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This note presents four independent sets of open problems. The first set suggests an
extension of the limit theory for positive recurrent renewal processes to the null recurrent
case. The second concerns exact coupling of random walks on the line with step-lengths
that are neither discrete nor spread-out. The third concerns the coupling characterization
of setwise convergence of distributions of stochastic processes to a stationary limit. The
fourth concerns characterizations of mass-stationarity, a concept formalizing the intuitive
idea that the origin is a typical location in the mass of a random measure.

1 Null Recurrent Renewal Processes

Consider a renewal process

Sn = S0 +X1 + · · ·+Xn, 0 ≤ n <∞,

where S0 [the delay] is a nonnegative random variable and X1, X2, . . . [the recurrence
times] are i.i.d. strictly positive and independent of S0. For 0 ≤ t <∞, put

Nt = inf{n ≥ 0 : Sn > t} = the number of renewals in [0, t]

and
At = t− SNt−1 = age at time t,

Bt = SNt − t = residual life at time t,

Dt = XNt = At +Bt = total life at time t,

Ut = At/Dt = relative age at time t.

The renewal process is positive recurrent if E[X1] <∞ and null recurrent if E[X1] =∞.
Assume that the distribution of X1 is non-lattice, that is, P(X1 ∈ dZ) < 1 for all d > 0;
here Z denotes the integers. Let U be uniform on [0, 1].

Theorem 1.1. If the renewal process is positive recurrent then Ut tends in distribution
to U as t→∞.

For proof see e.g. [7], Chapter 2, Section 10.

Problem 1.1. Suppose the renewal process is null recurrent. Does Ut still tend in
distribution to U as t→∞ ?
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When the renewal process is positive recurrent, let D have the distribution function
P(D ≤ x) = E[X11{X1≤x}]/E[X1], x > 0.

Theorem 1.2. If the renewal process is positive recurrent, then Dt tends in total variation
[and thus in distribution] to D as t → ∞. On the other hand, if the renewal process is
null recurrent, then Dt tends in distribution to infinity as t→∞.

For proof see e.g. [7], Chapter 2, Section 10.

Problem 1.2. Suppose the renewal process is null recurrent. Is there an non-decreasing
function φ such that Dt/φ(t) tends in distribution to a non-degenerate random variable
Dφ as t→∞ ? In particular, does this hold with φ(t) = E[min{X1, t}] ?

Theorem 1.3. If the renewal process is positive recurrent, then the random pair (Dt, Ut)
tends in distribution to (D,U) as t→∞, where D and U are as above and independent.

For proof see e.g. [7], Chapter 2, Section 10.

Problem 1.3. Suppose the renewal process is null recurrent and that the answers to the
above questions are positive. Does (Dt/φ(t), Ut) then tend in distribution to (Dφ, U) as
t→∞, where Dφ and U are as above and independent?

If all the answers are positive, then as a corollary we get that in the null-recurrent
case (At, Bt)/φ(t) would tend in distribution to (DφU,Dφ(1− U)) as t→∞.

2 Coupling of Random Walks on the Line

Let S = (Sn)∞0 be a random walk on the line starting at 0, that is,

Sn = X1 + · · ·+Xn, 0 ≤ n <∞,

where the step-lengths X1, X2, . . . are i.i.d. Let S ′ = (S ′n)∞0 be a version of S starting at
x ∈ R, that is,

S ′n = x+X ′1 + · · ·+X ′n, 0 ≤ n <∞,

where X ′1, X
′
2, . . . are i.i.d. with the same distribution as the step-lenghts of S. Say that

the random walks admit exact coupling if they can be defined on the same probability
space in such a way that there is an a.s. finite random integer T such that

Sn = S ′n for n ≥ T.

This holds if and only if ‖P(Sn ∈ ·)−P(S ′n ∈ ·)‖ → 0 as n→∞ where ‖ · ‖ denotes the
total variation norm; see e.g. [7], Chapter 4. The existence of exact coupling is known in
the following two extreme cases.

The step-lengths are called spread out if there is an n such that the distribution of
X1 + · · ·+Xn is non-singular with respect to Lebesgue measure.

Theorem 2.1. The random walks admit exact coupling for all x ∈ R if and only if the
step-lengths are spread out.
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For proof see e.g. [7], Chapter 3, Section 6.
When the step-lengths are discrete (lattice or non-lattice) put

A = {a ∈ R : P(X1 = a) > 0}

and let G be the smallest additive subgroup of R containing A− A.

Theorem 2.2. Suppose the step-lengths are discrete. Then the random walks admit
exact coupling if and only if x ∈ G.

For proof see [1].
In the strong lattice case when A ⊆ dZ for some d > 0 and there is an a ∈ A such

that A − a is not contained in any sub-lattice of dZ, then Theorem 2.2 implies that the
random walks admit exact coupling if and only if x ∈ dZ.

In the non-lattice case when for instance the step-lengths take only values in the
rationals Q and each rational value is taken with positive probability, then Theorem 2.2
implies that the random walks admit exact coupling if and only if x ∈ Q.

Problem 2.1. Suppose the step-lengths are neither discrete nor spread-out. For what
initial positions x do the random walks admit exact coupling?

A special case where a solution to this problem is known is the following.

Theorem 2.3. Let x ∈ R be given. The random walks admit exact coupling if there is
an n and a non-trivial measure ν such that P(X1 + · · ·+Xn ∈ ·) ≥ ν + ν(x+ ·).

For proof, see [1].

3 Setwise Asymptotic Stationarity

Let X = (Xk)
∞
0 and X ′ = (X ′k)

∞
0 be two discrete-time stochastic processes on the same

state space (E, E). For 0 ≤ n < ∞, let θn be the shift-maps, that is, θnX := (Xn+k)
∞
k=0.

Let
D
= denote identity in distribution. The process X is stationary if θnX

D
= X for all n.

A set A ∈ E∞ is a tail set if A ∈ θ−1
n (E∞) for all n, and invariant if A = θ−1

n A for all n.
Say that X and X ′ admit distributional exact coupling if they can be defined on the

same probability space in such a way that there are finite random integers T and T ′ such

that (θTX,T )
D
= (θT ′X ′, T ′). Say that X and X ′ admit distributional shift-coupling if

they can be defined on the same probability space in such a way that there are finite

random integers T and T ′ such that θTX
D
= θT ′X ′.

Theorem 3.1. (a) The processes X and X ′ admit distributional exact coupling if and
only if P(X ∈ A) = P(X ′ ∈ A) for all tail sets A and if and only if

P(θnX ∈ ·)−P(θnX
′ ∈ ·)→ 0 in total variation as n→∞.

(b) The processes X and X ′ admit distributional shift-coupling if and only if
P(X ∈ A) = P(X ′ ∈ A) for all invariant sets A and if and only if

1

n

n−1∑
k=0

P(θkX ∈ ·)−
1

n

n−1∑
k=0

P(θkX
′ ∈ ·)→ 0 in total variation as n→∞.
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For proof see [7], Chapters 4 and 5.

Corollary 3.1. If

1

n

n−1∑
k=0

P(θkX ∈ A)→ P(X ′ ∈ A) as n→∞ for all A ∈ E∞ (3.1)

then the limit process X ′ is stationary, X and X ′ admit distributional shift-coupling,
P(X ∈ A) = P(X ′ ∈ A) for all invariant sets A, and

1

n

n−1∑
k=0

P(θkX ∈ ·)→ P(X ′ ∈ ·) in total variation as n→∞.

Proof. The stationarity of X ′ follows by taking A ∈ E∞ and noting that (3.1) implies
the first step in (sending n→∞)

P(θ1X
′ ∈ A)−P(X ′ ∈ A)← 1

n

n−1∑
k=0

(P(θk+1X ∈ A)−P(θkX ∈ A))

=
1

n
(P(θnX ∈ A)−P(X ∈ A))→ 0.

Further, (3.1) with A invariant yields P(X ∈ A) = P(X ′ ∈ A) and the rest of the corollary
follows from Theorem 3.1(b).

Problem 3.1. If

P(θnX ∈ A)→ P(X ′ ∈ A) as n→∞ for all A ∈ E∞ (3.2)

then again X ′ is stationary. But does it hold that

P(θnX ∈ ·)→ P(X ′ ∈ ·) in total variation as n→∞ ?

I guess the answer is negative. However, if it turns out to be positive then the setwise
convergence (3.2) would be characterized by X and X ′ admiting distributional exact
coupling.

Problem 3.2. Suppose the answer to the question in Problem 3.1 is negative. What
then is the coupling characterization of the convergence (3.2)?

Finally, let E is separable metric with E its Borel subsets and let d be the product
metric on E∞. Suppose (3.2) only holds for A such that P(X ∈ the boundary of A) = 0,
that is, suppose θnX converges in distribution to X ′. The well-known Skorohod-coupling
characterization of this convergence is the following:

there are processes X(n), n ≥ 0, such that X(n) D
= θnX for each n and

the pointwise limit lim
n→∞

X(n) exists and has the same distribution as X ′.

Problem 3.3. Suppose θnX converges in distribution to X ′. Is there a coupling charac-
terization of this convergence which only involves joint construction of the two process X
and X ′ and not a whole family of processes? For instance, can X and X ′ be constructed
on the same probability space in such a way that d(θnX, θnX

′)→ 0 as n→∞ ?
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4 Mass-stationarity and Allocations

Let ξ be a random measure on a locally compact second countable Abelian group G, for
instance G = Rd. Let X be a random element in a space on which G acts, for instance
a random field X = (Xs)s∈G. The pair (X, ξ) is called stationary if the distribution of

(X, ξ) is invariant under deterministic shifts of the origin, that is, if s(X, ξ)
D
= (X, ξ) for

all s ∈ G. Stationarity means intuitively that the origin is a typical location in G.
The pair (X, ξ) is called mass-stationary if for all relatively compact Borel subsets C

of G,

VC(X, ξ, UC)
d
= (X, ξ, UC)

where
UC is uniform on C and independent of (X, ξ),

VC given (X, ξ, UC) has distribution ξ(·|C − UC).

Theorem 4.1. The pair (X, ξ) is mass-stationary if and only if it is the Palm version of
a stationary pair.

For proof see [5].

Mass-stationarity formalizes the intuitive idea that the origin is a typical location in
the mass of G. A simple example of a mass-stationary random measure is the stationary
Poisson process on the line with an extra point added at the origin: shifting the origin
to the nth point on the right, – or to the nth point on the left, – does not change the
fact that the inter-point distances are i.i.d. exponential. Compared to the simplicity of
this example, the above definition of mass-stationarity is rather mysterious. However, for
simple point processes it has the following more transparent formulation.

Theorem 4.2. Suppose ξ is a simple point process. Then (X, ξ) is mass-stationary if
and only if

Π(X, ξ)
D
= (X, ξ) (4.1)

for all Π = π(X, ξ) where π is a measurable G-valued map such that the G-to-G map

τ(X,ξ) : s 7→ s+ π(s(X, ξ)) [with (X, ξ) fixed]

preserves the measure ξ, that is, ξ(τ(X,ξ) ∈ ·) = ξ.

For proof see [4].
In the Poisson example we could let τ(X,ξ) be the map taking each point to the nth

point on its right (or on its left) and leaving the other locations where they are. This
τ(X,ξ) maps the point process into itself.

A τ(X,ξ) as in the above theorem is called a preserving allocation. In general, mass-
stationarity cannot be characterized by the property (4.1); see [5]. The counter-example
is based on the observation that there could be discrete point-masses of different sizes
and an allocation cannot split a discrete point-mass. On the other hand the following is
known.
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Theorem 4.3. Suppose ξ is diffuse and G = Rd. Then (X, ξ) is mass-stationarity if and
only if (4.1) holds with X replaced by (X, Y ) for all shift-measurable stationary random
fields Y = (Ys)s∈G that are independent of (X, ξ).

For proof see [6].

Problem 4.1. Suppose ξ is diffuse. Is then mass-stationarity of (X, ξ) equivalent to (4.1)
holding without the addition of the stationary independent Y ?

Note that if τ is a preserving allocation then Q(X,ξ)(s, A) := δτ(X,ξ)(s)(A) defines a
Markovian kernel Q(X,ξ) on G × G which is invariant under joint shifts of s and A.
Moreover, Q(X,ξ) is preserving, that is, ξQ = ξ. This particular kernel is trivial in the
sense that Q(X,ξ)(s, ·) is just the unit-mass at τ(X,ξ)(s).

Theorem 4.4. The pair (X, ξ) is mass-stationary if and only if for all bounded jointly
invariant preserving G×G kernels Q(X,ξ) it holds that∫

G

P(s(X, ξ) ∈ ·)Q(X,ξ)(0, ds) = P((X, ξ) ∈ ·) (4.2)

For proof see [5].
If Q(X,ξ) is not only bounded but has total mass one [is Markovian] then we can

introduce a random element Π in G with conditional distribution Q(X,ξ)(0, ·) given (X, ξ)
and write (4.2) on the probabilistic form (4.1).

Problem 4.2. Does Theorem 4.4. hold if the kernels Q(X,ξ) are restricted to be Marko-
vian?

Problem 4.1 and 4.2 were already posed in [5].
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