1	2	3	4	5

Calificación

APELLIDO Y NOMBRE:

N° DE LIBRETA:

CARRERA:

ÁLGEBRA I - FINAL 25/08/2009

1. Probar que para todo par de números $n,m\in\mathbb{N}$ coprimos existen $s,t\in\mathbb{Z}$ tales que

$$\frac{1}{nm} = \frac{s}{n} + \frac{t}{m}.$$

- 2. Sea $f = \sum_{k=0}^{d} a_k X^k \in \mathbb{Z}[X]$ con $a_d \neq 0$ y $a_0 \neq 0$. Probar que si $\frac{\alpha}{\beta} \in \mathbb{Q}$ es raíz de f, con $\alpha, \beta \in \mathbb{Z}$ coprimos, entonces $\alpha \mid a_0 \neq 0$.
- 3. Sea $n \in \mathbb{N}$.
 - a) Probar que $\binom{n}{m} + \binom{n}{m-1} = \binom{n+1}{m}$ para todo $1 \le m \le n$.
 - b) Enunciar y probar la fórmula del binomio de Newton.
 - c) Calcular $\binom{n}{0} + 2\binom{n}{1} + 2^2\binom{n}{2} + \dots + 2^n\binom{n}{n}$.
- 4. En un tren con 3 vagones, cada uno de los cuales tiene una catidad a de asientos, viajan p personas. ¿De cuántas formas distintas pueden ubicarse de manera que
 - a) no haya asientos vacíos?
 - b) haya a lo sumo 2 asientos vacíos y en los vagones con asientos vacíos no haya personas paradas?

(Para las personas que viajan paradas, solo importa en qué vagón están.)

- 5. Sean $n, m \in \mathbb{N}$.
 - a) Probar que $G_n \cap G_m = G_{(n : m)}$. Deducir que si (n : m) = 1, entonces $G_n \cap G_m = \{1\}$.
 - b) Sea $G_n \cdot G_m = \{w \cdot z \in \mathbb{C} \mid w \in G_n, z \in G_m\}$. Probar que si (n : m) = 1, entonces $G_n \cdot G_m = G_{nm}$.

Justificar debidamente todas las respuestas