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On a local L*-variant of Ikehara's theorem

By NORBERT WIENER anxn AUREL WINTNER *

1. A fandamental theorem of Vivanti and Pringsheim states that if

(1) @ =0

holds for all coeflicients of a power series

(2) pg)= ¥ azn

n=f
Which converges for |z | < 1, then either the point = = 1 or no point
of the circumference | 2| = 1 is a singular point of the fanction plz).
Clearly, the theorem bacomes false if (1) is relaxed to

(3) &, =0, where s,= E’_u @

b=
(for, by ¢hanging the value of a, alone; | 8, [ < const. ean be rednced
to (3), whereas trivial examples show |s,| < const. is certainly not
sulficient for the alternative of V'imnl:i-]i’ringshaim). Still less is it
possible to relax (1) to the existence of some Uesiro index n(=1,2...)
satistying, for the series Sa,, the condition

(4) N =0 (as n -+ 2o, while m is fixed),

since (3) is equivalent to the case m = 0 of (4),

The Vivanti-Pringsheim theorem has a certain variant which, as
au application of iis Fourier methods in general Tauberian theory
(ef,, in particular, the proof of Ikehara’s theorem in [2], §19),
one of us proved, but did not publish, some time ago. This theorem
(quoted, but not proyved, in [1], p. 242 and p. 250, item 12.6f) states
that if (1) holds for the coeflicients of a power series (2) whicli con-

© Received Sept. 5-1957.




= Bl

verges for | z|< 1 and is of class L? on some (no matter how narrow)
sector containing the segment 0=z <1, then itis of class L* on
the entire c¢ircle. By this is meant that if there exists on some arc
—e= 0= ¢ of the circumference | z| =1 a measurable function p, (0)
satisfying

(D) 5‘! p (1™ — py () a0 -0 as »r—1,

=

with 2 = #¢" (and r < 1) in (2), and if (1) is assumed, then p, (0) ean
be extended from [—e, <] to [—m, = in snch a way that

(6) “ p(g-gi‘-n) — Do (') ]2 dh >0 as r—1

will Tiold (it being understood that p,(e®) is of elass Lt on | —m, =)

2. It will be shown in this paper that, in contrast with the Vivan-

ti-Pringsheim theovem itself, the L* variant can be generalized so a8

to relaw (1) to (3), and even to (1), %
The theorem remains true if the power series (2) is replaced by a

Laplace integral and (3) or (4) is adjusted to this general case. We

ghall give the proof for this more general case. This will have, among

other things, the advantage of exhibiting the purallelism with the

proof of Tkehara’s theorem directly.

3. Let f(8) be a fanction which is regnlar in the half-plane ¢ > 1,
where & = o + it, and suppose that there exists on a fixed t-inferval
| — a, a] a funetion 7, (t) of elass L* satisfying

[}

(7 (If(a+ i) — filt)Fatasa =1

—

(by @ - 1 ismeant o —~ 1 + 0).Then /(s) will be called of class L7 (a).
In view of the completeness of the space of the L’-functions on a
t-interval [— a, a], condition (7) is equivalent to

a

8 |fi(ey + i — £ + i)t 0 a5 (5y, 39 = (1, 1),

—0

where g, (> 1) and gy (> 1) are independent variables.
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In this terminology, the main theorem, to be proved, can be for-
mulated as follows :

Lt p(n), where 0 < u < o0, be of bounded wvariation on every finite
interval 0= = U (< oo}, suppose that the Laplace-Stieltjes transform,

o

(9) £(8) = | e~ ay (u),

(]

of  is convergent (hut, possibly, not absolutely convergent) on the
half-plane ¢ > 1, where s — g 4 it, and let

(10) £ (0) = 0 and p(u) =0, where 0 <y < o
(but
(10 bis) dp(u) =0, where 0=u< oo,

is not assumed). Then the function f(s) cannot be of class L#(a) for
any a = = unless it is of oluss L* (a) Jor every a = N,

In contrast, the proof of Ikehara’s theorem ([2], §19), which
assumes (10 bis), cannot be improved so as to relax (10 his) to (10).
In this eonnection, ef. [3].

4. Conditions (10) and (10 bis) correspond to (3) and (1) respeeti-
vely, if (9) is identified with (2), by choosing p (u) to be a step-fune-
tion and placing # = ¢~ (except that the radius of convergence K of
(2) then becomes I — Lje, instead of B = 1),

'}orrespundin:g[y, the generalization (4) of (3) results if the assump-
tion 1 (1) =0 is relaxed to the assumption that there exists some m
satistying j, (u) = 0 (for large u), where

pom () = [ W1 () dv,  p(u) = o ().

But it will be clear from the proof that the case of an arbitrary m
can be treated in the same way as the case m — 1, if the partial
integration, leading from (9) to (13) and (14) below, is applied m
times. For this reason, it will be sufficient to deal with the ease of
the assumption (10), where m = 1 (the assumption (10 bis) would
correspond fo m = 0),
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5. In the 1&&0!’ of the theorem, it can be assumed that the given
a-value, the value for which f(s) is supposed fo be of class L* (a),

is @ = 1 (this normalization is accomplished by a change of the unit
of lengbh on the t-axis). Then the assumpbion is that

1
(A1) || f(L+ e+ it) = f(1 + o+ it)Fdt >0 as (s, 1) ~(0,0)
-1

(where 1 4 = = g, and 1 4 4 = g, in the earlier notations), and the
assertion is thap

V(L + e+ it) = f (L + 5+ i) dt >0

must hold for every fixed positive a < so.
To this end, it will be sufficient to show that

(12) (1 2 it + ie) — [(L 4+ + it + ie)f*dt— 0

| N
"

1
2

holds for every real e. In fact, (12) can be written in the form

,
=N
2
) [ £(L 4=+ it) — f(L 4 n - it)]? dt=0.
=Y
If this is applied to ¢ = 3/2 and to ¢ = — 3/2, and if both of the

resulting relations are added to (11), it follows that (11) remains
trne if its [ - 1,1] is increased to [ — 2,2,

Clearly, a repetition of this process leads to | — N, N| for any fixed
N > 0. This is the reason why it will be suflicient to prove that (11}
leads to (12) for any fixed real ¢.

6. If the integral (9) is convergent for o > 1, and if, without loss
of generality, 1 (0) = 0 in (9), then a partial integration shows that

(13) Sls) = sP(s),

where

(14) Fs) = e p(w)du,
]

'f



T

the convergence of the integral (14) for ¢ > 1 being part of the
statement. [t is worth emphasizing that, whereas the condition
{10), which was not used here, and the convergence of (9) for & > 1
do not imply the absolute convergence of (9) for o> 1. they do
imply the absolute convergence of (14) for ¢ > 1.]

Since both s and 1/s are regular and bounded on every (o + it)-
rectangle of the form 1 <o < 2, — N<t£ N, it is clear from (13)
that (11) and (12) are equivalent to

1
(15) | | (1 + & 4 it) — F(1 + g + it)[*dt ~0
=)

and

I
(16) | [ F(L 4 =+ it + i6) — F(L+ 7 + it + ic) [Pt — 0
|

vespectively. Henee the assertion of the theorem is equivalent to
the statement that, if (10) és asswmed, (15) leads to (16) for every
real e

Actually, (16) will prove to be trne, not only for every fixed e,
bat uniformly on the infinite vange — oo << ¢ < o, But this additio-
nal information is immaterial in the proof of the theorem.

7. The beginning of the proof is about the same as that of Ike-
hara’s theorem ; it proceeds as follows :
For any fixed o> 1 and for any fixed veal e, puf

Fo(tye)=(1— [t]) Flait4ie) if [¢|==1, F.(t:e)=0 if | t[=1,
where — o <1 < 2o, and also put
G (t;e)=e " plu)e™ if w=0, G (w:e¢)=0 if =<0,

where — oo < w << >0 (and p(0) = 0). Then, since the function

- R0 O g (2 S W
(17) Sw) =(sm3m) / (:’ u) ’ (S(0)=1),

where —so < u< 20, i8 u positive constant multiple of the Fourier
transform of max (0,1 — [t[), where —so <t <o, it is readily
verified from (14), where p(u) =0, that the Fourier transform of
the function F.(f;¢) of t is the convolution S (u)x G, (u; ¢) (if a
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1
normalizing constant factor, such as (2x) 2, is disregarded). In
view of the definitions of . (t; ¢) and G, (u;c), this means that the
identity
1 1

(18) j et (1 — |t)) F(o + it + ic)dt = H,(w; c),
=1
where
(19) H,(w;¢) = \'c"r” () e S(w — u) du,
0

holds for 6> 1, —so<a¥ < 20, —co < e L (to a neglected posi-
tive constant factor ); and that, by Plancherel's relation,

1 oo
[ (1 = [ (o + it + ie) Pat = || Ho(e; 0 de
=1 —

(to a constant factor, the square of the preceding constant factor).

1f all of this is applied, not to the fanetions belonging to one
3> 1, but to the difference of the functions belonging to two g va-
lnes, 6 =1+ = and g =1+, where =>0 and % >0, then what
results is that the expression

I
20) [ (L= L) | B (144 it+ic) = F(L4n+it+ie) [* b
—1

ig o consbant multiple of the expression

b

(21) \'[H'L.H(cc;c’)-—ﬂﬂh(m;fz}[*dm

—a

8. Sinee (1— I£|]“ has a positive minimum on the interval
|

; Sy J L
—s=i= 5 it is elear that the integral on the left of the relation
(16) is majorized by a constant multiple of the integral (20). Hence,
in order to prove that the relation (16) holds for every fixed e, it is
suflicient to show that the funetion (21) of (553 ¢) tends to U as
(2,1) = (0, 0). But this property of (21) ean readily be coneluded {as

a mabter of fact, wniformly for --so < ¢ < 29), us follows:
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Aceording to (10) and (17), both functions £, 8 are non-negative.
Hence it is elear from (19) that

| Hyyo(wes €) — Hiy, (25 0)|

=| j (a0t — gmtltn vy (a) 8 (w0 — ) | e—iew [ du |

(whether = >, ¢ <4 orz=q). But since [e=T| = 1, it is also seen
from (19) that the last inequality ean be written in the form

[Hii(@s 0) = Hip, (@5 0) | < | Higo (@5 0) — Hiy, (@5 0)].

Hence, if (e, v) is fixed, the function (21)of ¢ is majorized by the
value attained by (21) at e = 0,

Consequently, if (¢, 4) is fixed, the function (21) of ¢ is majorized
by a constant multiple of the value attained by (20) at e = 0, and
the constant factor is independent of (s, v). But since (1 —|t]p=1
if —1=t=1, the value of (20) at ¢ = 0 is majorized by the inte-
gral ocenrring in (15). Since the limit relation (15), where (e, ) —>
(0, 0), is assumed this proves that the funetion (21) of (5, 4 ; ¢) tends
t0 0 a8 (2, 1) = (0, 0), uniformly for —oo < ¢ < so.
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Anwenduwg dualer quatarnionen auf Kinematik

Von WILHELM BLASCHEE (Hamburg) ©

Im Folgenden soll gezeigt werden, wie einfuch sich die Formelir
fiir die Kinematik des Buklidischen Raumes gestalten lassen, wenn
man im Anschluss en BULER die Drehungen mittels der Quaterni
nen darstellt und dazn noch die sogenannten « dualen Zahlen ».

a-L=h, =10

zuhilfe nimmt.

Einen Teil des Folgenden habe ich an der Universitaet in Buenos
Airves im Mai 1957 vorgetragen und ich michte diese Gelegenheit
benutzen, um meinen argentinischen Freunden und Kollegen fiir
ihre Gastfreundschaft herzlichst zu danken.

$ 1. QUATERNIONEN

Iis seien die ¢; zunichst veele Zahlen, dann schreiben wir eine
Quaternion in der Gestalt
Q = qoty + @6 + 9203 + Gy

und erkliiven Addition nnd Multiplikation dureh die Formeln

.

(1,2) Q-+ Q=)+ qdes

00’ i s et
i
mit
{1'3} Cnty = Gily =

* Bingegungen am 19. Sept. 1957.
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sodass wir auch
(1 :4] & = j Kl
getzen kinnen, und
(1,5) e, = 46y = 4ty = — 1
88 = — i = €1
fiir ik l.=1,2,3;2,2,13 31, 2.

Dann gilt fiir die Maltiplikation das assoziative Gesetz
(1,6) 00a) = (@) e

Statt (1,1) sehireiben wir auch

(1,7) Q=qo+ 0 q=a& + a0 T Tsfs

Dann soll q ein Vektor heissen und wir fiihren die koniugierte Qua-
ternion ein durch

(1,8) a=q,— 0

Man bestiitigt eie Rechenregeln

(1,9) Q0 = qus + 20 + '8 — <00'’> +axq)
wobei das Skalarprodukt

(1,10) <qq°> = 04y + 90's + 90

und das Vektorprodukt

(1,11)  qXq'=(qe0'y— 9’2 €1 + (@' — 14y €2 + (020's— 029 1)¢
benutzt ist, Ferner wird

(1,12) a8 = ¢f + ¢ + 0 + ¢ = <QO>,

:,(G.u’ + QB) = quf's + N4y + qals + Gtls = < QU>

il

(1,13) a = 0.
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Anstelle der reelen ¢; werden wir auch «duales Zahlen verwenden
(1,14) %= i + 2q5-
wobei die g;, ¢; veel sind und ¢ den Regeln geniigt
(1,15) £=0, ec=z

Dabei ist ¢; ein Nullteiler fiir % = 0. Die division durch Nullteiler
ist nnzuliissig. Wir setzen fiir duale Quaternionen

_&_=90+5‘T)‘0+q+ea=gn+q:
{1,16) 0= 08, + gees + qye5,
ﬁ = ?[19: = Ee"a G 7 ‘;n"u

und fiihren die Bezeichnungen ein

Q=g+~ q~:q=q,— q:

(1,17) Q= g, —zq, + q — zq.

Dann wird

~1

'lqu=q+g+g;+_‘e

=1

(1,18) "h;u =04 Q- _@, - By

1 =8-a+a-a,
19=0-0-0 +a,

Die duale Quaternion @ hejsse gernormt, wenn

(1,19) 0@=1: 6@8=<@0> -1, <@a>— o

Die Quaternionen lLat L. Euler (1707-1783) 1748 eingefiibrt
Spaeter wurden sie von K. F. Gauss (1777-1855) 1819 und insbe-
sondere von W. R. Hamilton (1805-1865) 1840 verwendet, Duale
Zallen diirfte W, K. Clifford (1835-1879) znerst benutzt haben. Fiir

eine differanzierbare Funktion 7 der dualen Veriinderlichen q+z:q
setzt man

Flq + 2q) = P(q) + eqF(q),
dF(q)
=

(1,20)
F'{q) =







