerkin utilizando el espacio

$$V_h = \{ u \in H_0^1 \text{ tal que } u \in P_1(I_i) \text{ para todo } 0 \le i \le N - 1 \}$$

- a) Demuestre que ambos problemas variacionales tienen solución única.
- b) Demuestre que $\int_0^1 (u u_h)' v_h' = 0$ para todo $v_h \in V_h$. De aquí y del item previo concluya que $u(x_i) = u_h(x_i)$, i.e, la solución obtenida numéricamente interpola a u en los nodos (aquí u_h denota la solución del problema discreto).
- 3. Hallar la matriz de rigidez (usando las bases de Lagrange).

Ejercicio 24. Considere el problema de contorno:

$$\begin{cases} u''''(x) = f(x) & 0 < x < 1 \\ u(0) = u'(0) = u(1) = u'(1) = 0 \end{cases}$$

Aquí u representa, por ejemplo, la deflexión de una barra empotrada en sus extremos y sujeta a una fuerza transversal de intensidad f.

Llevar el problema a la forma débil:

Hallar $u \in H_0^2(0,1)$ tal que

$$< u'', v'' > = < f, v > \quad \forall v \in H_0^2(0, 1)$$

demuestre que este problema variacional tiene solución única.

Ejercicio 25. Defina

$$V_h = \{ \phi \in \mathcal{C}^0([0,1]), \text{ tales que } \phi \text{ es cúbica en cada } I_i \}$$

y pruebe que en general V_h no está incluido en H^2 . Piense cómo definir un subespacio $W_h \subset V_h$ tal que $W_h \subset H_0^2$. Construya las bases para W_h .