Análisis Funcional - 1er cuatrimestre de 2008

Práctica 7 - Operadores compactos y de Fredholm

- 1. Sean E y F espacios de Banach, $T \in \mathcal{L}(E, F)$. Son equivalentes
 - a) T es compacto.
 - b) $\overline{T(A)}$ es compacto, para todo conjunto acotado $A \subset E$.
 - c) Para toda sucesión $(x_n)_{n\in\mathbb{N}}$ acotada, $(Tx_n)_{n\in\mathbb{N}}$ admite una subsucesión convergente.
- 2. Sean E y F espacios de Banach, $T \in \mathcal{L}(E, F)$. Si T es compacto entonces es completamente continuo, i.e. $\forall x_n, x \in E$ tales que $x_n \xrightarrow{w} x$ se verifica que $T(x_n) \to T(x)$.
- 3. Sean E y F espacios de Banach, $T \in \mathcal{L}(E, F)$. Si T es compacto, R(T) es separable.
- 4. a) Sea E un espacio de Banach. Si dim $E = \infty$, $Id: E \to E$ no es compacto.
 - b) Sean E y F espacios de Banach, $T \in \mathcal{L}(E, F)$. Si dim $E = \infty$ y T es compacto, entonces T no es inversible.
- 5. Sea $T: \ell^p \to \ell^p$ dado por $T(x) = (\alpha_n x_n)_{n \in \mathbb{N}}$, donde $1 y <math>(\alpha_n)_{n \in \mathbb{N}} \in \ell^{\infty}$.
 - a) T es compacto si y sólo si $\alpha_n \to 0$
 - b) R(T) es cerrado si y sólo si $(\frac{1}{\alpha_n})_{n\in\mathbb{N}}$ es acotada (considerando sólo los n tales que $\alpha_n \neq 0$).
- 6. Sean $E \setminus F$ espacios de Banach, $T \in \mathcal{K}(E, F) = \{T : E \to F : \text{Tes compacto}\}.$
 - a) Si existe $S \subset R(T)$ subespacio cerrado entonces dim $S < \infty$.
 - b) Si R(T) es cerrado entonces dim $R(T) < \infty$.
 - c) Si dim $E = \infty$, entonces existe $(x_n)_{n \in \mathbb{N}} \in E$ tal que $||x_n|| = 1 \quad \forall n \text{ y } Tx_n \to 0$. (Sug: T acotado inferiormente $\Rightarrow R(T)$ cerrado)
- 7. a) Si $T \in \mathcal{L}(\ell^2, \ell^1)$ entonces T es compacto.
 - b) Sea $i:\ell^1\to\ell^2$ la inclusión. ¿Es completamente continua? ¿Es i compacta?
 - c) Probar que la inclusión, $i:C^1([0,1])\to C([0,1])$ es compacta.
- 8. Sean $k \in C([a,b] \times [a,b])$ y $K: C[a,b] \to C[a,b]$ el operador integral con núcleo k, dado por

$$(Kf)(x) = \int_a^b k(x, y) f(y) \, dy$$

Probar que K es un operador lineal acotado y compacto. (Sug: Arzela-Ascoli) ¿Qué sucede si se reemplaza [a,b] por \overline{U} con U abierto y acotado en \mathbb{R}^n ?

9. Sean $k \in L^2([0,1] \times [0,1])$ y $K \in \mathcal{L}(L^2([0,1]))$ el operador integral con núcleo k. Probar que:

1

a) Si $(e_n)_{n\in\mathbb{N}}$ es una base de $L^2([0,1])$, entonces $(e_{nm}(x,y)=e_n(x)\overline{e_m(y)})_{n,m\in\mathbb{N}}$ es una base de $L^2([0,1]\times[0,1])$.

- b) Si $k(x,y) = \sum_{i,j=1}^{N} \alpha_{ij} f_i(x) g_j(y)$, con $\alpha_{ij} \in \mathbb{C}$, $f_i, g_j \in L^2([0,1])$ entonces dim $R(K) \leq N$.
- c) Si $k_n \to k$ en $L^2([0,1] \times [0,1])$, entonces $K_n \to K$ en $\mathcal{L}(L^2([0,1]))$.
- d) Si $k(x,y) = \sum_{n,m=1}^{\infty} \alpha_{nm} e_n(x) \overline{e_m(y)}$ y $k_N(x,y) = \sum_{n,m=1}^{N} \alpha_{nm} e_n(x) \overline{e_m(y)}$, entonces $k_N \to k$ en $L^2([0,1] \times [0,1])$.
- e) Deducir de todo lo anterior que K es compacto.
- 10. Sean E y F espacios de Banach. Si $\forall \varepsilon > 0$ y $\forall K \subset E$ compacto $\exists T \in \mathcal{L}(E)$ tal que $\dim R(T) < \infty$ y $\sup_{x \in K} ||Tx x|| < \varepsilon$, entonces para todo operador $A \in \mathcal{K}(F, E)$ existen operadores $A_n \in \mathcal{L}(F, E)$ tales que $\dim R(A_n) < \infty \ \forall n \in \mathbb{N}$ y $A_n \to A$.

Definición:

- a) Sean E y F dos espacios de Banach, y sea $T \in \mathcal{L}(E,F)$. Se dice que T es un operador de Fredholm si
 - 1) $\dim(\ker(T))$ es finita.
 - 2) R(T) es cerrado y $\operatorname{codim}(R(T))$ es finita.
- b) Sean E y F dos espacios de Banach, y sea $T \in \mathcal{L}(E,F)$ un operador de Fredholm. Llamamos índice de T y notamos por $\operatorname{ind}(T)$ al número $\dim(\ker(T))$ $\operatorname{codim}(R(T))$.
- 11. Sean E, F espacios de Banach y sea $T: E \to F$ un operador de Fredholm, probar que $\operatorname{ind}(T) = \dim(\ker(T)) \dim(\ker(T^*))$.
- 12. Sean E, F espacios de Banach y sea $T: E \to F$ un operador de Fredholm, probar que si dim $(\ker(T^*)) = 0$ entonces Tx = y tiene por lo menos una solución $\forall y \in F$.
- 13. a) Considerar $S:\ell^2\to\ell^2$ el operador Shift y T su inverso a izquierda, mostrar que son operadores de Fredholm y calcular sus índices.
 - b) Para S y T como en (a) mostrar que S^k y T^k también son operadores de Fredholm y calcular sus índices.
 - c) Sea $T:E\to F$ un operador de rango finito, con E y F espacios de Banach. ¿Es T un operador de Fredholm?
 - d) Sea $A:L^2[0,1]\to L^2[0,1]$ definido por $Ax(t)=\int_0^t x(s)ds$. ¿Es A un operador de Fredholm?
- 14. Probar que $f(x) \int_0^{\pi} \sin(x+y) f(y) dy = g(x)$ tiene única solución $\forall g \in L^2[0,\pi]$