Análisis Funcional - 1° cuatrimestre 2010

Práctica 2

Funcionales lineales - Teorema de Hahn-Banach

- 1. Si E un espacio vectorial, $\varphi : E \to \mathbb{C}$ lineal, $\varphi \not\equiv 0$, entonces $\operatorname{Im}(\varphi) = \mathbb{C}$.
- 2. a) Sean (E, || ||) un espacio vectorial normado, $\varphi : E \to \mathbb{C}$ (o \mathbb{R} , según sea el cuerpo de escalares de E) una forma lineal. Son equivalentes:
 - 1) φ es continua
 - 2) φ es continua en 0
 - 3) φ es acotada (i.e. $\sup\{|\varphi(x)|: x \in E, ||x|| \le 1\} < \infty$)
 - b) φ es continua si y sólo si ker φ es cerrado.
- 3. Sean E un espacio vectorial normado sobre $\mathbb{R}, \varphi : E \to \mathbb{R}$ lineal.
 - a) Si φ es no acotada entonces toma todos los valores reales en cualquier entorno de 0.
 - b) Si φ no es acotada entonces $ker \varphi$ es denso.
 - c) φ es continua si y sólo si $\forall c \in \mathbb{R}$, los conjuntos $\{x : \varphi(x) < c\}$ y $\{x : \varphi(x) > c\}$ son abiertos.
 - d) Si $A \subset E$ tiene interior no vacío y $\exists a \in \mathbb{R}$ tal que $\varphi(x) \geq a \ \forall x \in A$, entonces φ es continua.
- 4. Sea E un espacio vectorial normado, $\varphi: E \to \mathbb{C}$ lineal tal que para toda sucesión $(x_n)_n \subset E$ convergente a 0, resulta $(\varphi(x_n))_n$ acotada. Demostrar que φ es continua.
- 5. Sea $E^* = \{ \varphi : E \to \mathbb{C} / \varphi \text{ es lineal y continua } \}.$
 - a) Entonces

$$\|\varphi\|_{E^*} = \sup\{|\varphi(x)| : x \in E, \|x\| \le 1\}$$

es una norma sobre E^* , que hace de E^* un espacio de Banach.

b) Prabar las siguientes igualdades:

$$\begin{aligned} \|\varphi\|_{E^*} &= \sup\{|\varphi(x)| : x \in E, \ \|x\| = 1\} \\ &= \sup\{|\varphi(x)| : x \in E, \ \|x\| < 1\} \\ &= \sup\{\frac{|\varphi(x)|}{\|x\|} : x \in E, x \neq 0\} \end{aligned}$$

$$y |\varphi(x)| \le ||\varphi|| ||x||.$$

6. Probar que las siguientes funcionales son lineales, continuas y hallar sus normas.

1

$$a) \varphi : c \to \mathbb{C}, \ \varphi(x) = \lim_{n \to \infty} x_n$$

b)
$$\varphi: L^2[-1,1] \to \mathbb{C}, \ \varphi(f) = \int_{-1}^1 t f(t) \ dt$$

c)
$$\varphi: C[-1,1] \to \mathbb{C}, \ \varphi(f) = \int_{-1}^{1} t f(t) \ dt$$

$$d) \varphi : \ell^{\infty} \to \mathbb{C}, \ \varphi(x) = x_1 + x_2$$

$$e) \varphi : \ell^2 \to \mathbb{C}, \ \varphi(x) = x_1 + x_2$$

$$f) \ \varphi : \ell^1 \to \mathbb{C}, \ \varphi(x) = \sum_{k=1}^{\infty} \frac{x_k}{k}$$

$$g) \varphi : \ell^2 \to \mathbb{C}, \ \varphi(x) = \sum_{k=1}^{\infty} \frac{x_k}{k}$$

$$h) \varphi : c_0 \to \mathbb{C}, \ \varphi(x) = \sum_{k=1}^{\infty} \frac{x_k}{2^k}$$

- 7. Sean E un espacio de Banach, $\varphi \in E^*, \, \varphi \not\equiv 0, \, y \in E, \, y \not\in \ker \varphi$. Probar que:
 - a) $E = \ker \varphi \oplus \langle y \rangle$, donde $\langle y \rangle$ significa el subespacio generado por y.
 - b) $d(y, \ker \varphi) = \frac{|\varphi(y)|}{\|\varphi\|}$
 - c) Si $H = \{x \in E : \varphi(x) = c\}$ entonces $d(0, H) = \frac{|c|}{||\varphi||}$.
- 8. a) Demostrar que en un espacio vectorial normado de dimensión finita toda funcional lineal es continua.
 - b) Sea $C_0(\mathbb{R})$ el espacio de las funciones $f: \mathbb{R} \to \mathbb{R}$ continuas tales que $\exists [a,b] \subset \mathbb{R}$ con $f(t) = 0 \ \forall t \notin [a,b]$. Demostrar que $(C_0(\mathbb{R}), \| \|_{\infty})$ es un espacio vectorial normado. Además, si definimos $\varphi: C_0(\mathbb{R}) \to \mathbb{R}, \ \varphi(f) = \int f(t) \ dt$ probar que φ resulta una funcional lineal no acotada.
- 9. Sea en c_0 la familia $\{e^n\}_{n\geq 1}$ de sucesiones definidas por $e^n_i=\delta_{ni}$ y sea x^0 la sucesión dada por $x^0_i=\frac{1}{i}$
 - a) Verificar que $A=\{x^0,e^1,e^2,\ldots,e^n,\ldots\}$ es un conjunto l.i. de c_0
 - b) Sea B una base algebraica de c_0 que contenga a A. Llamemos $\{b^j\}_{j\in J}$ al conjunto $B\setminus A$.

Luego todo $x \in c_0$ se escribe de manera única como

$$x = \alpha_0 x^0 + \sum_{n=1}^{\infty} \alpha_n e^n + \sum_{i \in J} \alpha_j b^j$$

donde los coeficientes son nulos salvo finitos.

Si $f: c_0 \to \mathbb{C}$ se define por $f(x) = \alpha_0$, probar que f es una funcional lineal no continua.

- 10. Probar que en todo espacio de Banach de dimensión infinita existe un funcional lineal no continuo.
- 11. Sean E un espacio vectorial normado, $\varphi, \psi \in E^*$ tales que $\varphi.\psi \equiv 0$, entonces $\varphi \equiv 0$ ó $\psi \equiv 0$.

2

12. a) Sea $y \in \ell^1$. Si definimos $\varphi : c_0 \to \mathbb{C}$ por

$$\varphi(x) = \sum_{n=1}^{\infty} x_n \, y_n$$

resulta $\varphi \in c_0^*$ con $\|\varphi\|_{c_0^*} = \|y\|_1$.

- b) Recíprocamente, dada $\varphi \in c_0^*$, mostrar que la sucesión dada por $y_n = \varphi(e_n)$, donde $e_n = (\delta_k^n)_{k>1}$ pertenece a ℓ^1 .
- c) Probar que las aplicaciones definidas en (i) y (ii) son una la inversa de la otra, y deducir que $c_0^* \cong \ell^1$ (isomorfismo isométrico).
- d) De manera análoga, probar que $(\ell^1)^*\cong\ell^\infty$ y que $(\ell^p)^*\cong\ell^q,$ si $1< p,q<\infty,\ \frac{1}{p}+\frac{1}{q}=1.$
- 13. a) Caracterizar el dual de c.
 - b) Sea $\varphi: c \to \mathbb{C}$ la funcional $\varphi(x) = \lim_{n \to \infty} x_n$ y sea $\tilde{\varphi}: \ell^{\infty} \to \mathbb{C}$ una extensión dada por el teorema de Hanh-Banach. Probar que $\tilde{\varphi}$ no puede representarse en la forma:

$$\tilde{\varphi}(x) = \sum_{n \in \mathbb{N}} x_n y_n \ y \in \ell^1$$

- 14. Sea E un espacio de Banach y $S \subset E$ un subespacio cerrado.
 - a) Si S tiene dimensión finita, probar que S es complementado.
 - b) idem (a) si S tiene codimensión finita.
- 15. a) Sea E un espacio vectorial normado, entonces $\forall x \in E$

$$||x|| = \max\{|\varphi(x)| : \varphi \in E^*, ||\varphi|| = 1\}$$

- b) Sea E un espacio vectorial normado, sean $x, y \in E$ tales que $\varphi(x) = \varphi(y) \ \forall \varphi \in E^*$, entonces x = y.
- 16. Sean E un espacio vectorial normado y $S \subset E$ un subespacio.
 - a) Si $x \in E$ y d = d(x, S) > 0 entonces $\exists \varphi \in E^*$, $\|\varphi\| = 1$, $\varphi(x) = d(x, E)$, $\varphi(y) = 0 \ \forall y \in S$. (Sug: Sea $H = \langle S, x \rangle$, definir $\psi : S \to \mathbb{C}$ por $\psi(\lambda x + y) = \lambda d$, $\forall y \in F \ \forall \lambda \in \mathbb{C}$)
 - b) Probar que

$$\overline{S} = \bigcap \{ \ker(\phi) / \phi \in E^* \ S \subset \ker(\phi) \}.$$

En particular, si S no es denso en E entonces existe $\phi \in E^*$, $\phi \neq 0$ tal que $\phi \mid_S \equiv 0$.

- 17. Sea E un espacio vectorial normado, $(x_n)_n \subset E$. Un punto y_0 es límite de combinaciones lineales $\sum_{j=1}^N c_j \, x_j$ si y sólo si $\forall \varphi \in E^*$ que verifique que $\varphi(x_n) = 0 \, \forall n \in \mathbb{N}$, vale que $\varphi(y_0) = 0$.
- 18. Sean E, F espacios normados. Probar que $E \times F$ es un espacio normado, con $\|(x,y)\|_p = (\|x\|_E^p + \|y\|_F^p)^{1/p}, \ 1 \le p \le \infty$. Probar que $(E \times F)_p$ es isomorfo a $(E \times F)_q$ si $1 \le p, q \le \infty$.
- 19. Sean E y F espacios vectoriales normados, probar que existe un isomorfismo entre $(E \times F)^*$ y $E^* \times F^*$.
- 20. Sea E un Banach y S un subespacio de E, probar que

$$\overline{S} = \cap \{ \ker(\phi) / \phi \in E^* \ S \subset \ker(\phi) \}.$$