PRÁCTICA 9: SERIES DE FUNCIONES Y CONVERGENCIA UNIFORME

Series en Espacios Normados

Ejercicio 1. Sea $(E, \|\cdot\|)$ un espacio normado. Sean $\lambda \in \mathbb{R}$ y $(x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}} \subseteq E$ tales que $\sum_{n=1}^{\infty} x_n$ y $\sum_{n=1}^{\infty} y_n$ convergen. Probar que:

(a)
$$\sum_{n=1}^{\infty} x_n + y_n$$
 converge, y $\sum_{n=1}^{\infty} x_n + y_n = \sum_{n=1}^{\infty} x_n + \sum_{n=1}^{\infty} y_n$.

(b)
$$\sum_{n=1}^{\infty} \lambda x_n$$
 converge, y $\sum_{n=1}^{\infty} \lambda x_n = \lambda \cdot \sum_{n=1}^{\infty} x_n$.

Ejercicio 2. Sea $(B, \|\cdot\|)$ un espacio de Banach y sea $(a_n)_{n\in\mathbb{N}}\subseteq B$ tal que $\sum_{n=1}^{\infty}a_n$ converge absolutamente. Probar que si $\sigma:\mathbb{N}\to\mathbb{N}$ es una función biyectiva, entonces $\sum_{n=1}^{\infty}a_{\sigma(n)}$ también converge y al mismo límite.

Convergencia Uniforme

Ejercicio 3. Sea (X,d) un espacio métrico y sea A un conjunto. Sea $(f_n)_{n\in\mathbb{N}}\subseteq X^A$ una sucesión de funciones y sea $f:A\to X$. Probar que: $(f_n)_{n\in\mathbb{N}}$ no converge uniformemente a f en A si y sólo si existen $\alpha>0$, una subsucesión $(f_{n_k})_{k\in\mathbb{N}}$ de $(f_n)_{n\in\mathbb{N}}$ y una sucesión $(a_k)_{k\in\mathbb{N}}\subseteq A$ tales que $d(f_{n_k}(a_k),f(a_k))\geq \alpha$ para todo $k\in\mathbb{N}$.

Ejercicio 4.

- (a) En cada uno de los casos siguientes, hallar el límite puntual de la sucesión $(f_n)_{n\in\mathbb{N}}$ definida en el conjunto $A\subseteq\mathbb{R}$ dado:
 - i. $f_n(x) = x^n$, A = (-1, 1]
 - ii. $f_n(x) = \frac{e^x}{r^n}$, $A = (1, +\infty)$
 - iii. $f_n(x) = n^2 x (1 x^2)^n$, A = [0, 1]
- (b) Para la sucesión dada en i., demostrar que la convergencia es uniforme sobre $B=(0,\frac{1}{2})$. Idem para la sucesión dada en ii. sobre B=[2,5]. Es uniforme la convergencia de la sucesión dada en iii. sobre A?

Ejercicio 5. Analizar la convergencia puntual y uniforme de las siguientes sucesiones de funciones $(f_n)_{n\in\mathbb{N}}$:

(a)
$$f_n(x) = \frac{\sin(nx)}{n}$$
 en \mathbb{R}

(b)
$$f_n(x) = \operatorname{sen}\left(\frac{x}{n}\right)$$
 en \mathbb{R}

(c)
$$f_n(x,y) = \frac{n}{n+1}(x,y)$$
 en \mathbb{R}^2

(d)
$$f_n(x) = (1 + \frac{1}{n})x$$
 en $[0, 1]$

(e)
$$f_n(x) = \begin{cases} \frac{1}{n} & \text{si } x \notin \mathbb{Q} \text{ ó } x = 0\\ b + \frac{1}{n} & \text{si } x = \frac{a}{b}, b > 0 \text{ y } (a:b) = 1 \end{cases}$$
 en $[0, 1]$

(f)
$$f_n(z) = z^n$$
 en $\{z \in \mathbb{C} : |z| < 1\}$

Ejercicio 6. Sea X un conjunto y sea $B(X) = \{g : X \to \mathbb{C} \mid g \text{ es acotada}\}$. Sea $(f_n)_{n \in \mathbb{N}} \subseteq B(X)$.

- (a) Si $(f_n)_{n\in\mathbb{N}}$ converge puntualmente a una función f en X, ¿es cierto que $f\in B(X)$?
- (b) Probar que:
 - i. Si $(f_n)_{n\in\mathbb{N}}$ converge uniformemente a una función f en X, entonces $f\in B(X)$.
 - ii. $(f_n)_{n\in\mathbb{N}}$ converge uniformemente a f si y sólo si $(f_n)_{n\in\mathbb{N}}$ converge a f en $(B(X), d_\infty)$.
 - iii. Si $(f_n)_{n\in\mathbb{N}}$ converge uniformemente en X, entonces existe M>0 tal que $|f_n(x)|\leq M$ $\forall x\in X\ y\ \forall n\in\mathbb{N}$, es decir, $(f_n)_{n\in\mathbb{N}}$ es uniformemente acotada.

Ejercicio 7. Probar que la sucesión de funciones $f_n(x) = \frac{x}{1+x^2} - \frac{x(x^2+1)}{1+(n+1)^2x^2}$ $(n \in \mathbb{N})$ converge puntualmente pero no uniformemente, en \mathbb{R} , a una función continua.

Ejercicio 8. Estudiar la convergencia puntual y uniforme de las sucesiones $f_n(x) = \frac{nx^2}{1+nx^2}$ y f'_n en [-1,1].

Ejercicio 9. Sea (X,d) un espacio métrico y sea $(f_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}^X$ una sucesión de funciones uniformemente continuas que converge uniformemente a una función f sobre X. Analizar la continuidad uniforme de f.

Ejercicio 10. Sea (X,d) un espacio métrico y sean $(f_n)_{n\in\mathbb{N}}, (g_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}^X$ dos sucesiones de funciones uniformemente convergentes sobre X a f y g respectivamente. Probar que:

- (a) $(f_n + g_n)_{n \in \mathbb{N}}$ converge uniformemente a f + g sobre X.
- (b) Si ambas sucesiones están uniformemente acotadas, entonces $(f_n.g_n)_{n\in\mathbb{N}}$ es uniformemente convergente a f.g.

Ejercicio 11. Sea (X,d) un espacio métrico compacto y sea A un conjunto. Si $(f_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}^X$ es una sucesión de funciones continuas que converge uniformemente a una función $f:X\longrightarrow\mathbb{R}$ y si $(g_n)_{n\in\mathbb{N}}\subseteq X^A$ es una sucesión de funciones que converge uniformemente a una función $g:A\longrightarrow X$. Probar que $(f_n\circ g_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}^A$ converge uniformemente a $f\circ g$.

Ejercicio 12. (Teorema de Dini) Sea (X, d) un espacio métrico compacto y sea $(f_n)_{n \in \mathbb{N}}$ una sucesión de funciones continuas de X en \mathbb{R} tales que:

- $f_n(x) \ge f_{n+1}(x) \ \forall x \in X \ \forall n \in \mathbb{N}$.
- $(f_n)_{n\in\mathbb{N}}$ converge puntualmente a una función $f:X\longrightarrow\mathbb{R}$ continua.

Probar que $(f_n)_{n\in\mathbb{N}}$ converge uniformemente a f en X.

Ejercicio 13. Sea (X, d) un espacio métrico compacto. Sea $(f_n)_{n \in \mathbb{N}}$ una sucesión de funciones continuas de X en \mathbb{R} y sea $f: X \to \mathbb{R}$ continua. Probar que $(f_n)_{n \in \mathbb{N}}$ converge uniformemente a f si y sólo si para toda sucesión $(x_n)_{n \in \mathbb{N}}$ que converge a $x \in X$, la sucesión $(f_n(x_n))_{n \in \mathbb{N}}$ converge a f(x).

Equicontinuidad

Ejercicio 14. Sean (X, d) e (Y, d') espacios métricos. Una familia \mathcal{F} de funciones definidas sobre X a valores en Y se dice equicontinua en $x_0 \in X$ si para todo $\varepsilon > 0$ existe $\delta > 0$ tal que

$$d(x, x_0) < \delta \implies d'(f(x), f(x_0)) < \varepsilon \qquad \forall f \in \mathcal{F}.$$

Se dice que \mathcal{F} es equicontinua en X si es equicontinua en x para todo $x \in X$. Finalmente, la familia \mathcal{F} se dice uniformemente equicontinua en X si para todo $\varepsilon > 0$ existe $\delta > 0$ tal que

$$d(x,y) < \delta \implies d'(f(x),f(y)) < \varepsilon \qquad \forall f \in \mathcal{F}.$$

- (a) Probar que cualquier conjunto finito de funciones de X en Y continuas en $x_0 \in X$ es equicontinuo en x_0 .
- (b) Sea $B(X,Y) = \{f : X \longrightarrow Y \ / \ f \text{ es acotada}\}$. Probar que si $A \subseteq B(X,Y)$ es equicontinuo entonces \overline{A} también lo es.
- (c) Supongamos que X es compacto. Probar que:
 - i. Si una familia \mathcal{F} es equicontinua en X, entonces es uniformemente equicontinua.
 - ii. Si $f_n: X \longrightarrow Y$ es continua para todo $n \in \mathbb{N}$ y $(f_n)_{n \in \mathbb{N}}$ converge uniformemente en X, entonces $(f_n)_{n \in \mathbb{N}}$ es equicontinua en X (por lo tanto es uniformemente equicontinua).
 - iii. Si $(f_n)_{n\in\mathbb{N}}$ es una sucesión de funciones uniformemente equicontinua y $(f_n)_{n\in\mathbb{N}}$ converge puntualmente a f en X, entonces $(f_n)_{n\in\mathbb{N}}$ converge uniformemente a f en X.

Ejercicio 15. Sean $f_n:[a,b]\longrightarrow \mathbb{R}$ integrables y uniformemente acotadas. Se define

$$F_n(x) = \int_a^x f_n(t) dt \qquad (a \le x \le b)$$

Probar que existe una subsucesión $(F_{n_k})_{k\in\mathbb{N}}$ que converge uniformemente sobre [a,b].

Series de Funciones.

Ejercicio 16. Sea $(f_n)_{n\in\mathbb{N}}$ una sucesión de funciones continuas definidas sobre un espacio métrico (X,d) a valores en \mathbb{R} tal que $\sum_{n=1}^{\infty} f_n$ converge uniformemente sobre X. Probar que:

(a)
$$f = \sum_{n=1}^{\infty} f_n$$
 es continua en X .

(b) Si
$$X = [a, b] \subseteq \mathbb{R}$$
, entonces $\int_a^b f(x) dx = \sum_{n=1}^\infty \int_a^b f_n(x) dx$.

Ejercicio 17. (Test de Weierstrass) Sea (X,d) un espacio métrico y, para cada $n \in \mathbb{N}$, sea $f_n : X \longrightarrow \mathbb{R}$ una función tal que $|f_n(x)| \le M_n$ para todo $x \in X$. Probar que si $\sum_{n=1}^{\infty} M_n$ converge, entonces $\sum_{n=1}^{\infty} f_n$ converge uniforme y absolutamente en X.

Ejercicio 18. Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión tal que $\sum_{n=1}^{\infty}a_n$ converge absolutamente. Probar que $\sum_{n=1}^{\infty}a_n\cos\left(nx\right)$ y $\sum_{n=1}^{\infty}a_n\sin\left(nx\right)$ convergen uniformemente en \mathbb{R} .

Ejercicio 19.

- (a) Mostrar que la serie sen $x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$ converge uniformemente sobre todo intervalo finito.
- (b) Probar que la función $f(x) = \sum_{n=0}^{\infty} \left(\frac{x^n}{n!}\right)^2$ es continua en \mathbb{R} .

Ejercicio 20. Sea $f(x) = \sum_{n=1}^{\infty} \frac{1}{1 + (nx)^2}$

- (a) Hallar el dominio de f en \mathbb{R} .
- (b) ¿Sobre qué intervalos converge uniformemente?
- (c) ¿Sobre qué intervalos no converge uniformemente?
- (d) ξ Es f continua en su dominio?
- (e) Es f acotada?