ESPACIOS DE SOBOLEV

NICOLAS SAINTIER

1. Definicion

Sea $U\subset\mathbb{R}^n$ abierto. Recordemos que cualquier función $u\in L^1_{loc}(U)$ define una distribución por la fórmula $(u,\phi)=\int_U u\phi,\,\phi\in C_c^\infty(U),\,\mathrm{y}$ por lo tanto puede ser derivada infinitamente definiendo $D^\alpha u\in\mathcal{D}'(U)$ por $(D^\alpha u,\phi)=(-1)^{|\alpha|}(u,D^\alpha\phi),\,\phi\in C_c^\infty(U).$ Definimos entonces el espacio de Sobolev $W^{k,p}(U)$ como el subespacio de $L^p(U)$ de las funciones cuyas derivadas de orden $\leq k$ (en sentido de las distribuciones) pertenecen a L^p :

$$W^{k,p}(U) = \{ u \in L^p(U) \operatorname{tq} D^{\alpha} u \in L^p(U) \, \forall \, |\alpha| \le k \}$$

es decir que $u \in L^p(U)$ pertenece a $W^{k,p}(U)$ si existen funciones $u_{\alpha} \in L^p(U)$, $|\alpha| \leq k$, tales que

$$\int_{U} u D^{\alpha} \phi = (-1)^{|\alpha|} \int_{U} u_{\alpha} \phi \quad \forall \phi \in C_{c}^{\infty}(U).$$

Se tiene en este caso que $D^{\alpha}u := u_{\alpha}$.

Por ejemplo $C^k(\bar{U}) \subset W^{k,p}(U)$ pero también funciones no acotadas como $|x|^{-\alpha}$ pertenecen a $W^{1,p}(B_0(1))$ si $\alpha < (n-p)/p$. Se verifica que $W^{k,p}(U)$ es un espacio vectorial. Definimos una norma en $W^{k,p}(U)$ por

$$\begin{split} \|u\|_{W^{k,p}}^p &:= \sum_{|\alpha| \leq k} \|D^\alpha u\|_p^p \quad \text{si } p < \infty, \\ \|u\|_{W^{k,\infty}} &:= \sum_{|\alpha| < k} \|D^\alpha u\|_\infty \quad \text{si } p = \infty. \end{split}$$

Usando que L^p es un Banach, se ve que $W^{k,p}(U)$ es un Banach y que $W^{k,2}(U)$ es un Hilbert con producto interno

$$(u,v)_{W^{k,2}} = \sum_{|\alpha| \le k} (D^{\alpha}u, D^{\alpha}v)_{L^2}.$$

2. Caso
$$n=1$$

Supongamos que U=(a,b) es un intervalo de \mathbb{R} . En este caso la siguiente proposición afirma que una función $u\in W^{k,p}(U)$ puede considerarse continua en \bar{U} (si la modificamos eventualmente en un conjunto de medida cero), y que vale el teórema fundamental de cálculo:

Proposicion 2.1. Dado $u \in W^{k,p}(U)$ existe $\tilde{u} \in C(\bar{U})$ tal que $u = \tilde{u}$ ctp y

$$\tilde{u}(x) - \tilde{u}(y) = \int_{y}^{x} u'(t) dt \quad \forall x, y \in \bar{U}.$$

En particular

(1)
$$|\tilde{u}(x) - \tilde{u}(y)| \le \int_y^x |u'(t)| dt \le ||u'||_p |x - y|^{1 - 1/p}.$$

Siempre se identifica u con \tilde{u} .

Además se puede probar que la inyección de $W^{k,p}(U)$ en $C(\bar{U})$ es continua en el sentido que existe C > 0 tal que $||u||_{\infty} \leq C||u||_{W^{k,p}}$. Ademas (1) permite aplicar el teórema de Arzela-Ascoli si U es acotado y p > 1. Por lo tanto en este caso la inyección de $W^{k,p}(U)$ en $C(\bar{U})$ es compacta.

3. Aproximación por funciones suaves

Fijemos un entero k y un $p \in [1, +\infty)$. Queremos aproximar $u \in W^{k,p}(U)$ por funciones C^{∞} . Lo primero que podemos hacer es regularizar u por convolución considerando $u_{\varepsilon} = u * \rho_{\varepsilon}$ (donde $\rho(x) = \varepsilon^{-n} \rho(x/\varepsilon)$ con $\rho \in C_c^{\infty}(B_0(1))$ radial positiva de integral uno). Notar que u_{ε} esta definida unicamente en $U_{\varepsilon} := \{x \in U \ tq \ d(x, \partial U) > \varepsilon\}$ por definición del producto de convoluión, y que $u_{\varepsilon} \in C^{\infty}(U_{\varepsilon})$. Resulta que $D^{\alpha}u_{\varepsilon} = D^{\alpha}u * \rho_{\varepsilon}$ y por lo tanto, como $D^{\alpha}u \in L^p(U)$ si $|\alpha| \leq k$, tenemos que $D^{\alpha}u_{\varepsilon} \to D^{\alpha}u$ en $L^p_{loc}(U)$ es decir $u_{\varepsilon} \to u$ in $W^{k,p}_{loc}(U)$.

Si queremos aproximar u por funciones suaves hasta ∂U debemos tratar con mas cuidado lo que pasa cerca de ∂U . Suponiendo U acotado la idea es de acercarse a ∂U considerando $V_i := \{x \in U \ tq \ 1/(i+1) < d(x,\partial U) < 1/i\}$, regularizar u en V_i por convolución como antes, y despues pegar estas regularizadas usando una partición de la unidad. De esta manera fabricamos $u_{\varepsilon} \in C^{\infty}(U) \cap W^{k,p}(U)$ tal que $u_{\varepsilon} \to u$ en $W^{k,p}$.

Finalmente podemos aproximar u por $u_{\varepsilon} \in C^{\infty}(\bar{U})$ suponiendo ∂U de clase C^1 (para escribir localmente ∂U como el gráfico de una función C^1): suponiendo que estamos en un cacho (es decir carta) de ∂U consideramos $v_{\varepsilon}(x) = u(x_{\varepsilon})$ donde x_{ε} se obtiene a partir de x moviendose un poco hacia U siguiendo la dirección normal. De esta manera hay bastante lugar alrededor de x_{ε} para regularizar por convolución.

Finalmente se puede probar que $C_c^{\infty}(\mathbb{R}^n)$ es denso en $W^{k,p}(\mathbb{R}^n)$. Para eso fabricamos funciones cut-off η_k con soporte en $B_0(2k)$ como $\eta_k(x) = \eta(|x|/k)$ donde $\eta: \mathbb{R} \to [0,1]$ es C^{∞} con soporte en $B_0(2)$ y vale 1 en $B_0(1)$. Entonces, dada $u \in W^{k,p}(\mathbb{R}^n)$, la funcion u cortada suavemente usando η_k , es decir $\eta_k u$, converge a u en $W^{k,p}$. Basta regularizar $\eta_k u$ por convolución para obtener funciones C^{∞} con soporte compacto que convergen a u en $W^{k,p}(\mathbb{R}^n)$.

4. Teorema de inyección de Sobolev y de Rellich-Kondrakov

El teórema de Sobolev afirma que si $1 \leq p < n$, existe C > 0 tal que

(2)
$$||u||_{p^*} \le C||u||_{W^{1,p}} \quad \forall u \in C_c^{\infty}(\mathbb{R}^n),$$

donde $p^* := np/(n-p)$. Notar que $p^* > p$. Usando la densidad de $C_c^{\infty}(\mathbb{R}^n)$ en $W^{1,p}(\mathbb{R}^n)$ obtenemos que

$$W^{1,p}(\mathbb{R}^n) \hookrightarrow L^{p^*}(\mathbb{R}^n).$$

De hecho si $u_k \in C_c^{\infty}(\mathbb{R}^n)$ converge a $u \in W^{k,p}(\mathbb{R}^n)$ entonces converge tambien en $L_{loc}^p(\mathbb{R}^n)$. Por otro lado, usando (2) vemos que (u_k) es de Cauchy

en $L^{p^*}(\mathbb{R}^n)$ y por lo tanto converge a un $v \in L^{p^*}(\mathbb{R}^n)$. La convergencia vale en particular en $L^p_{loc}(\mathbb{R}^n)$. Luego u = v. Basta entonces escribir (2) por u_k y pasar al límite.

Ahora si $U \subset \mathbb{R}^n$ es un abierto acotado C^1 , admitiendo que cualquier función $u \in W^{1,p}(U)$ puede ser extendida en un función $\tilde{u} \in W^{1,p}(\mathbb{R}^n)$ de manera que $\|\tilde{u}\|_{W^{1,p}(\mathbb{R}^n)} \leq C\|u\|_{W^{1,p}(U)}$ con un C independiente de u, obtenemos que

$$W^{1,p}(U) \hookrightarrow L^{p^*}(U).$$

Luego, como U es de medida finita, obtenemos que

$$W^{1,p}(U) \hookrightarrow L^q(U) \quad \forall q \in [1, p^*].$$

En particular

$$W^{1,p}(U) \hookrightarrow L^p(U)$$
.

El teorema de Rellich-Kondrakov afirma que si $q < p^*$ entonces la inyección de $W^{1,p}(U)$ en $L^q(U)$ es, además de continua, compacta. Eso significa que de cualquier sucesión $(u_k) \subset W^{1,p}(U)$ acotada se puede extraer una subsucesión que converge en $L^q(U)$ a un u. Obtenemos entonces que $u_k \to u$ en $L^q(U)$ para todo $q \in [1, p^*)$ (a una subsucesión). admitiendo que $W^{1,p}(U)$ es reflexivo (viene de que los L^q son reflexivos si $1 < q < \infty$) se puede también suponer (a extracción de una subsucesión) que los u_k convergen debilmente en $W^{1,p}(U)$ a un v. Como $u_k \to u$ en $L^p(U)$, en particular debilmente en $L^p(U)$, y que $L^p(U)' \subset W^{1,p}(U)'$, obtenemos que u = v. Resumiendo,

Proposicion 4.1. De cualquier sucesión $(u_k) \subset W^{1,p}(U)$ acotada, se puede extraer una subsucesión que converge a un $u \in W^{1,p}(U)$ debilmente en $W^{1,p}(U)$ y fuertemente en $L^q(U)$ para todo $q \in [1,p^*)$ (en particular en $L^p(U)$).

La prueba del teórema de inyección compacta de Rellich-Kondrakov se basa en una versión del teorema de Arzela-Ascoli adaptada a los espacios L^p en la que la hipotesis de uniforme equicontinuidad esta reemplazada por: para todo $V \subset\subset U$ y todo $\varepsilon > 0$ existe $\delta \in (0, \operatorname{dist}(V, \partial U))$ tal que si $|h| < \delta$ entonces $\|\tau_h u_k - u_k\|_{L^p(V)} < \varepsilon$ para todo k (donde $\tau_h u(x) := u(x - h)$). El control de $\|\nabla u_k\|_p$ permite verificar esta hipotesis.

Este teorema es muy útil para mostrar desigualdades por el absurdo como por ejemplo la de Poincaré más adelante, o para probar la existencia de soluciones a ecuaciones por el método variacional (en el que se busca una solución como mínimo de cierta funcional relacionada con la ecuación - la compacidad dada por el teo de Rellich-Kondrakov es la herramienta fundamental para probar que una sucesión minimizante tiene un punto de acumulación que se espera ser un punto de mínimo de la funcional y por lo tanto una solución de la ecuación.).

5. Traza de una función de $W^{1,p}(U)$

Sea $U \subset \mathbb{R}^n$ un abierto acotada C^1 . Como ∂U tiene medida cero, no tiene sentido hablar del valor puntual de $u \in W^{k,p}(U)$ en ∂U . Por otro lado los espacios de Sobolev son el marco adaptado para resolver ecuaciones en derivadas parciales en U y estas vienen con condición de borde.

Se puede probar que existe una aplicación lineal continua

$$T: W^{1,p}(U) \to L^p(\partial U)$$

que extiende la aplicación $u\in C^1(\bar U)\to u_{|\partial U}\in C(\partial U)$. Llamamos a Tu la traza de u en ∂U .

La continuidad de T tiene por consecuencia que la fórmula de integración por partes usual

$$\int_{U} u \partial_{i} v = -\int_{U} \partial_{i} u v + \int_{\partial U} u v \nu_{i}$$

vale si $u \in W^{1,p}(U)$ y $v \in W^{1,p'}(U)$ (con 1/p + 1/p' = 1). Basta escribirla para funciones $u_k, v_k \in C^{\infty}(\bar{U})$ que aproximan a u y v y luego pasar al límite. En particular vale en el caso frecuente $u, v \in W^{1,2}(U)$.

El nucleo de T se nota $W_0^{1,p}(U)$ es decir

$$W_0^{1,p}(U) := \{ u \in W^{1,p}(U) \operatorname{tq} u = 0 \operatorname{en} \partial U \}.$$

Como T es continua, $W_0^{1,p}(U)$ es un subespacio cerrado de $W^{1,p}(U)$. Se puede probar que $W_0^{1,p}(U)$ es exactamente el espacio de las funciones de $W^{1,p}(U)$ que pueden ser aproximadas por funciones $C_c^{\infty}(U)$ es decir que

$$W^{1,p}_0(U)$$
es la clausura de $C^\infty_c(U)$ para la norma $\|.\|_{W^{1,p}}.$

Una desigualdad muy importante relacionada con $W_0^{1,p}(U)$ es la de Poincaré que afirma que $u \in W_0^{1,p}(U) \to \|\nabla u\|_p$ es una norma equivalente a la usual en $W_0^{1,p}(U)$ es decir

Teorema 5.1. Existe C > 0 tal que

$$||u||_p \le C||\nabla u||_p$$

para cualquier $u \in W_0^{1,p}(U)$.

Considerando funciones constantes se ve que tal desigualdad no puede valer en $W^{1,p}(U)$.

Una prueba posible de esta consiste en un razonamiento por el absurdo basado en el teorema de Rellich-Kondrakov. Suponemos que existe $\tilde{u}_k \in W_0^{1,p}(U)$ tal que $\|\tilde{u}_k\|_p \geq k\|\nabla \tilde{u}_k\|_p$. Considerando $u_k = \tilde{u}_k/\|\tilde{u}_k\|_p$, obtenemos una sucesión $u_k \in W_0^{1,p}(U)$ tal que $\|u_k\|_p = 1$ y $\|\nabla u_k\|_p \to 0$. Usando el teorema de R-K podemos suponer (a extracción de una subsucesión) que los u_k convergen a un $u \in W^{1,p}(U)$ debilmente en $W^{1,p}(U)$ y fuerte en $L^p(U)$. Luego $\|u\|_p = \lim \|u_k\|_p = 1$ y $\|\nabla u\|_p \leq \liminf \|\nabla u_k\|_p = 0$. Podemos suponer U conexo. Entonces u es una función constante no nula. Como $\|\nabla u_k\|_p \to 0 = \|\nabla u\|_p$ obtenemos que $\nabla u_k \to \nabla u$ en L^p . Luego $u_k \to u$ en $W^{1,p}$, y entonces Tu = 0 pues u_k tiene traza cero. Luego u es constante no nula con traza cero - absurdo.

Si consideramos el espacio $W^{2,p}(U)$, con ∂U de clase C^2 , entonces podemos hablar de la traza de $u \in W^{2,p}(U) \subset W^{1,p}(U)$ y también de las de $\partial_i u \in W^{1,p}(U)$. En particular podemos definir la derivada normal $\partial_{\nu} u \in L^p(\partial U)$. Ocurre que la aplicación

$$u \in W^{2,p}(U) \to (u, \partial_{\nu} u) \in L^p(\partial U) \times L^p(\partial U)$$

es continua y extiende la aplicación $u \in C^2(\bar{U}) \to (u, \partial_{\nu} u) \in C(\partial U) \times C(\partial U)$. Su nucleo se nota $W_0^{2,p}(U)$ es decir

$$W_0^{2,p}(U) := \{ u \in W^{2,p}(U) \operatorname{tq} u = \partial_{\nu} u = 0 \operatorname{en} \partial U \}.$$

Como antes se puede probar que $W^{2,p}_0(U)$ es la clausura de de $C^\infty_c(U)$ para la norma $\|.\|_{W^{2,p}}$. También se puede probar que la fórmula de Green

$$\int_{U} u \Delta v = \int_{U} \nabla u \nabla v - \int_{\partial U} u \partial_{\nu} v$$

vale si $v \in W^{2,p}(U)$ y $u \in W^{1,p'}(U)$ aproximando u y v por funciones $C^{\infty}(\bar{U})$.

References

- [1] Adams, Sobolev spaces.
- [2] Evans, Partial differential equations.
- [3] Gilbarg, N.Trudinger,