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Abstract. We study the cluster value theorem for Hb(X), the Fréchet algebra of holo-
morphic functions bounded on bounded sets of X. We also describe the (size of) fibers of
the spectrum of Hb(X). Our results are rather complete whenever X has an unconditional
shrinking basis and for X = `1. As a byproduct, we obtain results on the spectrum of the
algebra of all uniformly continuous holomorphic functions on the ball of `1.

Introduction

Our interest in cluster values has its origin in a 1961 paper by a “conglomerate” consisting

of the brilliant, albeit fictitious, I. J. Schark [Sch61]. This work linked the set of cluster points

at a boundary point eiθ of an H∞ function f with the set of evaluations ϕ(f) of elements

in the maximal ideal space of H∞ that lie over eiθ. Although I. J. Schark’s contribution

was soon overshadowed by L. Carleson’s paper that solved the Corona Problem for the disc,

the following year, ample reasons remain to not dismiss the earlier paper. For one thing,

although the Corona problem is known to hold for finitely connected domains in C, it is

apparently unknown if it holds for all planar domains or for the most standard domains in

Cn, n ≥ 2, such as the bidisc and the ball. Moreover, its higher dimensional analogue is

known to be false in general. On the other hand, the authors are unaware of any situation

in which the result of I. J. Schark fails.

Indeed, the main objective of this note is to study a version of I. J. Schark’s theorem in

the context of the Fréchet algebra Hb(X) of entire functions of bounded type on a complex

Banach space X. Thus, this paper builds on the recent paper [ACGLM12] of the authors

with T. Gamelin, which contains a discussion of cluster values for functions in the Banach
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algebra H∞(BX) of bounded holomorphic functions on the open unit ball of X. As we will

see, there are very rich cluster set and fiber structures in this context.

For the most recent results on the cluster value theorem on H∞(BX) we refer to the papers

by W.B. Johnson and S. Ortega [JohOrt12a] and [JohOrt12b].

We now review the basic background needed for the rest of this paper. For a Banach

space X, we use BX (or simply B if there is no risk of confusion) for the open unit ball of

X, while BX∗∗ = B∗∗ will denote the open unit ball of X∗∗, the bidual of X. Also, B̄ and

B̄∗∗ will denote the corresponding closed unit balls.

We recall that Hb(X) is the algebra of complex valued entire functions on X which are

bounded on bounded sets. This is a Fréchet algebra when endowed with the topology of

uniform convergence on bounded subsets of X. The set of non-trivial C−valued homomor-

phism, or spectrum, of this algebra will be denoted by M(Hb(X)) or M for short. It is

endowed with the weak-star topology w(Hb(X)∗, Hb(X)). We have the following diagram:

X M

X∗∗

-

?

H
HHH

HHH
HHHHj

δ

π

where, as usual, δ is the point evaluation mapping and π is defined by π(ϕ) = ϕ|X∗ ∈ X∗∗,
ϕ ∈M.

In general, given an open subset Ω of a complex Banach space X and a Banach or Fréchet

algebra A of holomorphic functions on Ω, let M(A) be the set of (continuous) homomor-

phisms on A. The corona ofM(A) is defined as the setM(A)\{δx : x ∈ Ω}
w∗

. The Corona

Theorem is said to hold whenever the corona is the empty set or, in other words, when the

evaluations on points of Ω form a dense set in M(A). The corona problem was solved in

the affirmative by Carleson [Car62] for H∞(D), where D is the complex unit disk. Also, if

X is finite dimensional M(Hb(X)) = {δx : x ∈ X} and the Corona theorem holds trivially.

For infinite dimensional Banach spaces X, the situation is quite different, and it is an open

question if the Corona theorem is true or not for Hb(X) for any X. This is why we discuss

the cluster value theorem for Hb(X) (informally called the Weak Corona theorem). Even

if at first glance the relationship between these two theorems might not be apparent, there
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is a clear one that can be found in [ACGLM12, Lemma 2.3] and in the survey [CGMS12,

Proposition 3.8].

The fiber of M over z ∈ X∗∗ is the set Mz := π−1(z). In [ACG91] it is proved that,

for every z ∈ X∗∗, the fiber Mz is not empty. Indeed, in [DavGam89] it is shown that the

extension from Hb(X) → Hb(X
∗∗) exists. It isn’t hard to get that it is multiplicative, i.e.

the extension morphism

˜: f ∈ Hb(X)→ f̃ ∈ Hb(X
∗∗)

is an algebra homomorphism. Given z ∈ X∗∗ we define δ̃z : Hb(X) → C by δ̃z(f) = f̃(z).

We have δ̃z ∈M. If a function f ∈ Hb(X) is weakly continuous when restricted to bounded

subsets of X, then f̃ is weak-star continuous when restricted to bounded subsets of X∗∗. As

a consequence, we also have π(δ̃z) = z for every z ∈ X∗∗.
We remark that the set {δ̃z : z ∈ X∗∗} is always included in {δx : x ∈ X}. Indeed, in

[DavGam89, Theorem 1] it is proved that given z ∈ X∗∗ there exists a net {xα} in ‖z‖BX

such that P (xα) converges to P̃ (z) for every continuous polynomial P on X. By the density

of polynomials in Hb(X), our claim follows. The analogous result for A = H∞(BX) or the

ball algebra (defined below) A = Au(BX) follows from [DavGam89, Lemma on p. 355].

Following [ACG91], the radius function on M is defined by

R(ϕ) = inf{r > 0: |ϕ(f)| ≤ ‖f‖rB},

where ‖f‖rB is the supremum of |f | over rB. For ‖z‖ ≤ r, we also define the sets

Mz,r =Mz,r(Hb(X)) = {ϕ ∈Mz : R(ϕ) ≤ r} and

Mr =Mr(Hb(X)) = {ϕ ∈M : R(ϕ) ≤ r}.

We will also consider the ball algebra Au(rB), which is the Banach algebra of all uniformly

continuous holomorphic functions on rB. The spectrum of Au(rB) will be denoted by

M(Au(rB)) and is a compact set endowed with the weak-star topology w(Au(rB)∗, Au(rB)).

We denote the corresponding fiber over z ∈ rB̄∗∗ by Mz(Au(rB)).

In [ACG91, Section 12] it is noted that Hb(X) can be embedded into Au(rB) by the

restriction mapping, and a relationship between the spectra of these algebras is presented.

As this fact will be crucial in our study ofM(Hb(X)) and to make this paper self-contained,

we will give a proof of it in Lemma 1.2.

Let us now introduce the main topic of this work. For fixed r > 0, f a holomorphic

function bounded on rB, and z0 ∈ X∗∗ with ‖z0‖ ≤ r, we define the r-cluster set of f at
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z0 as the set Clr(f, z0) of all limits of values of f along nets in rB converging weak-star

to z0. In the particular case that z0 actually belongs to rB, f(z0) belongs to Clr(f, z0).

Moreover, if z0 belongs to rB∗∗, then f̃(z0) belongs to Clr(f, z0) for any f ∈ Hb(X). Indeed,

for polynomials, this is a direct consequence of Davie and Gamelin’s result mentioned above

(Theorem 1 in [DavGam89]). Since functions in Hb(X) are uniform limits of polynomials on

bounded sets, the conclusion follows.

Following [ACGLM12], we simply write Cl(f, z0) for Cl1(f, z0) (that is, when z0 and all the

considered nets belong to the corresponding unit balls). Classical spaces `p for 1 ≤ p < ∞
give examples of cluster sets that are not trivial (see Proposition 2.6).

The cluster set Clr(f, z0) can be seen as the intersection of the closures of f(U∩rB̄), where

U ranges over any basis for the weak-star neighborhoods of z0. Choosing a basis of convex

sets, we see that Clr(f, z0) is an intersection of a decreasing net (Kα)α of nonempty compact

connected sets. As a consequence (see, for instance, Exercise 11 in [Munkres, Section 26]),

each cluster set Clr(f, z0), z0 ∈ rB̄∗∗, is a nonempty compact connected set. Actually we

also have that Clr(f, z0) coincide with the set

{λ ∈ C : there exists (zα) ⊂ rB̄∗∗such that zα
w(X∗∗,X∗)−−−−−−→ z0 and f̃(zα)→ λ}.

Indeed, let call this last set C. Clearly Clr(f, z0) is contained in C. On the other hand

C =
⋂
U∈U f̃(U ∩ rB̄∗∗), where U is a basis of open convex weak-star neighbourhoods of

0. But, by [DavGam89, Lemma of Theorem 5], f̃(U ∩ r̄̄B∗∗) (and hence f̃(U ∩ rB̄∗∗)) is

contained in f(U ∩ rB) for every U in U and we have

Clr(f, z0) ⊂ C =
⋂
U∈U

f̃(U ∩ rB̄∗∗) ⊂
⋂
U∈U

f(U ∩ rB) = Clr(f, z0).

We refer to [ColLoh66] for more information on cluster sets and their properties.

As in Lemma 2.2 of [ACGLM12], we always have

(1) Clr(f, z0) ⊂ f̂(Mz0,r),

where f̂ :M→ C is the Gel’fand transform of f given by f̂(ϕ) = ϕ(f). Therefore, we are

interested in the reverse inclusion. When the equality holds we say that we have a cluster

value theorem at z0. This has been very recently studied in [ACGLM12] for the case of the

Banach algebra Au(rBX).

In Section 1, we prove a version of a weak Corona theorem for Hb(X). Although providing

set inclusions rather than a set equality as in Theorems 4.1 and 5.1 of [ACGLM12], our results

hold in much more generality. Section 2 is devoted to characterizing point evaluations δx
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among all the homomorphisms inMx, while the final section deals with a closer examination

of the fiber structure of M(Au(B`1)).

For background on Banach spaces, see [Die84]. For background on analytic functions on

Banach spaces, see [Din99], [Gam94] or [Muj86]. For background on uniform algebras, see

[Gam69].

1. The cluster value theorem for Hb(X)

We recall that given a Banach space X, Pf (X) is the unital subalgebra of the normed

algebra of continuous polynomials on X generated by the monomials x 7→ x∗1(x) · · ·x∗n(x),

where x∗j ∈ X∗, 1 ≤ j ≤ n, and n ∈ N. Polynomials in the closure of Pf (X) are called

approximable polynomials. It is well-known, and immediate to check, that ϕ(P ) = δ̃π(ϕ)(P )

for every approximable polynomial P and every homomorphism ϕ in M(Hb(X)). Hence,

given a complex Banach space X such that all continuous polynomials are approximable,

M(Hb(X)) = {δ̃z : z ∈ X∗∗}. In this case, the cluster value theorem trivially holds forHb(X).

Proposition 1.1. Let X be a complex Banach space such that all continuous polynomials

are approximable. Then

Clr(f, z) = f̂(Mz,r),

for every f ∈ Hb(X), every r > 0 and z ∈ X∗∗ with ‖z‖ ≤ r.

Spaces in which all polynomials are approximable are, for example, c0, the original Tsirel-

son space T ∗ and the Tsirelson-James space T ∗J .

Under certain hypotheses, cluster value theorems of the form

(2) Clr(g, z) = ĝ(Mz(Au(rBX))), g ∈ Au(rBX),

for z ∈ rB∗∗, were proved in [ACGLM12]. The following two lemmas allow us to transfer

these results to Hb(X).

Lemma 1.2. [ACG91, Section 12] Let i : Hb(X) → Au(rB), f  f |rB, be the natural in-

clusion mapping and let it : Au(rB)∗ → Hb(X)∗ be its transpose. If we denote by Φ the

restriction of it to M(Au(rB)), then Φ: M(Au(rB)) → Mr(Hb(X)) is a homeomorphism

onto, for every r > 0.

Proof. Clearly Φ is well defined and continuous. By the Alaoglu-Bourbaki Theorem both

setsM(Au(rB)) andMr(Hb(X)) are compact. Hence, to obtain the conclusion it is enough

to check that Φ is a bijective mapping. Consider ϕ ∈ M(Au(rB)) and f ∈ Hb(X). Then
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Φ(ϕ)(f) = ϕ(f |rB), where f |rB stands for the restriction of f to rB. Hence, from the well-

known fact that the set of all continuous polynomials on X is dense on Au(rB) we obtain

that Φ is an injective mapping. Now consider η ∈Mr(Hb(X)). By hypothesis, |η(f)| ≤ ‖f‖r
for every f ∈ Hb(X). Fix g ∈ Au(rB) and consider a sequence of polynomials Pn that is

uniformly convergent to g on rB. Since |η(Pn − Pm)| ≤ ‖Pm − Pm‖r for every n,m ∈ N, we

get that (η(Pn))n is a Cauchy sequence in C. Define

ϕ(g) = lim
n
η(Pn).

It is not difficult to check that ϕ ∈ M(Au(rB)). Since polynomials are dense in Hb(X), we

conclude that Φ(ϕ) = η. �

Lemma 1.3. Let X be a Banach space and suppose that the cluster value theorem (2) holds

at z0 ∈ X∗∗ for some r ≥ ‖z0‖. Then,

Clr(f, z0) = f̂(Mz0,r) for every f ∈ Hb(X).

Proof. One inclusion is (1). For the converse, fix ϕ ∈Mz0,r. By Lemma 1.2, we know that

(3) {ψ ∈M : R(ψ) ≤ r} =M(Au(rB)).

Then there exists ϕ̄ ∈M(Au(rB)) such that ϕ(f) = ϕ̄(f |rB), for all f ∈ Hb(X).

But our hypotheses then say that

ϕ(f) = ϕ̄(f |rB) ∈ Clr(f |rB, z0) = Clr(f, z0),

which is the desired inclusion. �

In [ACGLM12, Theorem 3.1] it is shown that (2) holds at 0 whenever X is Banach space

with a shrinking 1-unconditional basis. Moreover for X = `2, (2) holds for every x ∈ B`2 .

The results in [ACGLM12] are for the unit ball, but they clearly hold for balls of any other

radius. As a consequence of these results, we have the following.

Theorem 1.4. (a) If X is Banach space with a shrinking 1-unconditional basis, then

Clr(f, 0) = f̂(M0,r) for every f ∈ Hb(X).

(b) For X = `2 we have

Clr(f, z0) = f̂(Mz0,r) for every f ∈ Hb(`2), all z0 ∈ rB`2and all r > 0.

In order to see what happens outside the origin for more general Banach spaces, we first

need some lemmata.
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Lemma 1.5. Let x∗ ∈ X∗ be a nonzero continuous linear functional and take e ∈ X such

that x∗(e) = 1. For z ∈ X∗∗ and f ∈ Hb(X), there exists g ∈ Hb(X) such that

f(x) = f
(
x+

(
z(x∗)− x∗(x)

)
e
)

+
(
x∗(x)− z(x∗)

)
g(x)

for all x ∈ X.

Proof. Let f =
∑∞

n=0 Pn be the Taylor series expansion of f at 0, and denote by An the

symmetric n-linear mapping associated to Pn. We have

f(x) = f(x+ z(x∗)e− x∗(x)e+ (x∗(x)− z(x∗))e)

=
∞∑
n=0

n∑
k=0

(
n

k

)
An
(
(x− x∗(x)e+ z(x∗)e)n−k, (x∗(x)e− z(x∗)e)k

)
.

This series converges absolutely. Indeed take R > 1. For ‖v‖ ≤ R and ‖w‖ ≤ R we have

∞∑
n=0

n∑
k=1

∣∣∣(n
k

)
An
(
vn−k, wk−1, e

)∣∣∣ ≤ ∞∑
n=0

n∑
k=1

(
n

k

)
‖An‖ ‖v‖n−k ‖w‖k−1 ‖e‖(4)

≤ ‖e‖
∞∑
n=0

‖An‖Rn−1
n∑
k=1

(
n

k

)
≤ ‖e‖

∞∑
n=0

‖An‖(2R)n,

which is finite since lim sup n
√
‖An‖ = 0. Therefore, we can rearrange the terms with k = 0

to obtain

f(x) =
∞∑
n=0

An
(
(x− x∗(x)e+ z(x∗)e)n

)
+
∞∑
n=0

n∑
k=1

(
n

k

)
An
(
(x− x∗(x)e+ z(x∗)e)n−k, (x∗(x)e− z(x∗)e)k

)
=f(x− x∗(x)e+ z(x∗)e)

+
(
x∗(x)− z(x∗)

) ∞∑
n=0

n∑
k=1

(
n

k

)
An
(
(x− x∗(x)e+ z(x∗)e)n−k, (x∗(x)e− z(x∗)e)k−1, e

)
.

So we have to check that the double sum defines a function in Hb(X). For this, we consider

the mapping G : X ×X → C given by

G(v, w) =
∞∑
n=0

n∑
k=1

(
n

k

)
An
(
vn−k, wk−1, e

)
.

By (4), the double series defining G converges absolutely and uniformly on bounded subsets

of X × X. Each term belongs to Hb(X × X), and then so does G. Now, the function

g(x) = G(x− x∗(x)e+ z(x∗)e, x∗(x)e− z(x∗)e) belongs to Hb(X) and is the function we are

looking for. �
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Lemma 1.6. Let X be a Banach space with Schauder basis {ek}k, and denote by {e∗k}k its

dual basic sequence. Fix z ∈ X∗∗. For f ∈ Hb(X) and N ∈ N, there exist g1, . . . , gN ∈
Hb(X)such that

(5) f(x) = f
( N∑
k=1

z(e∗k)ek +
∞∑

k=N+1

e∗k(x)ek

)
+

N∑
k=1

(
e∗k(x)− z(e∗k)

)
gk(x)

for all x ∈ X.

Proof. Note that

N∑
k=1

z(e∗k)ek +
∞∑

k=N+1

e∗k(x)ek = x+
N∑
k=1

(
z(e∗k)− e∗k(x)

)
ek.

So the result follows from repeated application of Lemma 1.5. �

The two preceding results yield the following lemma, which essentially says that if ϕ lies

in the fiber above z, then ϕ(f) is independent of the first coordinates of f.

Lemma 1.7. Under the same hypotheses as in Lemma 1.6, if ϕ ∈Mz, then

ϕ(f) = ϕ

(
x 7→ f

( N∑
k=1

z(e∗k)ek +
∞∑

k=N+1

e∗k(x)ek

))
for all f ∈ Hb(X).

Proof. Since ϕ ∈Mz, we have ϕ(e∗k) = z(e∗k) for all k. Writing f as in Lemma 1.6 we obtain

the conclusion. �

Now we are ready to show our cluster value theorem for Banach spaces with unconditional

shrinking bases.

Theorem 1.8. Let X be a Banach space with a shrinking K-unconditional basis. Then

Clr(f, z0) ⊂ f̂(Mz0,r) ⊂ ClK(‖z0‖+r)(f, z0)

for all f ∈ Hb(X) and z0 ∈ X∗∗ with ‖z0‖ ≤ r.

Proof. The first inclusion is (1). For the second one, it is enough to show that if 0 /∈
ClK(‖z0‖+r)(f, z0), then 0 /∈ f̂(Mz0,r). Let {ek}k be the shrinking K-unconditional basis of

X, and denote by {e∗k}k its dual basis (which is a K-unconditional basis of X∗). Since the

Schauder basis is shrinking, the sets

Wn,l = {z ∈ X∗∗ : ‖z‖ ≤ K(‖z0‖+ r), |z(e∗k)− z0(e∗k)| <
1

l
, k = 1, . . . , n}
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form a basis of weak-star neighborhoods of z0 in K(‖z0‖ + r)B∗∗. Therefore, if 0 does not

belong to ClK(‖z0‖+r)(f, z0), we can choose N, p ∈ N and δ > 0 such that |f | > δ on WN,p.

Note that for x ∈ rB we have

(6) ‖
N∑
k=1

z0(e
∗
k)ek +

∞∑
k=N+1

e∗k(x)ek‖ ≤ K‖z0‖+K‖x‖ ≤ K(‖z0‖+ r),

and also

e∗j

( N∑
k=1

z0(e
∗
k)ek +

∞∑
k=N+1

e∗k(x)ek

)
= z0(e

∗
j) for j = 1, . . . , N.

This means that
∑N

k=1 z0(e
∗
k)ek +

∑∞
k=N+1 e

∗
k(x)ek belongs to WN,p for every x ∈ rB. As a

consequence, if we define fN : X → C as

fN(x) = f
( N∑
k=1

z0(e
∗
k)ek +

∞∑
k=N+1

e∗k(x)ek
)
,

it follows that |fN | > δ on rB and, as a consequence, fN |rB is invertible in Au(rB).

Given any ϕ ∈ Mz0,r, by Lemma 1.2, there exists ϕ̄ ∈ M(Au(rB)) such that ϕ(g) =

ϕ̄(g|rB), for all g ∈ Hb(X). We combine this with Lemma 1.7 and obtain

ϕ(f) = ϕ(fN) = ϕ̄(fN |rB) 6= 0,

since fN |rB is invertible. Therefore, 0 /∈ f̂(Mz0,r) and the proof is finished. �

The above proof is a particular instance involving Banach spaces having separable duals.

For results about cluster sets in this situation, it is enough to take sequences rather than

nets. Note that, in particular, for Banach spaces with shrinking 1-unconditional basis, we

have a new proof of Theorem 1.4 (a):

Clr(f, 0) = f̂(M0,r) for every f ∈ Hb(X).

Remark 1.9. A direct consequence of the previous theorem is that

Clr(f, z0) ⊂ f̂(Mz0,r) ⊂ Cl2Kr(f, z0)

for all f ∈ Hb(X) and z0 ∈ X∗∗ with ‖z0‖ ≤ r. This is a weaker statement, but it is somehow

“cleaner”: the size of the nets involved in the cluster sets do not depend on z0.

For the case X = `p, we can improve inequality (6) to

‖
N∑
k=1

z0(e
∗
k)ek +

∞∑
k=N+1

e∗k(x)ek‖ ≤ p
√
‖z0‖p + rp.

As a consequence of this, we get

Clr(f, z0) ⊂ f̂(Mz0,r) ⊂ Cl p√‖z0‖p+rp(f, z0) ⊂ Cl p√2r(f, z0)
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for all f ∈ Hb(`p) and z0 ∈ rB`p . Note, however, that for `2 this result is weaker than

Theorem 1.4 (b). For c0 we just reobtain Proposition 1.1.

2. Characterizing evaluations

Evaluations are distinguished elements in the spectrum (see the diagram in the intro-

duction). In this section, we present an intrinsic property that characterizes, for uniformly

convex spaces, evaluations among general homomorphisms.

We first recall some results from [ACGLM12], which require some definitions that we

introduce here. We will denote by A(B) the algebra of uniform limits on B of polynomials

in the functions in X∗; that is, A(B) is the completion of the algebra Pf (X) endowed with

the sup-norm on B. Polynomials in functions in X∗ extend to be weak-star continuous on

the closed unit ball B̄∗∗, and so do their uniform limits. Then, we can consider A(B) as a

uniform algebra of continuous functions on B̄∗∗, with the weak-star topology. The functions

in A(B) are analytic on B. Each nonzero complex-valued homomorphism of A(B) is the

evaluation homomorphism at some point of B̄∗∗. Therefore, the spectrum MA(B) of A(B)

coincides with B̄∗∗. We say that a point x ∈ B̄∗∗ is a peak point for A(B) if there is g ∈ A(B)

such that g(x) = 1, and |g(y)| < 1 for y ∈ B̄∗∗, y 6= x. The function g is said to peak at x

(see [Gam69]). In the following Lemma, H is any algebra of bounded analytic functions on

B containing A(B) and closed under the sup norm on B (i.e, under the topology of uniform

convergence).

Lemma 2.1. [ACGLM12, Lemma 2.4] Let x ∈ B̄, and suppose that g is a function in A(B)

such that g(x) = 1, while |g| is bounded by a constant strictly less than 1 on any subset of

B at a positive distance from x. Then g peaks at x. Further, if f ∈ H and λ ∈ C are such

that f(y)→ λ whenever y ∈ B tends to x in norm, then f̂ ≡ λ on Mx(H).

The following results characterize evaluations among all the elements in the spectrum of

Hb(X).

Theorem 2.2. Let X be a Banach space and x ∈ X such that x/‖x‖ is a peak point for

A(B). Then, for ϕ ∈Mx we have ϕ = δx if and only if R(ϕ) ≤ ‖x‖.

Proof. If ϕ = δx, then R(ϕ) = ‖x‖. For the converse, by [ACG91, 3.2 Lemma] we always

have R(ϕ) ≥ ‖x‖ and then R(ϕ) = ‖x‖. Without loss of generality we may suppose that

R(ϕ) = ‖x‖ = 1. We appeal again to Lemma 1.2 to obtain ϕ̄ ∈ M(Au(B)) such that

ϕ(f) = ϕ̄(f |B), for all f ∈ Hb(X). Now, f |B(y) → f(x) whenever y tends to x in norm
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(since f is continuous on X), so we apply Lemma 2.1 to get

ϕ(f) = ϕ̄(f |B) = f(x).

This holds for any f ∈ Hb(X) and then ϕ = δx. �

In [Far98, Proposition 4.1], Farmer shows that if X is a uniformly convex Banach space,

then for any x ∈ SX there exists a function g satisfying the hypotheses of Lemma 2.1. As a

consequence, every element in SX is a peak point for A(B). Since uniformly convex Banach

spaces are reflexive, we obtain the following.

Corollary 2.3. Let X be a uniformly convex Banach space and take ϕ ∈M. Then, ϕ is an

evaluation if and only if R(ϕ) ≤ ‖π(ϕ)‖.

In [AcoLou07, Theorem 2.6] it is proved that any point of the unit sphere of `1 is a peak

point for A(B`1). Also, in Theorem 2.4 of the same paper, the authors show that every

point on the unit sphere of the Lorentz sequence space d(w, 1) is a peak point for A(Bd(w,1)),

provided the weight w is in c0 \ `1 and w1 = 1. As a consequence, we also have the following.

Corollary 2.4. Let X be `1 or d(w, 1). Given ϕ ∈M with π(ϕ) ∈ X, we have ϕ = δπ(ϕ) if

and only if R(ϕ) ≤ ‖π(ϕ)‖.

There is another way to state Theorem 2.2 or Corollaries 2.3 and 2.4. For X under the

corresponding hypotheses and x ∈ X, we have

(7) Mx,‖x‖ = {δx}.

Let us see now that we cannot extend Corollary 2.4 to homomorphisms ϕ over arbitrary

elements in the bidual. In Section 3 we will study the fibers of the spectrum of Au(B`1). In

particular, we will show that there are plenty of elements z in the unit sphere of `∗∗1 such

that the fiber for Au(B`1) over z is huge.

Using again the result in [ACG91, Section 12] stated in Lemma 1.2, we would get (a lot

of) ϕ ∈ M such that R(ϕ) = 1 = ‖π(ϕ)‖ but ϕ is not the “evaluation” at π(ϕ). However,

we prefer to give a direct argument to show the existence of such a ϕ.

Proposition 2.5. Let X be `1. There exists ϕ ∈M such that R(ϕ) = ‖π(ϕ)‖ but ϕ 6= δ̃π(ϕ).

Proof. Let ψ be an accumulation point of the sequence (δen)∞n=1 ∈ M(Au(B`1)). Consider

its restriction ϕ to Hb(`1) and take z = π(ϕ) ∈ `∗∗1 . Clearly, R(ϕ) ≤ 1 and then ‖z‖ ≤ 1.

On the other hand, consider the element ~1 = (1, ..., 1, ...) ∈ `∗1. We have

~1(en) = 1 for all n and then z(~1) = ϕ(~1) = 1.
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As a consequence ‖z‖ = 1 = R(ϕ). We claim that ϕ 6= δ̃z. To show this, we prove that ϕ

and δ̃z take different values on the polynomial

P (x) =
∞∑
k=0

x2k =
∞∑
k=0

e∗k(x)2.

Since P (en) = 1 for every n ∈ N, we have ϕ(P ) = 1.

On the other hand, since the symmetric bilinear form A : `1 × `1 −→ C associated to P

is given by A(x, y) =
∑∞

k=0 xkyk =
∑∞

k=0 e
∗
k(x)e∗k(y), we have A(em, en) = 0 for all n > m.

Hence limm limnA(em, en) = 0. As a consequence,

δ̃z(P ) = P̃ (z) = Ã(z, z) = 0 6= ϕ(P ),

and the conclusion follows. �

The results in Theorem 2.2 and Corollaries 2.3 and 2.4 give conditions under which there

is just one homomorphism in the fiber over x ∈ X with R(ϕ) = ‖x‖. This does not mean

that all fibers are small. In fact, in general, fibers are rather big. Again, it will help us to

see what happens in Au(B).

Proposition 2.6. Let X be a Banach space which admits a homogeneous continuous polyno-

mial whose restriction to the open unit ball is not weakly continuous at 0. Then,

Card(Mz

(
Au(BX))

)
≥ c for every z ∈ BX∗∗ , where c stands for the cardinal of the con-

tinuum.

Proof. Let P be a homogeneous continuous polynomial whose restriction to the open unit

ball is not weakly continuous at 0 and fix z in BX∗∗ . The proof is in two parts. First, we

show that the conclusion holds if there is a homomorphism ϕ ∈Mz(Au(BX)) and a net (zα)

in BX∗∗ such that (δ̃zα) converges to ϕ and |P̃ (zα)− P̃ (z)| > ε, for some ε > 0 and for all α.

Second, we show the existence of ϕ and the net (zα).

For the first assertion, note that for each x∗ ∈ X∗ ⊂ Au(BX) we have

zα(x∗) = δ̃zα(x∗)→ ϕ(x∗) = z(x∗),

where the last equality holds because ϕ belongs to Mz(Au(BX)). Therefore, zα weak-star

converges to z. We also have

(8) ϕ(P ) = lim
α
P̃ (zα),

and these two facts show that ϕ(P ) belongs to Cl(P, z). As we observed in the introduction,

P̃ (z) also belongs to Cl(P, z). Since |P̃ (zα) − P̃ (z)| ≥ ε for all α, we see from (8) that
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ϕ 6= δ̃z. By [ACGLM12, Lemma 2.1], Cl(P, z) is a compact connected subset of C, and hence

Card(Cl(P, z)) ≥ c. Now, by [ACGLM12, Lemma 2.2], we have Cl(P, z) ⊂ P̂ (Mz(Au(BX)))

and the conclusion follows.

As for the second assertion, it is observed in [BoyRya98, Proposition 1] that if the restric-

tion of a homogeneous polynomial to the open unit ball is not weakly continuous at 0, then

is also weakly discontinuous at any point of BX . In fact, the same argument shows that if

X = Y ∗∗ is the bidual of a Banach space Y and if the restriction, to BY ∗∗ , of a homogeneous

polynomial is weak-star discontinuous at 0, then it is weak-star discontinuous at every point

of BY ∗∗ . Thus, since the restriction of P to the open unit ball is not weakly continuous at 0,

then the restriction of P̃ to the open unit ball of the bidual is also weak-star discontinuous

at any point of the unit ball of the bidual.

The above remark and the Goldstine Theorem allow us to find a net (zα) ⊂ BX∗∗ which

is weak-star convergent to z but such that P̃ (zα) does not converge to P̃ (z). Thus, we may

assume that there exists ε > 0 such that |P̃ (zα)− P̃ (z)| ≥ ε for all α. Since the net (δ̃zα) is

included in the compact setM(Au(BX)), there exists a subnet (δ̃zβ) that converges to some

ϕ ∈M(Au(BX)). Since

ϕ(f) = lim
β
f̃(zβ),

for all f ∈ Au(BX) we get that ϕ(x∗) = z(x∗) for every x∗ ∈ X∗, which means that

ϕ ∈Mz(Au(BX)). �

We can use again Lemma 1.2 to obtain the corresponding result for Hb(X).

Corollary 2.7. Let X be a Banach space which admits a homogeneous continuous polynomial

whose restriction to the open unit ball is not weakly continuous at 0. Then, Card(Mz

)
≥ c

for every z ∈ X∗∗, where c stands for the cardinal of the continuum.

The simplest examples fulfilling the hypotheses of the previous results are the spaces `p

for 1 ≤ p ≤ ∞. For 1 < p < ∞, the canonical basis is weakly null, so we can take the

polynomial Q(x) =
∑∞

n=1 x
m
n with m ∈ N,m ≥ p. Moreover, in [AGGM96, Remark 1.6] it

is shown that these hypotheses hold if `2 is a quotient of X and, as a consequence, when X

contains a copy of `1 (for this case, see also [ADR84]). This shows that `∞ and, of course,

`1 satisfy the hypotheses. The case p = 1 is treated more deeply in the next section.

3. Fibers of M(Au(B`1))

Many of our results describing the spectrum ofHb(X) rely on the corresponding description

ofM(Au(BX)). In this section we take the study of (the fibers of)M(Au(B`1)) a bit further.
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Our motivation is not only to obtain tools for the description of M(Au(B`1)), but also to

show some unexpected behavior which is interesting in itself. To put this into perspective,

we begin by collecting some facts that appear, not always explicitly, in the previous sections.

First, for fibers lying over elements of the unit sphere of `1, the comments before Corol-

lary 2.4 actually show the following.

Proposition 3.1. For any x ∈ S`1, the fiber Mx(Au(B`1)) is just {δx}.

As mentioned above, `1 satisfies the hypotheses of Proposition 2.6. As a consequence,

Card
(
Mz(Au(B`1))

)
≥ c for every z ∈ B`∗∗1

. However, much more can be said.

Proposition 3.2. If z ∈ B`∗∗1
, then βN is embedded in Mz(Au(B`1)).

Proof. Let {Ik}k∈N be a countable partition of N such that each Ik is infinite and consider

`1(Ik) as a complemented subspace of `1 with basis {en : n ∈ Ik}. We have

0 ∈ {en − em : n 6= m, n,m ∈ Ik}
w(`1,`∞)

,

for every k.

Given z ∈ B`∗∗1
we take r > 0 such that ‖z‖+ 2r < 1. Then, z is a w(`∗∗1 , `∞)-limit point

of each of the sets

Sk = {ren − rem + z : n 6= m, n,m ∈ Ik} ⊂ B`∗∗1
.

The compactness ofM(Au(B`1)) allows us to find a net in Sk, w(`∗∗1 , `∞)-converging to z,

whose evaluations converge to some ϕk in M(Au(B`1)). This means, in particular, that ϕk

in Mz(Au(B`1)) for each k.

Denote by {e∗k}k the dual basic sequence of {ek}k. For k ∈ N we define zk = z(e∗k). The

sequence (zk)k is, in fact, the image of z under the natural projection

(9) q : `∗∗1 = c∗∗∗0 −→ c∗0 = `1.

Given (ak) ∈ `∞, we define P : `1 −→ C by

P (x) =
∞∑
k=1

ak
2r2

∑
j∈Ik

(xj − zj)2,

which is well defined and continuous, since (zk)k belongs to `1.

Suppose for a moment that we have shown that

(10) P̃ (ren − rem + z) = ak

for every n 6= m, n,m ∈ Ik (i.e., P̃ ≡ ak on Sk). Since ϕk is a cluster point of the evaluations

in elements of Sk, we conclude that ϕk(P ) = ak. Therefore, (ϕk)
∞
k=1 is an interpolating
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sequence contained in the compact setMz(Au(B`1)). In particular, the closure of (ϕk)
∞
k=1 is

topologically homeomorphic to βN.

So it remains to show (10). Write

P (x) =
∞∑
k=1

ak
2r2

∑
j∈Ik

(xj − zj)2

=
∞∑
k=1

ak
2r2

∑
j∈Ik

x2j −
∞∑
k=1

ak
r2

∑
j∈Ik

xjzj +
∞∑
k=1

ak
2r2

∑
j∈Ik

z2j

= P2(x)− P1(x) + P0.

The linear part is easy to handle:

P̃1(ren − rem + z) =
∞∑
k=1

ak
r2

∑
j∈Ik

(rδn,j − rδm,j + zj)zj.

For the 2-homogeneous part, note that P2 is a diagonal polynomial, so Example 1.2 in

[LlaMor04] shows that P̃2 = P2 ◦ q, where q is defined in (9). This means that

P̃2(ren − rem + z) =
∞∑
k=1

ak
2r2

∑
j∈Ik

(rδn,j − rδm,j + zj)
2.

Combining this information, for m,n ∈ Il, m 6= n we obtain

P̃ (ren − rem + z) =
∞∑
k=1

ak
2r2

∑
j∈Ik

(rδn,j − rδm,j + zj)
2 −

∞∑
k=1

ak
r2

∑
j∈Ik

(rδn,j − rδm,j + zj)zj

+
∞∑
k=1

ak
2r2

∑
j∈Ik

z2j

=
∞∑
k=1

ak
2r2

∑
j∈Ik

(rδn,j − rδm,j)2 =
al

2r2

∑
j∈Il

(rδn,j − rδm,j)2 = al,

which ends the proof. �

Finally we study fibers above elements of the unit sphere of the bidual of `1. In Proposi-

tion 3.1 we have seen that fibers over the unit sphere of `1 are trivial. Let us see that this

is not the case for a large number of elements in S`∗∗1 .

Proposition 3.3. There exists a copy K of βN in S`∗∗1 such that, for each z ∈ K, the cardinal

of the fiber Mz(Au(B`1)) is at least c.

Proof. As before, take {Ik}k∈N a countable partition of N such that each Ik is infinite. Now,

for each k, consider zk ∈ B̄∗∗`1 , a weak-star cluster point of (en)n∈Ik . It is easy to see that
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(zk)k is an interpolating sequence in B̄`∗∗1
: given a = (ak)k ∈ B̄`∞ , we define x∗a ∈ B̄`∗1

by

x∗a(ej) = ak, if j ∈ Ik. Then, zk(x∗a) = ak, for all k. As a consequence, the closure K of (zk)k

in B̄∗∗`1 (with the weak-star topology) is homeomorphic to βN.

Now, given ~1 = (1, . . . , 1, . . . ) ∈ B̄`∗1
we have zk(~1) = 1 for all k, and so z(~1) = 1 for all

z ∈ K. Therefore, K is a weak-star compact subset of S`∗∗1 .

It remains to show that fibers over elements in K are big. Given z ∈ K, note that

z ∈ (zk)k
w(`∗∗1 ,`∗1) ⊂

⋃
k

(en)n∈Ik
w(`∗∗1 ,`∗1)

w(`∗∗1 ,`∗1)

⊂ (en)n∈N
w(`∗∗1 ,`∗1).

This means that z is the weak-star limit of a subnet (enα)α of (en)n. If ϕ is a limit point

of (δenα )α in M(Au(B`1)), we see as in Proposition 2.5 that ϕ belongs to Mz(Au(B`1)) and

that ϕ 6= δ̃z.

The rest of the argument follows the lines of the proof of Proposition 2.6. Take f such that

ϕ(f) 6= f̃(z). Both numbers belong to the connected set Cl(f, z), so that Card(Cl(f, z)) ≥ c.

Appealing to [ACGLM12, Lemma 2.2], we have that Cl(f, z) ⊂ f̂(Mz(Au(BX))) and the

conclusion follows. �

Let us summarize what we know and what the results of this section tell us about the

spectrum M(Hb(X)) for X = `1. As usual, we translate our results for M(Au(B`1)) to

M(Hb(`1)) by means of Lemma 1.2.

Theorem 3.4. Let X = `1.

(a) If x ∈ `1, the only element ϕ ∈Mx with R(ϕ) = ‖x‖ is δx. In other words,

Mx,‖x‖ = {δx}.

(b) For each r, there is a copy K of βN in rS`∗∗1 such that for each z ∈ K,

Card(Mz,‖z‖) ≥ c.

(c) For every z ∈ `∗∗1 and every ε > 0, the fiber Mz,‖z‖+ε contains a copy of βN.

Proof. Statement (a) is just Corollary 2.4, restated as in (7). Item (b) follows from Propo-

sition 3.3 and Lemma 1.2. Note that these elements z must necessarily belong to `∗∗1 \ `1.
Finally, statement (c) follows from Proposition 3.2 and Lemma 1.2. �
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