Topología 2008

Práctica 2 - Subespacios, productos y cocientes

1. Consideremos a I = [-1, 1] como subespacio de \mathbb{R} . ¿Cuáles de los siguientes conjuntos son abiertos en I? ¿Cuáles son abiertos en \mathbb{R} ?

$$\begin{array}{ll} A = \{x: \frac{1}{2} < |x| < 1\} & B = \{x: \frac{1}{2} < |x| \leq 1\} \\ D = \{x: \frac{1}{2} \leq |x| \leq 1\} & E = \{x: 0 < |x| < 1, 1/x \notin \mathbb{N}\} & F = \{x: |x| \leq 1\} \end{array}$$

- 2. Sea X un conjunto ordenado, equipado con la topología del orden, y sea $Y \subset X$.
 - a) Probar que la topología del orden en Y no coincide en general con la topología de subespacio.
 - b) Y se dice **convexo** si satisface $a, b \in Y \Rightarrow (a, b) \subset Y$. Probar que si Y es convexo, entonces estas dos topologías sí coinciden.
- 3. Probar que si $Z \subset A$ y A es subespacio de X, entonces la topología de Z como subespacio de A coincide con la topología de Z como subespacio de X.
- 4. Sean A un subespacio de X y B un subespacio de Y. Probar que la topología producto en $A \times B$ coincide con la topología de subespacio de $X \times Y$.
- 5. Sean X,Y espacios topológicos. Probar que las proyecciones $\pi_1:X\times Y\to X$ y $\pi_2:X\times Y\to Y$ son abiertas. Hallar ejemplos en los que no sean cerradas.
- 6. Sean X, Y, Z espacios topológicos, y sea $f: X \times Y \to Z$ una función. f se dice **continua en** x si $f(-,y): X \to Z$ es continua para todo $y \in Y$. Analogamente, f se dice **continua en** y si $f(x, -): Y \to Z$ es continua para todo $x \in X$.
 - a) Probar que si f es continua, entonces es continua en cada variable.
 - b) Hallar un ejemplo en el que f sea continua en cada variable y sin embargo no sea continua.
- 7. Probar que la topología del orden del diccionario en $\mathbb{R} \times \mathbb{R}$ coincide con la topología producto de $\mathbb{R}_d \times \mathbb{R}$, donde \mathbb{R}_d es la topología discreta en \mathbb{R} . Comparar con la topología usual de \mathbb{R}^2 .
- 8. Sea \mathbb{R}_l la topología cuya base de abiertos son los conjuntos de la forma [a,b), $a,b \in \mathbb{R}$. Sea L una recta en el plano. Describir la topología que hereda L como subespacio de $\mathbb{R}_l \times \mathbb{R}$ y como subespacio de $\mathbb{R}_l \times \mathbb{R}_l$.
- 9. Sea $I = [0,1] \subset \mathbb{R}$. Comparar la topología producto en $I \times I$ con la topología del orden del diccionario en $I \times I$ y con la topología $I_d \times I$ donde I_d denota a I con la topología discreta.
- 10. Sean $A \subset X$ y $B \subset Y$. Probar que $\overline{A \times B} = \overline{A} \times \overline{B}$. Concluir que si A es cerrado en X y B es cerrado en Y, entonces $A \times B$ es cerrado en $X \times Y$.

- 11. a) Sean $x_0 \in X$ e $y_0 \in Y$. Probar que las funciones $f: X \to X \times Y$ y $g: Y \to X \times Y$ definidas por $f(x) = (x, y_0), g(y) = (x_0, y)$ son subespacios.
 - b) Sea X un espacio con una distancia $d: X \times X \to \mathbb{R}$. Probar que la topología inducida por la métrica es la mínima tal que d es continua. Sugerencia: si d es continua, también lo es $d_{x_0}: X \to \mathbb{R}$, $d_{x_0}(x) = d(x, x_0)$.
- 12. Sea $\{X_i\}_{i\in I}$ una familia de espacios topológicos, y sea para cada $i\in I$ un subconjunto $A_i\subset X_i$. Decidir cuáles de las siguientes afirmaciones son ciertas y cuáles falsas si se toma en $X=\prod_{i\in I}X_i$ la topología producto. ¿Y si se toma la topología caja?
 - a) Si cada A_i es cerrado en X_i entonces $\prod_{i \in I} A_i$ es cerrado en X.
 - b) $\overline{\prod_{i\in I} A_i} = \prod_{i\in I} \overline{A_i}$.
- 13. Sea $(x_{\alpha})_{\alpha \in \Lambda}$ una red de puntos en el espacio topológico $X = \prod_{i \in I} X_i$. Probar que $x_{\alpha} \to x$ si y sólo si $\pi_i(x_{\alpha}) \to \pi_i(x)$ para todo $i \in I$. ¿Es cierto ésto si se toma en X la topología caja?
- 14. Comparar las topologías caja, producto y uniforme en \mathbb{R}^{ω} . Hacer de nuevo los ejercicios 23, 24 y 25 de la práctica 1, tomando en \mathbb{R}^{ω} la topología caja y la producto. Comparar con lo obtenido para la topología uniforme.
- 15. Considerar la función h definida en el ejercicio 27 de la práctica 1. Probar que con sólo pedir que todos los a_i sean no nulos entonces h es un homeomorfismo si se considera en \mathbb{R}^{ω} la topología producto. ¿Y si en \mathbb{R}^{ω} consideramos la topología caja?
- 16. Sea $\{f_i:X\to X_i\}_{i\in I}$ una familia inicial de funciones, y sea $f:X\to\prod X_i$ la función definida por

$$f(x) = (f_i(x))_{i \in I}$$

Sea Z la imagen de f. Probar que $f: X \to Z$ es abierta.

- 17. Sea X un espacio topológico, y sea $S = \{0, 1\}$ el espacio de **Sierpinski**, cuyos abiertos son \emptyset , $\{1\}$ y S. Probar que $A \subset X$ es abierto si y sólo si la función característica de A, $\chi_A : X \to S$, es continua. Probar que la familia $\{\chi_U\}_{U \in \mathcal{T}_X}$ es una familia inicial para la topología de X.
- 18. Probar que si $f: X \to Y$ es final e inyectiva, entonces es inicial.
- 19. Probar que si $f: X \to Y$ es inicial y survectiva, entonces es cociente.
- 20. Sea $f: X \to Y$ una función continua. Probar que si existe $g: Y \to X$ continua tal que $f \circ g = id_Y$, entonces f es un cociente.
- 21. Sea $\pi_1: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ la proyección a la primer coordenada.
 - a) Sea X el subespacio ($\{0\} \times \mathbb{R}$) \cup ($\mathbb{R} \times \{0\}$) de $\mathbb{R} \times \mathbb{R}$, y sea $g = \pi_1|_X$. Mostrar que g es cerrada pero no abierta.

- b) Sea Y el subespacio $(\mathbb{R}_{\geq 0} \times \mathbb{R}) \cup (\mathbb{R} \times \{0\})$ de $\mathbb{R} \times \mathbb{R}$, y sea $h = \pi_1|_Y$. Mostrar que h no es abierta ni cerrada pero es cociente.
- 22. Caracterizar el espacio cociente \mathbb{R}^2/\sim en cada uno de los siguientes casos.
 - a) $(x_0, y_0) \sim (x_1, y_1) \Leftrightarrow x_0 + y_0^2 = x_1 + y_1^2$.
 - b) $(x_0, y_0) \sim (x_1, y_1) \Leftrightarrow x_0^2 + y_0^2 = x_1^2 + y_1^2$
- 23. Se
aZel subespacio $\mathbb{R}\times\{0\}\cup\{0\}\times\mathbb{R}$ de $\mathbb{R}\times\mathbb{R}.$ Definimo
s $g:\mathbb{R}\times\mathbb{R}\to Z$ por la fórmula

$$\begin{cases} g((x,y)) &= (x,0) \text{ si } x \neq 0 \\ g((0,y)) &= (0,y) \end{cases}$$

- a) ¿Es g un cociente? ¿Es g continua?
- b) Hallar una base para la topología cociente en Z inducida por g.
- 24. Sea $X=\mathbb{C}\times\{0,1\}$ con la topología producto, $\{0,1\}$ con la topología discreta. Definimos en X la relación de equivalencia

$$(z,0) \sim (w,1) \Leftrightarrow z.w = 1, (z,j) \sim_2 (w,j) \Leftrightarrow z = w$$

Se le da a $X/_{\sim}$ la topología cociente. Probar que $f: X \to S^2$ definida por

$$f(x+iy,j) = \begin{cases} \frac{1}{1+x^2+y^2}(2x,2y,1-x^2-y^2) & \text{si } j=0\\ \frac{1}{1+x^2+y^2}(2x,-2y,x^2+y^2-1) & \text{si } j=1 \end{cases}$$

induce un homeomorfismo $\overline{f}: X/_{\sim} \to S^2$.

Sugerencia: Probar que \overline{f} es biyectiva; probar la continuidad de la inversa en los abiertos $S^2 \setminus \{P_N\}$, $S^2 \setminus \{P_S\}$, donde P_N y P_S son los polos.

- 25. Sea G un grupo. Un G-espacio es un espacio topológico X junto con una acción $G \times X \to X$ tal que $x \mapsto g \cdot x$ es continua para todo g. Probar que los siguientes espacios topológicos son G-espacios.
 - a) $X = \mathbb{R}$, $G = \mathbb{Z}$ y la acción es $n \cdot x = n + x$.
 - b) $X = \mathbb{R}^2$, $G = \mathbb{Z} \times \mathbb{Z}$ y la acción es $(n, m) \cdot (x, y) = (n + x, m + y)$.
 - c) $X = S^n$, $G = \mathbb{Z}_2 = \{\pm 1\}$ y la acción es $\pm 1 \cdot x = \pm x$.
 - d) $X=\{(x,y)\in\mathbb{R}^2:\frac{-1}{2}\leq y\leq\frac{1}{2}\},$ $G=\mathbb{Z}$ y la acción es $m\cdot(x,y)=(m+x,(-1)^my).$
- 26. Si X es un G-espacio, podemos definir en X la relación de equivalencia

$$x \sim y \iff \exists g \in X \text{ tal que } y = g \cdot x.$$

El espacio de cociente resultante lo notamos con X/G, y consideramos en él la topología cociente. Probar que la proyección al cociente $p: X \to X/G$ es abierta, y que si G es finito, entonces p también es cerrada.

- 27. a) Probar que el espacio cociente \mathbb{R}/\mathbb{Z} (ejercicio 25, a) es homeomorfo a S^1 .
 - b) Probar que el espacio cociente $\mathbb{R}^2/\mathbb{Z}\times\mathbb{Z}$ (ejercicio 25, b) es homeomorfo al toro $S^1\times S^1.$
 - c) El espacio cociente S^n/\mathbb{Z}_2 (ejercicio 25, c) se nota $\mathbb{P}^n(\mathbb{R})$, y se llama el espacio proyectivo real de dimensión n.
 - d) Probar que el espacio cociente X/\mathbb{Z} (ejercicio 25, d) es homeomorfo a la banda de Möbius. (Recordar que la banda de Möbius se define como el cociente de $[0,1] \times [0,1]$ por la relación que identifica (0,y) con $(1,1-y), y \in [0,1]$.)