revista matemática cuyana

volumen 1
1955
fascículo 1
páginas 1-40

instituto de matemática
mendoza argentina
REVISTA MATEMÁTICA CUYANA

La Revista Matemática Cuyana está destinada a la publicación de trabajos originales en los campos de la matemática pura y aplicada, y aparece en forma de fascículos sueltos sin periodicidad fija, anualmente reunidos en un volumen de 250 páginas, aproximadamente.

Castellano, inglés, alemán, francés e italiano, son los idiomas de la Revista.

Los artículos para la Revista deben ser escritos a máquina con doble espacio y enviados a nombre de uno de los miembros del Comité de Redacción, al Instituto de Matemática, Departamento de Investigaciones Científicas, Universidad Nacional de Cuyo, Mendoza, Argentina.

Los colaboradores tienen derecho a 50 tiradas aparte gratis, de sus artículos, y podrán, si lo desean, recibir hasta 150 tiradas aparte a precio de costo.

Comité de Redacción

Mischa Cotlar.
Antonio Monteiro.
Eduardo H. Zarantonello.

En todo lo referente a suscripciones, adquisición de números atrasados, etc., dirigirse al Director del Instituto de Matemáticas, Profesor Mischa Cotlar.
universidad nacional de cuyo
departamento de investigaciones científicas

revista matemática cuyana

volumen 1
1955
fascículo 1
páginas 1-40

instituto de matemática
mendoza
argentina
On the Theory of Unilateral equations in Associative Rings

BY ORLANDO E. VILLAMAYOR

INTRODUCTION

The first steps in the theory on unilateral equations in rings, specially those of linear systems, have been oriented towards the consideration of homogeneous systems. N. H. McCoy [12] has given, by means of determinants defined after the classical model, necessary and sufficient conditions for an homogeneous linear system (with coefficients in a commutative ring) to have a non-trivial solution in the ring. In the present article use is made of these results, after reducing the theory to the commutative case. O. Ore [21] studies the conditions under which an integral domain (non-commutative) can be embedded into a division ring by the adjunction of all formal inverses, as it is done in the commutative case, and finds that the existence of non-trivial solutions (within the ring) for all equations of the form \(ax - by = 0 \) is a necessary and sufficient condition. He also states the problem of inquiring if any ring without zero-divisors can be embedded into a division ring. It has been proved by A. Malcev [17] that there exist non-commutative integral domains that cannot be embedded in division rings. M. Hall [10, 11] succeeds in determining all linear homogeneous systems having as solutions all those of a given linear system. From this and with help of the notion of algebraic closure of ideals, as defined in section 3.a, he derives a group of interesting results on rings.

Other related papers, such as that of Ellis and Gaddum [6] on Boolean rings could still be mentioned, but we prefer to omit them since they are no relevant to the questions dealt with in this article.

* Received December 12, 1954.
This paper was motivated by the desire of developing a general theory of equations for associative rings. The first step, naturally, was the determination of solvability conditions, that is, conditions for the existence of a ring extension having a solution of a given equation (or equations). The first section is devoted to this question where, in addition, it is proved that it is always possible to embed any ring into another ring having a solution for any solvable equation. The theorem on solvability of linear systems generalizes a known result on fields due to G. Birkhoff [3].

These solvability conditions require, however, the knowledge of a special extension of the ring and are of little practical value for the characterization of solvable equations. This situation is partially remedied in the second section, where necessary and sufficient conditions for the solvability of unilateral linear equations are given in terms of the original ring only. The third section further generalizes this to linear systems.

Generalizing the notion of field, where all linear equation have solution, we introduce the notion of semi-field and complete semi-field by requiring that all solvable linear equations, or linear systems, respectively, have solutions.

These concepts are very useful for the further development of the general theory of equations, and are not to be mistaken with the notion of semi-field introduced by A. A. Albert [2], which is a particular case of the notion given here.

Besides fields and division rings, there are still some other known examples of complete semi-fields. Such are: Boolean rings, the p-rings of McCoy and Montgomery [16], the p³-rings of Foster [9], the Frobeniusian and quasi-Frobeniusian algebras and rings [18, 19], and the normal rings of Teichmüller [23].

In section 3, the semi-fields and complete semi-fields are also characterized by properties of ideals with regard to the closure operation defined by Hall.

Finally, in the last section, equations of higher degree are considered and some general properties of algebraic extensions are studied in the commutative case, leaving for another article the complete treatment of general equations in associative rings.

The results of this paper were presented to the Unión Matemática Argentina in the sessions of Sept. 1951 and Sept. 1952.
I. RING EXTENSIONS

1. General considerations. Let A be an associative ring and $W = \{X_j\}$ a non-empty set, the elements of which will be called indeterminates. We suppose that A and W are disjoint and β is the cardinal number of W.

If E is the ring of integers, A may be considered as an E-module. Now for every $X_j \in W$ we shall consider the one-dimensional E-module $EX_j = \{mX_j\}$. With these E-modules we form all tensorial products (\dagger)

$$M_1 \circ M_2 \circ \ldots \circ M_n,$$

where n is any positive integer, and the M_i are either coincident with A or with one of the EX_j, and such that not two consecutive M_i are equal to A. The (formal) terms of the elements of any of these tensorial products are called monomials.

We define polynomials as the elements of the restricted direct sum $\Gamma(A)$ of all the E-modules thus obtained (\dagger).

To define the product of two monomials $m = (x_1, \ldots, x_n)$ and $m' = (x_1', \ldots, x_k')$ we must consider two cases:

1) If $x_i \in A$ and $x_i' \in A$, then

$$mm' = (x_1, \ldots, x_{n-1}, x_n x_1', \ldots, x_k')$$

where $x = x_n x_1'$ (the product being defined in A)

2) Otherwise,

$$mm' = (x_1, \ldots, x_{n-1}, x_n', x_1', \ldots, x_k')$$

The product of two polynomials $p_1 = \Sigma m_i$ and $p_2 = \Sigma m'_j$ is defined by the formula

$$p_1 p_2 = (\Sigma m_i) (\Sigma m'_j) = \Sigma \Sigma m_i m'_j$$

(\dagger) This way of definition of the free extension, replacing the method originally used in [24], has kindly been suggested to the author by J. Dieudonné. The definition of tensorial product can be found, for instance in N. Jacobson, Lectures on abstract Algebra, vol 2, or in N. Bourbaki, Éléments de Mathématique, Livre 3 (Algèbre), chap. III. The restricted direct sum is the subring consisting of all formal sums with all terms but a finite number equal to zero.
The product of \(n \) polynomials is defined by induction as follows:

\[
P_1 P_2 \cdots P_{n-1} P_n = (P_1 P_2 \cdots P_{n-1}) P_n
\]

It is easily seen that the set \(\Gamma_\beta(A) \) of all polynomials with the operations just defined is an associative ring, and the subset of all polynomials of the form \(p_i = (a), a \in A \), is a subring \(A' \) isomorphic to \(A \), which will be called the subring of constants, and will be identified with \(A \), so that, we can speak about the elements of \(A \) in \(\Gamma_\beta(A) \).

\(\Gamma_\beta(A) \) will be called the free extension of \(A \) with \(\beta \) indeterminates, no confusion being possible with the classical polynomial ring.

To avoid any other confusion, in the sequel, the term polynomial will be used only to speak about the classical polynomials; for those just defined we shall use the expression «elements of \(\Gamma_\beta(A) \) ».

Lemma 1.1. — For every ring \(B \) such that \(B \cong A \), \(B \) is a homomorphic image of \(\Gamma_\beta(A) \) for a conveniently chosen cardinal number \(\beta \), that is, \(B = \Gamma_\beta(A)/I \), with \(I \cap A = (0) \); conversely, if \(I \) is an ideal in \(\Gamma_\beta(A) \) such that \(I \cap A = (0) \), then \(\Gamma_\beta(A)/I = B \) contains a subring isomorphic to \(A \).

Proof. — Let \(B \) be an associative ring such that \(B \cong A \). We can take \(W \) as a set with the cardinal number \(\beta \) of the set \(B - A \), and set a one-to-one correspondence between its elements and those of \(B - A \). The set of relations satisfied by the elements of \(B - A \) written by means of sums and products (in these relations may appear, naturally, elements of \(A \)), has by the one-to-one elementwise correspondence just quoted a corresponding set, in \(\Gamma_\beta(A) \). This set is evidently a two-sided ideal \(I \) in \(\Gamma_\beta(A) \), and \(B \cong \Gamma_\beta(A)/I \). Furthermore, \(I \cup A = (0) \), otherwise if \(a = 0 \), \(a \in A \), is in \(I \), then \(a = 0 \) in \(B \), contradicting our hypothesis \(B \cong A \).

Conversely, given an ideal \(I \subseteq \Gamma_\beta(A) \) such that \(I \cap A = (0) \) since the elements of \(B = \Gamma_\beta(A)/I \) are the cosets in \(\Gamma_\beta(A) \) defined by \(I \), we can put the elements of \(A \) in a one-to-one correspondence with those cosets which have (at least) one element of \(A \), the correspondence being one-to-one since the condition \(I \cap A = (0) \) implies that no more than one element of \(A \) can appear in each coset.

A ring \(B \) will be said an extension of \(A \) if \(B \cong A' \cong A \).

It is easily seen that the zero-element of \(A \) is also the zero-element of every free extension, hence, by the lemma just proved, it is also the zero-element of every extension. On the contrary, the
identity-element of A may be different from the identity-element of an extension (if one of them does not exist the assertion is trivial). As an example we have the ring \mathbb{Z}_6 (the residue class ring of integers reduced modulo 6), which is an extension of \mathbb{Z}_2 (integers reduced modulo 2), since the set $\{0, 2, 4\} \subseteq \mathbb{Z}_6$ form a field isomorphic to \mathbb{Z}_2, whose identity is 1, different from the identity element of \mathbb{Z}_6 which is 0.

We shall study extensions of the following types:

a) *arbitrary extensions*, that is, extensions over which we make no restrictions;

b) *identity-preserving extensions*, that is, those extensions B of A for which the identity-element I of A is also identity-element in B. Since $B = \Gamma_Y(A)/I$, we can easily see that I must contain $1 \cdot x_j - x_j$ and $x_i \cdot 1 - x_i$ for every $x_i \in W$;

c) *center-preserving extensions*, that is, those for which the center C of A is contained into the center of B. In this case, the (two sided) above ideal I must contain $a x_j - x_j c$ for every $x_j \in W$ and every $c \in C$;

d) *commutative extensions* of (commutative) rings A; in this case, B must be center-preserving, furthermore, $X_i x_j - x_j X_i \in I$ for every $X_i, x_j \in W$.

In section 2 and 3 we shall study only identity-preserving extensions, and in section 4, extensions which are simultaneously commutative and identity-preserving.

To build these extensions, we can start from the (classical) polynomial ring $A[X_1, X_2, \ldots]$, which is the homomorphic image of the free extension modulo the ideal generated by all $1 \cdot x_j - x_j, X_j \cdot 1 - x_j, X_i x_j - x_j X_i$, and $x_j a - a x_j$ for every $X_i, x_j \in W$ and every $a \in A$.

Given an extension $B \supsetneq A$, since $B = \Gamma_Y(A)/I$, the image of the indeterminates in this homomorphism will be called generators of B.

Definition 1.1. — A ring B containing A, will be called a simple extension of A if there exists a single element $0 \in B$ such that the subring generated by A and 0 is the whole B.

This is the case when B is an extension of A with a single generator 0, and it will be denoted by $B = A(0)$.

1. b. — *Algebraic and transcendental extensions*. We shall study only equations of the form $f(x_1, \ldots, x_n) = 0$, where $f(X_1, \ldots, X_n)$ is any element of $\Gamma_Y(A)$. These will be called *equations with coefficients in A or A-equations*.
Speaking about extensions of type \(a\) (resp \(b, c, d\)) we shall say that \(f(x_1, \ldots, x_n) = 0\) is a trivial equation, if \(f(X_1, \ldots, X_n) \in I\) for every such an extension \(B \supseteq A\), \(I\) being, as just defined, the (two-sided) ideal defined by the homomorphism \(\Gamma(A) \to B\).

The following definitions are conditioned to the type of extensions we are studying.

Definition 1.2. — An element \(x\) of an extension \(B\) of a ring \(A\) is called algebraic over \(A\) if it satisfies at least one non-trivial equation with coefficients in \(A\); otherwise, it will be called transcendental.

Definition 1.3. — An extension \(B\) of a ring \(A\) will called algebraic if there exists a set of algebraic generators over \(A\).

A non algebraic extension \(B\) of \(A\) will be called transcendental.

Definition 1.4. — A transcendental extension \(B\) of a ring \(A\) is called purely transcendental if there is a set of transcendental generators over \(A\).

It is known that every element of an algebraic extension of a field is algebraic, but it is not true for rings in general. The following example shows it:

Example. — Let \(A\) be the commutative ring whose elements are: \(a, b, a + b, 0, 1, a + 1, b + 1, a + b + 1\), with \(a^2 = ab = ba = b^2 = 0\) and characteristic 2. The homomorphic image of its polynomial ring \(A[X]/(aX - b)\) is a proper extension of \(A\). This is true by a theorem of solvability of first degree equations which will be proved later (Th. 2.1). The extension thus built is algebraic, because its generator \(X\) is algebraic over \(A\) (it satisfies the equation \(ax = b\)). If \(c\) is any element of this extension, it will be algebraic if it satisfies some non-trivial equation with coefficients in \(A\), that is, if some element of the subring generated by \(A\) and \(c\) is also contained in the ideal \((aX - b)\) in \(A[X]\). Since \((aX - b)\) is a principal ideal this amounts to say that some polynomial in \(c\) is divisible by \(aX - b\). It may be easily proved that \(X^2\) does not satisfy this condition, hence it is transcendental in the extension thus built.

In the commutative case we shall only deal with commutative extensions. Consequently, in such cases, we shall always start from the polynomial ring, so that a transcendental simple extension is isomorphic to the polynomial ring, and an algebraic simple extension is a proper homomorphic image.
We shall also investigate, for special types of rings, when the property (valid for fields) that every element of an algebraic extension is algebraic, holds.

For transcendental extensions the corresponding statement is false; it is very easy to find an example. Let \(A \) be a ring in which \(a \neq 0, b \neq 0 \) and \(ab = 0 \), and consider the element \(y = b X + 1 \) (\(1 \) is the identity element of \(A \)) in an identity-preserving transcendental extension of \(A \) (say \(A (X) \) with \(X \) transcendental). Such an element satisfies the equation \(ay = a \), hence it is algebraic over \(A \).

Only for integral domains it is true that every element of a purely transcendental extension is transcendental.

1.c. — Solvability of equations. **Definition 1.5.** — An equation \(f(x) = 0 \), with coefficients in a ring \(A \) will be called solvable if there exists at least one extension \(B \supseteq A \) in which the equation has a solution. Otherwise, it will be called unsolvable.

Let us explain briefly this definition. Let \(f(x) = 0 \) be an equation with coefficients in a ring \(A \); if there exists an element \(e \) in \(A \) such that \(f(e) = 0 \), we shall say that the equation has a solution in \(A \). If there is one extension \(B \) of \(A \) in which \(f(x) = 0 \) has a solution, we shall say that the equation admits a solution, and in both cases it will be called solvable. An equation is unsolvable if no extension of \(A \) exists in which it has a solution.

Let \(A \) be a ring and \(B \) an extension of \(A \) where the equation \(p(x) = 0 \) has a solution. The subring generated by the elements of \(A \) and one root of the equation is also an extension of \(A \), hence, it is a homomorphic image of the free extension of \(A \) with one generator, \(X \); the image of the generator being the root of the equation. This homomorphism is proper, since \(p(X) \), an element of the free extension, is mapped onto zero. Since the free extension is a ring, the kernel of the homomorphism is a two-sided ideal which contains \(p(X) \), hence, it contains the principal two-sided ideal generated by \(p(X) \).

Conversely, if we build the free extension of a ring \(A \) with one generator and consider the homomorphic image modulo an arbitrary two-sided ideal \(I \), the ring so formed has an element (the image of \(X \)) which satisfies the equations obtained replacing in each element of \(I \), the coefficients (elements of \(A \)) by the images of the classes containing the corresponding element of \(A \). But, in general, this is
not an extension of \(A \), and the equations so obtained cannot be considered as equations with coefficients in \(A \). To exclude this difficulty, as we have seen in lemma 1.1, it is necessary and sufficient that \(I \) be disjoint with \(A \) in the free extension. We say that \(I \) and \(A \) are disjoint if they have no element in common different from zero, that is, if \(A \cap I = \{0\} \).

Let \(f(x) = 0 \) be an equation with coefficients in \(A \). If the principal two-sided ideal generated by \(f(x) \) (called briefly in the following \((f(x)) \) in the free extension with one generator \(\Gamma_1(A) \) is disjoint with \(A \), then \(\Gamma_1(A)/(f(x)) \) is an extension of \(A \) in which the equation has a solution, and \(f(x) = 0 \) is solvable.

Otherwise, no extension of \(A \) has a solution for \(f(x) = 0 \), and the equation is unsolvable. This proves the theorem:

Theorem 1.1. The necessary and sufficient condition for an equation \(f(x) = 0 \) with coefficients in a ring \(A \) to be solvable, is that the ideal \((f(X)) \) be disjoint with \(A \) in \(\Gamma_1(A) \).

For the special case of linear unilateral equations, we shall later give necessary and sufficient conditions which can be studied inside of \(A \).

1.d. Maximal and minimal extensions. For a given solvable equation \(f(x) = 0 \) with coefficients in a ring \(A \) (briefly, an \(A \)-equation), we can consider all simple extensions of \(A \) having solutions of the equation. In general, if we consider all extensions, we can study in them the subring generated by \(A \) and one root of \(f(x) = 0 \), which is a simple extension. By the preceding considerations, every extension is a homomorphic image of \(\Gamma_1(A) \) modulo an ideal containing \((f(X)) \), hence they are homomorphic images of the ring \(\Gamma_1(A)/(f(X)) \).

The ring \(\Gamma_1(A)/(f(X)) \) is, in this sense, the maximal simple extension of \(A \) in which \(f(X) = 0 \) has a solution.

Let us consider, now, the set of all ideals of a free extension disjoint with \(A \). These ideals can be ordered by inclusion, and the set is inductive. Then, by Zorn's lemma, every ideal is contained in a maximal disjoint ideal. Let us call \(M \) one of these maximal ideals. \(\Gamma_1(A)/M \) in an extension of \(A \) and every homomorphic image of \(\Gamma_1(A)/M \) is isomorphic to the homomorphic image \(\Gamma_1(A)/I \), of the free extension, modulo an ideal \(I \) containing \(M \). Since \(M \) is maximal, no proper homomorphic image of \(\Gamma_1(A)/M \) is an extension of \(A \).
In this sense, $\Gamma_z(A)/M$ are minimal extensions of A.

We can now prove the following additional lemma:

Lemma 1.2. — If A is a subdirectly irreducible ring, then every minimal extension of A is also subdirectly irreducible.

A ring is said to be subdirectly irreducible if it cannot be considered as a subdirect sum of its proper homomorphic images. It is known that a ring is subdirectly irreducible [14] if it has a minimum ideal, that is, if it has a two-sided ideal $J \neq (0)$ such that, for every two-sided ideal I in the ring A, is $J \subseteq I$.

If B is a minimal extension of the ring A, we have $B = \Gamma_z(A)/M$, for suitably chosen β and M. If I is a proper two-sided in B, I is the image of a two-sided ideal I' in $\Gamma_z(A)$ containing M, and, since M is a maximal disjoint two-sided ideal, $I' \cap A \neq (0)$, hence $I \cap A \neq (0)$ in B.

Let J be the minimal two-sided ideal in A. $I \cap A$ is also a two-sided ideal in A, hence it contains J, and I contains the ideal generated by J in B. This ideal J' is, then, a minimal two-sided ideal in B, thus B is subdirectly irreducible.

1.e Embedding of a ring into a ring with identity element. Let A be a ring without identity-element. We can embedd it into a ring with identity-element and with the same characteristic n, following the methods developed by J. L. Dorroh [7] and Brown and McCoy [5], which consist in taking all pairs (a, m'), with $a \in A$ and $m' \in E_n$ (the residue-class ring of the integers reduced modulo n); the sum and the product being defined by:

\[
\begin{align*}
(a_1, m'_1) + (a_2, m'_2) &= (a_1 + a_2, m'_1 + m'_2) \\
(a_1, m'_1) \cdot (a_2, m'_2) &= (a_1a_2 + m_1a_2 + m_2a_1, m'_1m'_2)
\end{align*}
\]

The product is uniquely defined, since n is equal to the characteristic of A; in this case, m_1a_j is uniquely defined by m'_1 (the image of m_1 in E_n) and a_j.

We shall call A' the ring of all such pairs.

If $f(x) = 0$ is an equation with coefficients in A, it has the form $f(x) = \sum a_i x^{i_1}a_{i_2}x^{i_2} \ldots a_{i_k} = 0$. Then, since the ring A may be identified with the subring coincident with the set of pairs $(a, 0)$ in A', we may also identify that equation with the A'-equation

\[
f(x) = \sum_{i} (a_{i_1}, 0)x^{i_1}(a_{i_2}, 0)x^{i_2} \ldots (a_{i_k}, 0) = 0
\]
We wish now to prove the following theorem:

Theorem 1.2. — If \(f(x) = 0 \) is a solvable \(A \)-equation, it is also a solvable \(A' \)-equation.

If this theorem is true, we see that the embedding of a ring \(A \) into a ring \(A' \) does not change the solvability of the equations in \(A \). This is important, because in general an arbitrary embedding may change the character of some equations.

The converse of the theorem is trivial.

Proof: We suppose that \(f(x) = 0 \) is a solvable \(A \)-equation, that is, the two-sided ideal generated by \(f(X) \) in the free extension of \(A \) is disjoint with \(A \).

To prove the theorem we shall consider two cases, namely, solutions with no condition imposed and commutative solutions, that is, solutions in the center of the extension. In both cases, we suppose the solvability of the \(A \)-equation.

First case: Let us suppose that

\[
f(x) = \sum_i a_i x^{i_1} x^{i_2} \cdots x^{i_n} = 0
\]

is a solvable \(A \)-equation, that is, \((f(X)) \cap A = \{0\}\) in \(\Gamma_1(A)\).

The elements of \((f(X))\) have the form

\[
g(X) = \sum_p p_p(X) \cdot f(X) \cdot q_q(X) + mf(X)
\]

and, if we write

\[
p_p(X) = \sum b_{p_1} x^{p_1} \cdots b_{p_m}
\]

and

\[
q_q(X) = \sum c_{q_1} X^{q_1} \cdots c_{q_m}
\]

we have

\[
g(X) = \sum \sum \sum b_{j_{11}} X^{j_{11}} \cdots b_{j_{1n}} a_{1} x^{1_1} \cdots a_{in} x^{in} c_{k_1} x^{k_1} \cdots c_{km} x^{km} + mf(x)
\]

by our assumptions, \(g(X) \in A \) implies \(g(X) = 0 \).

Let us write, now, \(f(x) = 0 \) as an \(A' \)-equation \(f'(x) = 0 \), that is

\[
f'(X) = \sum_i (a_{i_1}, 0) X^{i_1} (a_{i_2}, 0) \cdots (a_{i_n}, 0)
\]

The elements of \((f'(X)) \subseteq \Gamma_1(A')\) have the form

\[
g'(X) = \sum \sum \sum (b_{j_{11}} \cdots b_{j_{1n}}) X^{j_{11}} \cdots (b_{j_{1m}} X^{j_{1m}} \cdots (a_{i_1}, 0) X^{i_1} \cdots (a_{i_n}, 0) X^{i_n} \cdots (c_{k_1} x^{k_1} \cdots c_{km} x^{km})
\]
Now, if \(g'(X) \in A' \), since
\[
(b_{jm,j'}, h_{jm,j'}) (a_{is}, 0) = (b_{jm,j'}, 0) (a_{is}, 0) + h_{jm,j'} (a_{is}, 0)
\]
and
\[
(a_{ls}, 0) (c_{ji'}, t_{ji'}) = (a_{ls}, 0) (c_{ji'}, 0) + t_{ji'} (a_{ls}, 0)
\]
we have \(g'(X) = d \in A \), and we can choose \(p_{i'}(X) \) and \(q_{i'}(X) \) in \(\Gamma_1(A) \) such that
\[
g(X) = \sum p_{i'}(X) \cdot f(X) \cdot q_{i'}(X) = d \in A;
\]
then, \(d = 0 \), and the theorem is proved.

Second case — If we want \(X \) to commute with every \((a, n) \) in \(A' \), and the extension to be unit-preserving, then, the residue-class ring of the free extension modulo de ideal of the elements giving trivial equations, is isomorphic to the (classical) polynomial ring, and, then, we can start from such a polynomial ring. Furthermore, the free extension of \(A \), for \(X \) in the center, may be reduced to the ring of all formal sums
\[
\sum a_i X_i + \sum m_i X_i,
\]
with \(m_i \) integers and \(a_i \in A \).

Let \(f(x) = \sum a_i x^i = 0 \) be a solvable \(A \)-equation, then \((f(X)) \in \Gamma_1(A) \) is the set of all sums
\[
g(X) = \sum (\sum b_i X^i + \sum m_i X^i) (\sum a_i X^i) (\sum c_i X^i + \sum m_i X^i),
\]
while the principal ideal generated by \(f'(X) \) in the polynomial ring of \(A' \) is the set of sums
\[
g'(X) = \sum (\sum (b_i, m_i) X^i) (\sum (a_i, 0) X^i) (\sum (c_i, m_i) X^i) = \sum (\sum (b_i, 0) X^i + \sum m_i X^i) (\sum (a_i, 0) X^i) (\sum (c_i, 0) X^i + \sum m_i X^i).
\]

Then, if \(g'(X) = (d, m) \in A' \), we must have \(g'(X) = (d, 0) \in A \in A' \). In addition, we can choose in the reduced free extension of \(A \) an element \(g(X) = d \in A \), so that, by our hypothesis on the solvability of \(f(x) = 0 \), we have \(d = 0 \). Thus from \(g'(X) \in A' \) we arrive to \(g'(X) = 0 \), and the theorem is proved.

The commutative case (starting from commutative rings) is a particularization of the second case, hence, the theorem is proved above, but it is not a special case of the first, because of the additional conditions imposed on the solutions.
Since this embedding process does not change the solvability of equations, from now on we shall confine our attention only to rings with identity-element, and to their identity-preserving extensions.

2. UNILATERAL LINEAR EQUATIONS AND SEMI-FIELDS

2. A The solvability of the unilateral linear equation. Let \(a \) be a given element of a ring (with identity) \(A \). The set of all \(a \in A \) such that \(xa = 0 \) (resp. \(ax = 0 \)) will be called the left- (resp. right-) annihilator of \(a \) and denoted by \(0^a_\ell \) (resp. \(0^a_r \)). It is clear that a right- (left-) annihilator is a right- (left-) ideal [20].

We shall prove now the following theorem:

Theorem 2.1. — \(0^a_\ell \subseteq 0^a_r \) is a necessary and sufficient condition for a left-linear equation \(xa = b \) to be solvable in a ring \(A \) with identity.

The condition is evidently necessary, because, if the equation is solvable, there exists at least one extension \(B \) of \(A \) in which there is an element \(c \) such that \(ca = b \), hence, for every \(y \) in \(B \) (in particular in \(A \subseteq B \)) such that \(ay = 0 \), we will have \(by = cay = 0 \), hence \(0^a_\ell \subseteq 0^a_r \).

To prove the sufficiency we shall use our theorem 1.1, that is, we shall consider the ideal \((f(X)) \) in the free extension \(\Gamma(A) \).

We must show that, under the condition \(0^a_\ell \subseteq 0^a_r \), the element \(Xa - b \) cannot be reduced to a non-zero constant by multiplication and addition.

To simplify the proof, we shall see first that

\[
0^a_r \subseteq 0^a_\ell \quad \text{implies} \quad g(X) = p(X)(Xa - b)q(X)eA
\]

Let

\[
p(X) = \sum_i c_{ij}X^{i1}c_{ij2}X^{i2} \ldots c_{in_i}
\]

\[
q(X) = \sum_j d_{ji}X^{j1}d_{j2}X^{j2} \ldots d_{jn_j}
\]

and let us suppose that \(g(X) = 0 \) and \(g(X) \in A \). Then, there will be in \(p(X) \) and \(q(X) \), respectively, terms of the form \(c_{00} \) and \(d_{00} \) such that \(c_{00}d_{00} \neq 0 \). Hence, \(bd_{00} \neq 0 \), and, by our hypothesis, \(ad_{00} \neq 0 \).
Therefore, \(g(X) \) must contain \(c_{00}Xad_{00} \), and, since \(g(X) \in A \), the term of first degree in \(g(X) \) must vanish, that is,

\[
e_{10}Xbd_{00} + e_{00}bXd_{10} + c_{00}Xad_{00} = 0,
\]

and, since \(c_{00}Xad_{00} = 0 \), at least one of the terms \(e_{10}Xbd_{00} \) or \(e_{00}bXd_{10} \) must be different from zero, implying \(e_{10}X = 0 \) or \(e_{00}b \neq 0 \), respectively.

From \(e_{00}b = 0 \) follows \(e_{00}a = 0 \), and in both cases a term of second degree, either \(e_{10}XaXd_{00} \) or \(e_{00}aX^2d_{10} \) does not vanish.

In any case, the condition \(g(X) \in A \) implies, by the same argument, the existence of (at least) one non-vanishing term of third degree in \(g(X) \), and so on. This is in contradiction with the fact that the degree of a polynomial is finite.

Then, our assertion is proved.

Furthermore, \(\sum c_iXad_i = 0 \) implies that \(\sum c_iXad_i \) can be reduced to a single term \(c'X'ad' \). This reduction must be made by termwise successive elimination.

One term \(c_iX^2ad_i \) can be reduced if at least one of the following conditions holds:

1) \(c_i = \sum (c_i + \lambda_i) \) (\(\lambda_i \) integers), in which case

\[
\sum c_iX^2ad_i = \sum (c_i + \lambda_i)Xad_i
\]

2) \(ad_i = \sum (c_i + \lambda_i)ad_i \), implying \(\sum c_iX^2ad_i = \sum (c_i + \lambda_i)Xad_i \)

In any case, the same reduction can be performed on \(\sum c_iX^2bd_i \) — (the first is trivial and the second follows from \(ad_i = \sum (c_i + \lambda_i)ad_i \))

\[
\sum c_iX^2bd_i = \sum (c_i + \lambda_i)X^2bd_i
\]

Then, \(\sum c_iXad_i = c'X'ad' \) implies \(\sum c_iX^2bd_i = c'X^2bd' \), and from \(c'X^2bd' = 0 \) follows either \(c' = 0 \) or \(ad' = 0 \), and in both cases \(c'X^2bd' = 0 \).

Since an element of \(I = (Xa - b) \) is a sum of expressions all similar to \(g(X) \), that is, every element of \(I \) has the form

\[
f(X) = \sum p_i(x)(Xa - b)g_i(X)
\]

we can write

\[
f(X) = \sum g_i(X) \in 1.
\]
To prove our theorem by contradiction, let us suppose that \(f(\lambda) \in A \) and \(f(X) = 0 \). Then, there exists \(c_{i00} \) and \(d_{i00} \) in \(p_i(X) \) and \(q_i(X) \), respectively, such that
\[
\sum_i c_{i00} d_{i00} = 0,
\]
which, by the above argument, with \(c_{i0} \) and \(d_{i0} \) in place of \(c_i \) and \(d_i \), implies \(\sum_i c_{i00} d_{i00} = 0 \).

The proof proceeds now as in our simplified case.

We can establish a similar condition for commutative extensions of commutative rings, but the proof differs from the preceding one. In commutative rings, \(0^e = 0^f \) will be written \(0_a \).

Theorem 2.2.— If \(A \) is a commutative ring, the equation \(ax - b = 0 \) admits a commutative solution if and only if \(0_a \leq 0_b \).

We say that the equation admits a commutative solution if there exists at least one commutative extension in which it has a solution.

We have seen that commutative identity-preserving extensions of commutative rings are homomorphic images of the (classical) polynomial ring. Since \(A \) has an identity-element (otherwise the theorem is not applicable) we must prove that

\[
(aX - b) p(X) \in A \implies (aX - b) p(X) = 0
\]

Let \(p(X) = \sum_i c_i X^i \). Suppose the condition of the theorem is fulfilled and assume \((aX - b) p(X) = d \in A \).

Then \((aX - b) p(X) = ac_0 X^{a+1} + \sum_i (ac_{i-1} - bc_i) X^i - bc_0 = d \) implies
\[
ac_0 = 0
\]
\[
ac_i - bc_{i-1} = 0 \quad (n \geq i \geq 1)
\]
\[
bc_0 = d
\]

From the first two equations and by \(0_a \leq 0_b \), successively follows \(bc_{i-1} = 0 \) \((i = n, n - 1, \ldots, 1)\), finally arriving to \(bc_0 = d = 0 \). Thus, the condition is sufficient.

The necessity being obvious, the theorem is proved.

To show that in general the theorem is not valid without assuming the existence of an identity-element, we have the following example: Let \(A \) be a trivial ring, that is, a ring for which \(A^2 = 0 \), hence, for every \(a \in A \), \(aA = (0) \), the ring is commutative and \(0_a = A \).

Since \(0_a = A \), the equation \(0x = a \), evidently unsolvable, satisfies the conditions of the theorem.
Remark: In view of theorems 2.1 and 2.2, we can assert that, if A is a commutative ring with identity, every solvable linear equation admits (or has) a commutative solution.

2h. — **An open question: the compatibility of equations.** As we have seen in the previous section, given an equation $f(x) = 0$, with coefficients in a ring A, every extension of A containing a solution has a subring B, simple extension of A, which is a homomorphic image of the free extension of A with one generator, modulo an ideal containing $f(X)$, and hence, containing the (two-sided) ideal $(f(X))$. Let us suppose two solvable equations $f(x) = 0$ and $g(x) = 0$ are given in A. If we «solve» the first, that is, if we build some extension of A containing at least one root of $f(x) = 0$, it may happen that we introduce new elements which make $g(x) = 0$ unsolvable in the extension.

If $g(x) = 0$ is a solvable A-equation, unsolvable in every extension of A containing a root for $f(x) = 0$, we shall say they are incompatible. The general theorem for extensions says that two equations are compatible if and only if the (two-sided) ideal $(f(X), g(Y)) = I$ verifies that $I \cap A = (0)$ in the free extension with two generators X, Y.

Now the following question is open: is every set of solvable equations, compatible? The question is not yet answered. Only for special cases we have an affirmative answer.

In general, we say that a set of equations is compatible if there exists an extension of the original ring in which all the equations have solution. For sets of only one equation, compatibility is equivalent to solvability.

In fields, it is known that there are extensions where all solvable equations can be simultaneously solved, hence they all form a compatible set.

We can prove the following theorem, due to R. Ricabarra, on the compatibility of linear equations.

We recall that a ring is called semisimple if there exists a set of prime (2) two-sided ideals with zero intersection.

Theorem 2.3 (Ricabarra). — *In a semisimple ring, the set of all linear solvable equations is compatible*

(1) A two sided ideal P is called prime if, as in the commutative case, $ab \in P$, a not in P implies $b \in P$.
By definition, a semisimple ring is a subdirect sum of rings without proper zero-divisors. By theorem 2.5, whose proof is independent of these considerations, each of these rings can be embedded in a quotient ring \(^{(3)}\).

In the commutative case, it is equivalent to say that it has no nilpotent elements. We find, in this case, a commutative extension in which every solvable linear equation of the original ring has a solution.

In the general case, we only consider unilateral linear equations, since no conditions are known for the general linear equation \(\sum_{a} a_i x_i a_{i2} = b\) to be solvable.

We can consider, now, our original ring \(A\), as a subring of the direct sum of the division rings obtained from the (not necessarily commutative) integral domains, homomorphic images of \(A\). That direct sum will be called \(C\).

Given the set \(\Omega = \{\aleph\}\) of all prime ideals in \(A\), each element of \(C\) may be considered as a function defined on the set \(\Omega\) and taking values in the quotient rings extensions of \(A/\aleph\) [14]. Hence, the set of all elements of \(C\) is a subset of the whole set of such functions.

We shall call projection of an element \(a \in A\) on the quotient ring \(R_\alpha\) (containing \(A\)) the image \(a_\alpha\) of \(a\) by the homomorphism \(A \rightarrow A/\aleph\).

We shall call projection of an equation \(ax = b\), with coefficients in \(A\), on the quotient ring \(R_\alpha\), the equation \(a_\alpha x = b_\alpha\) in \(R_\alpha\), where \(a_\alpha\) and \(b_\alpha\) are the projections of \(a\) and \(b\), respectively, on \(R_\alpha\). It is worth noticing that the equation \(cd = 0\), viewed in the function ring \(C\) means that for every \(\aleph\) either \(c_\alpha\) or \(d_\alpha\) is zero.

As it has been said above, each element of \(A\) may be considered as a function of the ring \(C\). Let \(ax = b\) (or \(xa = b\)) be a solvable \(A\)-equation. If \(\Delta_a\) is the set of all prime ideals containing \(a\), and \(\Delta_b\) that of all prime ideals containing \(b\), then the equation is precisely unsolvable at the points \(\alpha \in \Delta_a - \Delta_b\). Thus, to keep the solvability of \(ax = b\) we must take as identical functions differing on points of \(\Delta_a - \Delta_b\) only, that is to say, we must identify with the zero-function all those functions taking values different from zero only at points of \(\Delta_a - \Delta_b\). These functions will be called trival functions.

\(^{(3)}\) The classical method of embedding a commutative integral domain into a field by adjunction of all formal inverses does not hold, in general, in the non-commutative case. O. Ore [21] has given necessary and sufficient conditions for the ring so obtained to be a quotient ring. The quotient ring may be defined as the minimal extension (see 1d) by adjunction of the solutions of all equations \(ax = 1\) (\(xa = 1\)).
In the following lemmas we shall show that the class of all trivial functions corresponding to all left- (or right-) linear equations is a two-sided ideal I disjoint with A in C, and consequently that C/I is an extension of A preserving the solvability of the given linear equations.

In the homomorphic image of C the equation $ax = b$ (and $xa = b$) is not only solvable but can also be solved. Its solution is found by solving the projected equations in each quotient ring R_x, x not in $\Lambda_x - A$, and taking as a solution any class of functions modulo I containing a function that for x not in $\Lambda_x - A$ coincides with the solutions of the projected equations. In fact, for such a function x, $ax - b$ is a trivial function because it vanishes outside of $\Lambda_x - A$, hence passing to the classes $a | x - b = 0$. In general the solution is not unique because arbitrary values in R_x can be assigned to the function at points where $a_x = b_x = 0$, the difference of two functions thus obtained not being a trivial function in general.

Having proved that in C any solvable linear A-equation can be solved we have shown that there are no sets of incompatible equations in A.

Let $\Omega = |x|$ designate the class of all prime ideals in A. By the semi-simplicity there is, for every non-zero $a \in A$, an ideal not containing a, hence $\emptyset \aleph_\Omega = (0)$. (*)

We introduce now a notion of closure for all subsets of Ω, in the following way: The closure Λ of a subset $\Lambda \subseteq \Omega$ is the set of all prime ideals containing the elements of Λ that simultaneously belong to all $x \in \Lambda$ that is, $\Lambda | x \supseteq \emptyset$. It is easily verified that the operation thus defined has all properties of a topological closure:

1. $\Lambda \subseteq \Lambda$.
2. $\Lambda_1 \cup \Lambda_2 = \Lambda_1 \cup \Lambda_2$.
3. $\Lambda_1 \cup \Lambda_2 = \Lambda_1 \cup \Lambda_2$.

The only property requiring a proof is the second one, the other two are trivial. Moreover, $\Lambda_1 \cup \Lambda_2 \supseteq \Lambda_1 \cup \Lambda_2 \supseteq \Lambda_1 \cup \Lambda_2$. This we do by showing that any γ in $\Lambda_1 \cup \Lambda_2$ and not in Λ_2 must be in Λ_1. We notice first that γ not in Λ_2 implies the existence of a b in the intersection of all ideals of Λ_2 not contained in γ. Further, for every a in the intersection of all ideals of Λ_1, the product ab is in the intersection of all

(*) In all considerations that follows it is enough to take, instead of Ω, any subclass having the same intersection property.
ideals of $\Lambda_1 \cup \Lambda_2$, hence in γ. Since b is not in γ, it follows that $a \in \gamma$, which by the arbitrariness of a implies $\gamma \in \Lambda_1$ as we wanted to prove.

A closed set is a set coinciding with its closure ($\Lambda = \Lambda$). It is easily proved that the intersection of any number of closed sets, and the union of a finite number, is closed.

A set of ideals Λ such that the intersection of all ideals not belonging to it is the ideal (0) is called a redundant set of ideals. It is clear that a set Λ is redundant if and only if $\Omega - \Lambda = \Omega$.

Lemma 2.1. The set of all points (ideals) where a trivial function is different from zero is contained in a closed redundant set.

Proof.—The solvability condition $0^* \subseteq 0^*$ simply means that every ideal not containing b contains the intersection of all ideals not containing a. In other terms, $\Omega = \Lambda_b \subseteq \Omega - \Lambda_a$ where Λ_a and Λ_b are the sets of all ideals containing a and b respectively. Moreover the set of points where a trivial functions is different from zero is contained in $\Lambda_a - \Lambda_b = \Lambda_a \cap (\Omega - \Lambda_b)$ hence, contained in $\Lambda_a \cap (\Omega - \Lambda_b)$. This set, as the intersection of two closed sets, is closed. In addition, it is redundant because

$$\Omega - (\Lambda_a \cap (\Omega - \Lambda_b)) = \Omega - \Lambda_a \cup (\Omega - (\Omega - \Lambda_b)) \supseteq \Omega - \Lambda_a \cup (\Omega - \Omega - \Lambda_b) = \Omega.$$

Lemma 2.2.—The union of two closed redundant sets is redundant (\dagger).

Proof.—We have to prove that $\Lambda_i = \Lambda_i$ and $\Omega - \Lambda_i = \Omega$, $i=1, 2$, imply $\Omega - (\Lambda_1 \cup \Lambda_2) = \Omega$.

Let $F = \Omega - (\Lambda_1 \cup \Lambda_2)$. Obviously F is closed and $F \supseteq \Omega - (\Lambda_1 - \Lambda_2)$. Hence $F \cup \Lambda_1 \supseteq \Omega - \Lambda_2$ and it follows $F \cup \Lambda_1 \supseteq F \cup \Lambda_1 \supseteq \Omega - \Lambda_2 \supseteq \Omega$ which successively implies $F \supseteq \Omega - \Lambda_2$, $F \supseteq \Omega - \Lambda_1$ = Ω. That is, $F = \Omega$.

Lemma 2.3.—The set of all trivial functions generates in C a two-sided ideal disjoint with A.

Proof.—1) If f is a trivial function, hence, a function vanishing outside of a redundant set, then all finite products containing f will also vanish outside of the same set.

(\dagger) In the topological terminology this lemma expresses the fact that the union of two closed nowhere dense sets is nowhere dense.
2) If \(f \) and \(g \) are functions vanishing outside of closed redundant sets \(\Lambda_f \) and \(\Lambda_g \) respectively, then the function \(f - g \) will vanish outside of the set \(\Lambda_f \cup \Lambda_g \), which by lemma 2.2 is also redundant.

3) As the two-sided ideal \(I \) generated by a set of elements of a ring (in this case the trivial functions) is the set of all finite sums of finite products containing at least one element of the given set, it follows that all functions belonging to such an ideal will vanish outside of a closed redundant set.

4) Since by definition no element of \(A \) is contained in all ideals not belonging to a redundant set, it follows that the functions associated with elements of \(A \) are not functions of the ideal \(I \). Hence \(A \cap I = (0) \), and \(C/I \) is an extension of \(A \) \(^4\).

2.c. The «conditional» theory of compatible sets. Given a compatible set of equations, which can also be of some special type, a.e. linear right-, linear left-, linear, we wish to prove that it is always contained in a maximal compatible set of the same type. Clearly, if there is no set of incompatible equations, a maximal compatible set should be understood as the set of all equations. We must make a convenient construction to define chains of sets and apply Zorn's lemma.

We shall say \(p \)-equations or \(p \)-equations of type \(p \) whenever we speak about sets of equations having some property \(p \).

We shall prove here the following theorem:

Theorem 2.4. — Every compatible set of \(p \)-equations is contained in a maximal compatible set of \(p \)-equations.

Naturally, we say that \(C \) is a maximal compatible set of \(p \)-equations if, adding to it any other arbitrary \(p \)-equation, the new set is always incompatible.

It is trivially true that, if in a set there is an unsolvable equation, it is incompatible. So, we may restrict our attention to sets of solvable equations only.

Let \(C \) be the set of all solvable \(p \) equations in an arbitrary ring (not necessarily with identity element) \(A \), and let \(\bar{p} \) be the cardinal number of \(C \). We can build the free extension of \(A \) with \(\bar{p} \) generators

\(^4\) In the commutative case we can, in addition say that \(C/I \) is also commutative and semisimple. This easily proved by showing that there are no nilpotent elements in \(C/I \).
and establish a one-to-one correspondence between the generators and the equations of \(C \). We associate, then, the \(i^{th} \) \(p \)-equation of \(C \) with the \(i^{th} \) generator of the free extension, that is, \(p_i(x) \equiv 0 \) in \(X \).

A subset \(S \supseteq C \) is compatible if and only if the ideal

\[
\mathfrak{a}_S = (\{ p_i(X_i) \mid i \in S \}) \text{ verifies } \mathfrak{a}_S \cap A = (0)
\]

This ideal will be called the ideal associated with \(S \).

It is evident that \(S \subseteq S' \) is equivalent to \(\mathfrak{a}_S \subseteq \mathfrak{a}_{S'} \).

We say that the family \(\{ S_i \} \) is a chain if and only if it is linearly ordered by inclusion in the family of subsets of \(C \). Hence, the associated ideals form also a chain.

We have a chain of compatible sets \(\{ S_i \} \) of \(p \)-equations if and only if their associated ideals form a chain \(\{ \mathfrak{a}_{S_i} \} \) with \(\mathfrak{a}_{S_i} \cap A = (0) \). It is known that, in this case, the set of ideals associated with every subset of \(C \) constitutes an inductive system. Thus, Zorn's lemma can be applied and the theorem is proved.

2.d. — The embedding of a ring in a \(p \)-closed ring. We say that a ring \(A \) is \(p \)-closed if every solvable \(p \)-equation in it has at least one solution in \(A \).

Let \(B_0 \) be a ring which is not \(p \)-closed (obviously, if \(B_0 \) is \(p \)-closed, no proper embedding is necessary), \(S_0 \) a maximal compatible set of \(p \)-equations in \(B_0 \) and \(\mathfrak{a}_0 \) the associated ideal of \(S_0 \) in the free extension of \(B_0 \) with a set of generators with the same cardinal number as \(S_0 \). Let \(B_1 \) be the homomorphic image of that free extension modulo \(\mathfrak{a}_0 \). Since \(S_0 \) is a maximal compatible set of \(p \)-equations, no other \(p \)-equation solvable in \(B_0 \) remains solvable in \(B_1 \); furthermore, \(B_1 \) has solutions for every solvable \(p \)-equation of \(S_0 \). \(B_1 \) has the same properties if we replace \(\mathfrak{a}_0 \) by another ideal \(\mathfrak{a}'_0 \) such that \(\mathfrak{a}'_0 \supseteq \mathfrak{a}_0 \) and \(\mathfrak{a}'_0 \cap B_0 = (0) \).

If \(B_1 \) is \(p \)-closed the process is finished; otherwise, we repeat the process with \(S_1 \) in place of \(S_0 \) (we can also remove from \(S_1 \) those \(p \)-equations having solutions in \(B_1 \)) and find a \(B_2 \) which has the solutions of all \(p \)-equations of \(B_1 \), solvable in \(B_2 \). The process may be repeated indefinitely.

If we arrive to a \(p \)-closed ring in a finite number of steps, the embedding of \(B_0 \) in \(B_n \) (the last ring so obtained) is the one desired. If no \(B_i \) is \(p \)-closed, we define \(B_\infty \) as the join (set theoretical) of all \(B_i \) \((i \in \{1, 2, 3, \ldots \})\). It is well known that \(B_\infty \), defined as the join of
a chain of rings is also a ring. Furthermore, if \(p(x) = 0 \) is a solvable \(p \)-equation with coefficients in \(B_{n} \), its coefficients are elements of rings \(B_{m} \), and, since there is only a finite number of them, there is a \(B_{n} \) containing all coefficients. Thus \(p(x) = 0 \) is a solvable \(p \)-equation in \(B_{m} \), and, since it is also solvable in \(B_{m} \), it remains solvable in \(B_{n+1} \), hence it has a solution in \(B_{n+1} \) and therefore in \(B_{m} \). This proves \(B_{m} \) is \(p \)-closed. It is true, then, that:

Theorem 2.5. — Every ring may be embedded in a \(p \)-closed ring.

2.e. — Semi-fields

Definition 2.1. — A ring \(A \) will be said a right- (left-) semi-field if every solvable right- (left-) linear equation has a solution in \(A \).

Definition 2.2. — A ring \(A \) will be said a semi-field if it is simultaneously a right- and left semi-field.

Definition 2.3. — A ring \(A \) will be said an absolute semi-field if every solvable linear equation has a solution in \(A \).

In commutative rings, our three definitions coincide.

Corollary 2.1. — Every ring may be embedded:

a) in a right- (left-) semi-field,

b) in a semifield,

c) in an absolute semi-field.

3. ISOLATERAL LINEAR SYSTEMS AND COMPLETE SEMIFIELDS

Definition 3.1. — A set of unilateral equations will be said isolateral if every equation is a left (or right) one.

The purpose of this section is to establish solvability conditions for isolateral linear systems.

3.a. The common solution of a set of isolateral linear equations.

If \(A \) is an associative ring, we call \(A' \) (resp. \(A'' \)) the \(A \)-left- (resp. \(A \)-right-) module underlying \(A \), and \(A'_+ \) (resp. \(A''_+ \)) the direct sum of 2 \(A \) modules all isomorphic to \(A' \) (resp. \(A'' \)).
The elements of A' (resp. A'') will be called left-vectors (resp. right-vectors); they are the x-tuples $[a_1, a_2, \ldots]$, and their sum is defined by adding the elements which lie in the same place, and the left- (resp. right-) product by an element of A by multiplying on the left (resp. on the right) every element of the x-tuple by the element of A.

Given two elements, $\vec{a}_1 = [a_1, a_2, \ldots] \in A'$, and $\vec{b}_r = [b_1, b_2, \ldots] \in A''$, their inner product is defined by $(\vec{a}_1, \vec{b}_r) = \sum a_i b_i$; if x is infinite, all but a finite number of $a_i b_i$ must be zero, and the summation extended to those non-zero products.

If $\vec{a}_r \in A''$, the set of all $x_r \in A''$ such that $(\vec{a}_r, x_r) = 0$ will be called the right-annihilator of \vec{a}_r and denoted by $0^r_{n_r}$. It is an A right-sub-module of A''.

For right-vectors \vec{b}_r we can define, in a similar fashion, the left-annihilator $0^l_{n_r} \subseteq A'$.

If a system of n equations $a_i x = b_i$ ($1 \leq i \leq n$) is given, we shall call the right-vectors $\vec{a}_r = [a_1, a_2, \ldots, a_n] \in A''$ and $\vec{b}_r = [b_1, b_2, \ldots, b_n]$ its corresponding vectors.

Theorem 3.1. — The necessary and sufficient conditions for a set of n isolateral linear equations $a_i x = b_i$ (resp. $x a_i = b_i$) in a ring with identity element, to admit a common solution, is that $0^l_{n_i} \subseteq 0^r_{n_i}$ (resp. $0^l_{n_i} \subseteq 0^r_{n_i}$) for the corresponding vectors of the system.

The proof is similar to that of theorem 2.1. Here we must consider the ideal generated by the given set of equations in the free extension with one generator (one generator because we wish a common solution).

If the ideal has an infinite basis, since only finite sets have been used in the proof, we can give a more general theorem:

Theorem 3.2. — The necessary and sufficient condition for an arbitrary set of isolateral linear equations $a_i x = b_i$ (resp. $x a_i = b_i$) in a ring with identity element to admit a common solution is that $0^l_{n_i} \subseteq 0^r_{n_i}$ ($0^l_{n_i} \subseteq 0^r_{n_i}$) holds for the corresponding vectors of every finite subset of equations.
3. b. — The equation with several variables. Let \(\sum a_i x_i = b \) (resp. \(\sum x_i a_i = b \)) be an unilateral linear equation with \(m \) variables. We shall establish conditions for solvability in identity-preserving extensions (in general no center preserving ones).

Theorem 3.3. — A necessary and sufficient condition for an unilateral equation \(\sum a_i x_i = b \) (resp. \(\sum x_i a_i = b \)) in a ring with identity element to be solvable is if \(0 \in I \subseteq 0 \subseteq 0 \) (resp. \(0 \subseteq 0 \subseteq 0 \subseteq 0 \)).

Proof. — To study the solvability of the linear equation \(\sum x_i a_i = b \) we must start from the free extension with \(n \) indeterminates \(X_i \) and consider there the ideal \(I = (\sum X_i a_i - b) \), which is the set of all sums.

\[
f(X_1, \ldots, X_n) = \sum p_j(X_1, \ldots, X_n) (\sum X_i a_i - b) q_j(X_1, \ldots, X_m)
\]

If the given equation were not solvable, there would be an element \(f(X_1, \ldots, X_m) \in I \) such that \(f(X_1, \ldots, X_m) \in A \) and \(f(X_1, \ldots, X_m) = 0 \). Hence, there would be elements \(c_{j00} \) in \(p_j \) and \(d_{j00} \) in \(q_j \) such that

\[
\sum_j c_{j00} d_{j00} = 0
\]

If for every \(i \), \(\sum_j c_{j00} X_i a_i d_{j00} = 0 \), then \(\sum_j c_{j00} X_i a_i d_{j00} = c' X_i a_i d' \), and by considerations similar to those of theorem 2.1, \(\sum_j c_{j00} d_{j00} = c' d' \).

Now, \(c' X_i a_i d' \) implies \(c' = 0 \) or \(a_i d' = 0 \) (1 \(\leq i \leq m \)), and in any case it follows \(c' d' = 0 \). Hence, there is at least one index \(i \) for which \(\sum_j c_{j00} X_i a_i d_{j00} = 0 \), and the proof proceeds as in theorem 2.1.

For commutative rings the situation is quite different. Evidently, if we look for general extensions (identity-preserving) we are in a particular case of the previous theorem, but if we want commutative extensions the conditions while being necessary, are no longer sufficient, as the following example shows:

Example: Let \(E_1[X, Y, Z] \) be the polynomial ring over the Boolean field \(E_2 \) and consider the quotient ring \(E_2[X, Y, Z]/(X^2, Y^2, XYZ, XZ^2, YZ^2, Z^2) \). If \(a, b, c \) are the homomorphic images of \(X, Y, \) and \(Z \) respectively, the equation \(ax + by + c = 0 \) satisfies the conditions of the theorem, and is unsolvable, since \((ax + by + c) = c' = 0 \).

We have seen in theorem 2.2 that the conditions of theorem 3.3 are sufficient in commutative rings if \(n = 1 \). We shall now another such case; the case when \(b \) is not a zero-divisor.
THEOREM 3.4. — If b is not a zero-divisor, a necessary and sufficient condition for an equation $\sum_{i=1}^{n} a_i x_i = b$ to admit a commutative solution in a commutative ring with identity element is that $f(0a_i) = (0)$.

We shall prove the theorem by using some results of McCoy [13] which state that a system of homogeneous linear equations has a non-trivial solution if and only if the rank of the matrix (\dagger) is less than the number of unknowns. In the considerations of that paper, it is also established that every non-zero solution annihilates every m by m determinant (\ddagger).

We shall give the proof in a special case, the generalization is immediate but laborious.

Let $ax + by = 0$ be an equation fulfilling the conditions of the theorem, and $p(X, Y)$ a polynomial such that $p(X, Y) \cdot (aX + bY - c) \in \mathbb{A}$. If $p(X, Y)$ is a constant, since pa and pb must be zero, the hypothesis implies that pc is also zero, and so that p is zero. We proceed now by induction on the degree of $p(X, Y)$. Let us suppose that for every $p(X, Y)$ of degree $n - 1$, the fact that the above product is in \mathbb{A} implies that it is zero, and take a polynomial $p(X, Y)$ of degree n such that $p(X, Y) \cdot (aX + bY - c)$ is a constant. Let us call $z_i (0 \leq i \leq n)$ the coefficients of $X^{n-i} Y^i$ in the polynomial. Setting equal to zero the terms of degree $n+1$ of the product we must have $a z_0 = 0$; $b z_{n-1} + a z_i = 0$ ($1 \leq i \leq n$); $b z_n = 0$. Clearly, to prove $p(X, Y) = 0$ it is enough, by the induction hypothesis, to prove that all z_i vanish.

The above conditions form a system of $n+2$ equations with $n+1$ unknowns (the z_i). By McCoy’s results, $z_i (0 \leq i \leq n)$ annihilates all determinants of $n+1^{st}$ degree, which in this case coincide with the totality of products of $n+1^{st}$ degree in a and b.

Since a and b have no common annihilator, the annihilation of all products of degree $n+1$ implies the annihilation of all products of degree n; in its turn this implies the annihilation of all products of degree $n-1$, and so on. One finally gets to the annihilation of

(\dagger) McCoy defines the rank of a matrix with coefficients in a commutative ring R, as follows: The matrix M is said of rank r if the determinants of all square minors of M of order $r+1$ admit a common annihilator in R but not those of order r. M is of rank zero if all elements of M are annihilated by a fixed element of R.

(\ddagger) The usual theorems on expansions of a determinant are valid if the elements lie in an arbitrary commutative ring; see McCoy [15].
products of the first degree, that is of \(a \) and \(b \). Thus all \(z_i \) are annihilators of \(a \) and \(b \), hence they all vanish, as we wanted to prove.

In another particular case, the stated conditions are also sufficient, as is indicated in the following theorem:

Theorem 3.5. — A necessary and sufficient conditions for a linear equation \(\sum a_i x_i = b \) in a commutative principal ideal ring to admit a commutative solution is \(\cap 0_{a_i} \subseteq 0_b \).

Proof: Let \(\sum a_i x_i = b \) be an equation satisfying the conditions of the theorem. We call \(c \) the basis of the ideal generated by all \(a_i \). We wish to prove now that \(0_c = \cap 0_{a_i} \). Since \((c) = (a_i) \), we must have: \(c = \sum a_i d_i, a_i = c e_i \). Thus any \(x \) annihilating all \(a_i \)'s annihilates \(c \) and conversely, and our assertion is proved.

Now the conditions of the theorem say that \(0_c = 0_b \), so that, \(c y = b \) is a solvable equation (with commutative solution). Replacing \(c \) by \(\sum a_i d_i \), the theorem is proved.

No other particular case will be studied here, instead we turn our attention to the search of necessary and sufficient conditions. The leading idea is the embedding of an arbitrary commutative ring into another for which the stated conditions are sufficient (see section 3.3).

Lemma 3.1. — Let \(\{a_i\} \) be a set of elements of a commutative ring \(A \); if an element \(b \) does not belong to the ideal generated by the \(a_i \)'s, then \(b X \) does not belong to the ideal generated by the \(a_i X \)'s in the (classical) polynomial ring \(A[X] \) \((*) \).

Proof. If \(b X = \sum a_i X \cdot p_i(X) \), the terms of degree higher than one cancel mutually, and \(b X = \sum a_i X \cdot c_i = (\sum a_i c_i) X \). Consequently, \(b = \sum a_i c_i \), that is \(b \in (a_i) \).

Lemma 3.2. — If in a commutative ring \(A \) with identity element \(b \) is not in the ideal generated by a set \(\{a_i\} \), there is an extension of \(A \) in which there exists an element \(c \) such that \(cb = 0 \) and \(ca_i = 0 \) for every \(i \).

Proof. — We take the residue-class ring of the polynomial ring modulo the ideal generated by the set \(\{a_i X\} \) as the extension of \(A \). If we call \(c \) the image of \(X \) in this homomorphism, then by lemma 3.1, \(c \) satisfies all required conditions.

The converses of lemmas 3.1 and 3.2 are trivial.

\((*) \) See remark at the end of this section.
We have now another method to embed a ring into a semi-field, namely, by introducing annihilator elements such that, for every b which is not in (a), there is at least one x with $ax = 0$ and $bx = 0$.

By example, starting from the integers and using the method of section 2, we can arrive to the rationals, and using this method we arrive to the direct sum of E_p (we know that the ring of integers is a subdirect sum of an infinite number of E_p, p prime). Both methods give us semi-fields, but in the first one a maximal set of solvable equations is also solvable and has solution, and with the second, the equations which remain solvable are only those which had solution in the first ring.

3.c. — Isolateral linear systems with a finite number of unknowns.
We shall use here the terminology of 3.a.

If $a_i = |a_i|$ is a set of left vectors in A', its right annihilator is the set of all $x_i A'$ such that $(a_i, x_i) = 0$ for every i. This right-annihilator will be denoted by 0_i^r. Clearly, $0_i^r = 0 0_i^r$.

Given a system of n equations $\sum_{i=1}^{n} a_i x_i = b_i$ ($1 \leq i \leq n$), we shall call the right-vectors

$$ a_r = [a_{1j}, a_{2j}, \ldots, a_{nj}] (1 \leq j \leq m) \text{ and } \{b_r\} = [b_1, b_2, \ldots, b_n] $$

its corresponding sets of vectors.

Then, following similar lines as in the proofs of theorems 2.1, 3.1, and 3.3, we can show:

Theorem 3.6. — A necessary and sufficient conditions for a system of n isolateral linear right- (left-) equations with m unknowns, to be solvable in a ring with identity is that $0_i^r \subseteq 0_i^l$ ($0_i^r \subseteq 0_i^l$) for the corresponding sets of vectors of the system.

Theorem 3.7. — A necessary and sufficient condition for an infinite system of isolateral linear right- (left-) equations with m unknowns, to be solvable is that $0_i^r \subseteq 0_i^l$ ($0_i^r \subseteq 0_i^l$) for the corresponding sets of vectors of every finite subsystem.

3.d. — Homomorphisms and algebraic closure. Let I be a left-ideal in a ring (with identity) A (that is, an A-left-module) and σ an A-left-homomorphism of I into A, then $I_\sigma = \sigma(I)$ is also a left-ideal in A. If $\{a_i\}$ is a basis for I, then $\{\sigma(a_i)\}$ is a basis for I_σ.
For every finite set \(\{y_i\} \) with \(\sum y_i a_i = 0 \), it follows \(\sum y_i \sigma(a_i) = 0 \); therefore, the (non-necessarily finite) isolateral linear system \(a_\sigma x = \sigma(a_i) \) is solvable, (th. 3.2). Conversely, if an isolateral linear system \(a_\sigma x = b_i \) is solvable, then \(A \) can be embedded into another ring having an element \(\theta \) which satisfies \(a_i \theta = b_i \) for every \(i \), and the mapping \(c \rightarrow c \theta \) is an \(A \)-left-homomorphism of \(I \) (the left-ideal generated by the set \(\{a_i\} \) in \(A \)) onto the left-ideal generated by the set \(\{b_i\} \).

Hence, we have:

Lemma 3.3. — A left-ideal \(I_0 \) is an \(A \)-left-homomorphic image of a left-ideal \(I \) (in a ring \(A \) with identity) if and only if for an arbitrary basis \(\{a_i\} \) for \(I \) and a conveniently chosen basis \(\{b_i\} \) for \(I_0 \) the system \(a_\sigma x = b_i \) is solvable.

Let us call, as in 3.a, \(A' \) and \(A'' \), respectively, the \(A \)-left-module and the \(A \)-right-module underlying \(A \) and \(A' \) (resp. \(A'' \)) the direct sum of \(A \)-left-modules all isomorphic to \(A' \) (resp. \(A'' \)), that is, the set of all \(\alpha \)-tuples \([a_1, a_2, \ldots, a_n] \) with \(a_i \in A' \) (resp. \(A'' \)).

By similar considerations one can prove:

Lemma 3.4. — A left-ideal \(I \) is an \(A \)-left-homomorphic image of an \(A \)-left-submodule \(M_0 \subseteq A' \) if and only if for an arbitrary basis \(\{a_{i1}, a_{i2}, \ldots, a_{in}\} \) for \(M_0 \) and a conveniently chosen basis \(\{b_i\} \) for \(I \), the system \(\sum_j a_{ij} x_j = b_i \) is solvable.

If \([a_1, a_2, \ldots, a_n] \in A' \) and \([c_1, c_2, \ldots, c_n] \in A'' \), we have called \(\sum a_i c_i \in A \) their inner product.

To say that the linear system \(\sum_{i=1}^n a_i x_i = b (i \in A) \) has a solution in \(A \), is equivalent to say that the homomorphism \(\sigma \) defined by \(\sigma([a_1, a_2, \ldots, a_n]) = b_i (i \in A) \) may be carried out by an inner product. In particular, if \(n = 1 \), the existence of a solution for the system \(a_\sigma x = b_i \) is equivalent to the fact that the homomorphism \(\sigma \) defined by \(\sigma(a_i) = b_i \) may be carried out by a right-multiplication. In both cases the homomorphisms must be seen as \(A \)-left-homomorphisms of the \(A \)-left-submodules of \(A' \) and \(A' \), respectively, generated by the sets of left-vectors just indicated.

Let \(M = [a_1, a_2, \ldots, a_n, \ldots] \) be a left-submodule of \(A' \); its right-annihilator is the submodule \(0_{\text{r}} \subseteq A'' \), defined in 3.c; the left annihilator of \(0_{\text{r}} \) will be called, according to M. Hall [11], the closure of \(M \), and will be denoted by \(\overline{M} \).
In view of theorems 2.1, 3.1 and 3.2, we have:

Theorem 3.8. — Every solvable right-linear system \(\sum_{j=1}^{m} a_{ij} x_j = b \) (1 \(\leq j \leq m \)) of (at most) \(\alpha \) equations with \(k \) unknowns has a solution in a ring (with identity) \(A \) if and only if every right-submodule of \(\Lambda''_k \) generated by (at most) \(\alpha \) vectors is closed.

If \(M_n \) is the \(A \)-left-submodule of \(A''_n \) generated by the set \([a_{i1}, \ldots, a_{in}] | (i \in A)\), we shall call the \(A \)-right-submodule \(M'_n \subseteq A''_n \) (when \(\alpha \) is the cardinal number of \(A \)) generated by the set \([a_{i1}, a_{i2}, \ldots, a_{in}, \ldots] | (1 \leq j \leq n) \) its reciprocal submodule.

Lemma 3.4 and theorem 3.8 give us a generalization of a result of Ikeda and Nakayama [12] as follows:

Corollary 3.1 — Every \(A \)-left-homomorphism of an \(A \)-left-submodule \(M_n \subseteq A''_n \) into \(A \) may be carried out by an inner product if and only if the reciprocal submodule is closed.

Definition 3.2. — A ring \(A \) will be called a right- (left-) complete semi-field if every solvable right- (left-) linear system of equations with only one unknown has a solution in \(A \); \(A \) will be called a complete semi-field if it is a right- and a left-complete semi-field.

By the results of Ikeda and Nakayama ([12], p. 16, th. 1 iii)) and corollary 3.1, the conditions of def. 3.2. imply the existence of solutions of solvable linear right-equations with an arbitrary (finite) number of unknowns. Recent results [25] show that this is true also for (finite or infinite) right-linear systems.

We can now state the following results, immediate consequences of the previous ones:

Corollary 3.2. — A ring \(A \) with identity element is a right-semi-field if and only if every principal left-ideal is closed.

Corollary 3.3. — A ring \(A \) with identity-element is a complete right-semi-field if and only if every cyclic left-submodule of \(A''_n \), is closed for every \(\alpha \).

The method presented in section 2.d does not ensure the possibility of embedding any ring into a complete semi-field. Under weaker conditions, such as that any finite solvable system of unilateral linear equations have a solution, this may however be possible [20].

\(^{10}\) The assertion, in [24], that every ring may be embedded into a complete semi-field, is not proved.
3.e. — **Invariant ideals.** The fundamental idea is that of invariance relative to an extension, as was given by M. Cotlar [6, p. 129] for some special sets in lattice theory. We shall give now an ideal-theoretical definition:

Definition 3.3. — If a ring B is an extension of a ring A, an ideal in A, we shall say I is invariant relative to B if the intersection of A with the ideal I' generated by the elements of I is B, is precisely I.

We shall give now some results for the (classical) polynomial extension of a ring:

Theorem 3.9. — In a ring A with identity, every two-sided ideal is invariant relative to the polynomial ring.

If I is the ideal generated by the elements of I in the polynomial ring, it is evident that $I \cup A \supseteq I$.

We now prove the reverse inclusion. Let $I = (a_i)$, then $I^r = (a_i)^r = \sum (\sum_i p_i a_i q_i)$ with $p_i = \sum q_i x_i$, $q_i = \sum d_{ij} x_j$, but $\sum (\sum_i p_i a_i q_i) = b$, hence $b \in (a_i)$, and $(a_i)^r \cap A = (a_i)$.

The reasoning applies also to an infinite basis because only a finite number of a_is appear in each expression.

Corollary 3.4. — The lattice of all two-sided ideals of a polynomial ring (with coefficients in a ring A) contains a sublattice isomorphic to the lattice of all two-sided ideals of A.

Theorem 3.9 and corollary hold also for one-sided ideals.

If $0_a'$ is the annihilator in the polynomial ring of a constant a, and $(0_a)^r$ is the ideal generated in $A[X]$ by the annihilator 0_a of a in A, then:

Theorem 3.10. — $0_a' = (0_a)^r$, in the polynomial ring of a commutative ring A with identity.

Proof: 1) If $0_a = (b_i)$, every $p \in (0_a)_x$ has the form $p = \sum b_i p_i$, $p_i \in A[X]$. Then $pa = \sum b_i p_i a_i = 0$, and $p \in 0_a'$. This shows that $(0_a)^r \subseteq 0_a'$.

2) Let $p \in 0_a'$, then $p = \sum c_i x_i$, hence $ap = 0$ implies $ac_i = 0$ for every i. Therefore $c_i 0_a \subseteq A$, and $p \in (0_a)^r$. Thus $0_a'^r \subseteq (0_a)^r$, and the proof is completed.

Theorem 3.11. — If a right-ideal I in A is closed, so is the ideal I^r generated by 1 in the free extension of A.

Proof. — Let \(I \) be a right-ideal in \(A \), and suppose it is closed. The right-ideal generated by \(I \) is \(I^* = \{ \sum a_ip_i \mid (a_i \in I) \} \) where the \(p_i \) are in the free extension. A polynomial annihilates \(I^* \) if and only if it has the form \(\sum q_ib_i \) with \(b_i \in \bar{I} \subseteq A \) (left-annihilators). Further, an element of the free extension annihilates them on the right if it can be expressed as \(\sum c_ig_i \) with \(c_i \in \bar{I} \subseteq A \). Since \(I = \bar{I} \), then, \(c_i \in I \), \(\sum c_ig_i \in I^* \), or \(I_x = I_x \), and \(I \) is closed.

Definition 3.4. — We shall say an ideal \(I \) is invariant if it is invariant relatively to every extension of \(A \).

We can study the relations between invariance and closure.

Let \(I \) be a right-ideal in \(A \). If an element \(b \in A \) is in the right-ideal generated by \(I \) in some extension \(B \) of \(A \), then there exists a set of elements of \(I \), say \(\{a_i\} \), such that \(b = \sum a_iq_i \), with \(q_i \in B \); hence, by the previous considerations, \(b \) is in the closure of \(\{a_i\} \). Conversely, if \(b \) is in the closure of a finite set \(\{a_i\} \), there is an extension \(B \) of \(A \) in which there exists a set of solutions for the equation \(\sum a_i\xi_i = b \), and \(b \) is in the ideal generated by \(\{\{a_i\}\} \) in \(B \).

This proves the following:

Theorem 3.12. — A necessary and sufficient condition for a given right- (left-) ideal \(I \) to be invariant in \(A \) is that \(I \) contain the closure of all its finite subsets.

Evidently, if \(I \) has finite basis, this is equivalent to say that \(I \) must be closed.

We can now assert:

Corollary 3.5. — In a complete right- (left-) semifield, every right- (left-) ideal is invariant.

Remark. — The following statement, analogous to that of lemma 3.1, generalizes it to the non-commutative case, so that all assertions and considerations there derived are also valid here.

Lemma 3.5. — In any associative ring \(A \), if an element \(b \) does not belong to the right- (left-) ideal generated by a finite set of elements \(\{a_i\} \), then \(Xb \) (resp. \(bX \)) does not belong to the two-sided ideal generated by the set \(\{Xa_i\} \) (resp. \(\{a_iX\} \)) in the free extension \(\Gamma (A) \) with one generator \(X \).
PROOF. — Let us prove it by contradiction, and assume that $Xb \notin \langle \{a_iX\} \rangle$. Then Xb has the form

$$Xb = \sum_{i,j} p_{ij}(X) \cdot (Xa_i) \cdot q_{ji}(X),$$

all terms of degree higher than one cancelling mutually on the right, so

$$Xb = \sum_{i,j} p_{ij}Xa_i a_j.$$

This says that the sum on the right can be reduced to a single term. In any case, the coefficients on the right of X belong to the right ideal generated by the set $\{a_i\}$, thus $b \in \langle \{a_i\} \rangle$, contradicting the hypothesis.

4. GENERAL EQUATIONS IN COMMUTATIVE RINGS

This section will be devoted to the study of commutative extensions (also identity-preserving) of commutative rings. Generalizations not requiring commutativity will be developed in a later paper.

4.4. Polynomials of minimal degree. We shall say that an ideal I is solvable in the polynomial ring $A[X]$ if it satisfies the condition $I \cap A = \{0\}$. It is evident that, if $p(X)$ is in I, then $p(X) = 0$ is a solvable equation that is,

$$(p(X)) \cap A = \{0\}.$$

Since the polynomials of an ideal have a positive degree (this ideal need not be solvable), that is since the degree of all polynomials of I are natural integers, there must be in I at least one polynomial whose degree is minimal in this set. This will be called a polynomial of minimal degree in I (briefly, a m-d-polynomial).

Theorem 4.1. — If $f(X) = \sum_{i} a_i X^i$ is a m-d-polynomial in an ideal I, then $0_{a_n} \leq 0_{a_i}$ for every i.

Proof. — Let c be an element such that $ca_n = 0$ (0 is one such c). Hence, $cf(X)$ has a degree lower that $f(X)$ and is in I. Thus, $f(X)$ being a m-d-polynomial, $cf(X) = 0$, and $ca_i = 0$ for every i.

This condition, which is necessary, is not sufficient, as the following example shows: The ideal $(X-a)$ contains the polynomial
$X^2 - 2ax + a^2$, which satisfies evidently the conditions of theorem 4.1, but is not an m-d-polynomial in I.

But the sufficiency is restricted to the following case:

Theorem 4.2. — If $0_{n_i} \leq 0_{n_i}$ for every i, then $f(X) = \sum a_iX^i$ is a m-d-polynomial in $f(X)$.

Proof. — The ideal $(f(X))$ is the set of all $f(X)p(X)$ for every $p(X)$ in $A[X]$. Let us suppose that a product $f(X)p(X)$ is of lower degree than $f(X)$ Then, if $p(X) = \sum b_jX^j$, $a_i b_m = 0$, and by hypothesis $a_i b_m = 0$. Then the leading term of $f(X)p(X)$ would be $a_n b_{m-1} X^{n+m-1}$, and by similar considerations $a_n b_{m-1} = 0$, implying $a_i b_{m-1} = 0$ for every i, and so on. Therefore, $f(X)p(X) = 0$ and $f(X)$ is a minimal degree polynomial in $(f(X))$.

Following the usual definitions, we shall call the leading coefficient the coefficient of the term of maximal degree in a polynomial, and a polynomial monic if its leading coefficient is the identity 1.

Since the conditions of theorem 4.1 are necessary and sufficient for the solvability of the equations $a_i = a_n x_i$, in a semifield we can find element d_i such that $a_i = a_n d_i$; then, the $f(X)$ above, can be written as $f(X) = \sum a_i d_i X^i$, with $d_n = 1$. Hence, $f(X) = a_n \sum d_i X^i = a_n m(X)$, where $m(X)$ represents a monic polynomial, and we have proved:

Corollary 4.1. — In a semi-field, every m-d-polynomial is the product of a monic polynomial by a constant.

There can be more than one m-d-polynomial in an ideal, all them multiple of monic ones. Yet, for complete semi-fields it is true that

Corollary 4.2. — In a complete semi-field, all m-d-polynomials of an ideal I in its polynomial ring, are multiples of a single monic polynomial.

Proof. If $p_i(X) = \sum a_i X^i$ are the m-d-polynomials of I, then, every finite linear combination $\sum c_i p_i(X) \in I$ is either of the same degree or it is zero. If $\sum c_i a_{ni} = 0$, then $\sum c_i p_i(X)$ being of lower degree than n, it is zero, hence $\sum c_i a_{ji} = 0$ for every j. This is the necessary and sufficient condition, in a complete semi-field, for the linear systems $a_j = x_j a_{ni}$, to have a common solution, that is, for the existence of a set of d_j such that $a_j = d_j a_{ni}$ for every i. Clearly, this is equivalent to our assertion.
For every polynomial ring (over a commutative ring but not necessarily a semi-field) the following theorem is valid:

Theorem 4.3. — If a m-d-polynomial \(f(X) \) of an ideal \(I \) is monic,
\(I = (f(X)) \).

We must prove here that every element of \(I \) is a multiple of \(f(X) \). Since the leading coefficient of this m-d-polynomial is the identity, the division algorithm can be applied, and the remainder, having degree lower than \(f(X) \), must be zero.

The theorem is also true if the leading coefficient of the m-d-polynomial has an inverse (see a.e., Albert [1], p. 24), but in this case, no generalization is introduced, because by multiplying by such an inverse one obtains a monic polynomial of the same degree.

The principal ideal generated by a monic polynomial will be called a monic ideal.

Since in a complete semi-field, all m-d-polynomials of an ideal are multiples of a (single) monic polynomial of the same degree (hence, if the ideal is solvable the monic polynomial is different from the identity \(I \)) we might think that every equation could be studied in an extension \(A[\bar{X}] / (m(\bar{X})) \) for a convenient monic \(m(\bar{X}) \), in other terms, that the monic divisor of all the m-d-polynomials of \(I \) generates an ideal \((m(\bar{X})) \) which contains \(I \). But this is not true, as we can see in the following example:

Example: An equation having no monic divisors different from the identity: Let \(A \) be a Boolean ring (which is a complete semi-field) with more than two elements and identity, and \(a \) an element such that \(a \neq 0, a \neq 1 \). Consider the equation \(ax^2 + x + 1 = 0 \); we shall see that it is solvable.

Proof: Let \(g(X) = \sum_{i=0}^{n} b_i X^i \) be a polynomial such that \(f(X) g(X) \in A \), with \(f(X) = aX^2 + X + 1 \). From the se conditions follows: \(ab_n = 0 \), \(ab_{n-1} + b_n = 0 \), \(ab_{i+2} + b_{i+1} + b_i = 0 \) \((n \geq i \geq 2) \), \(b_0 + b_1 = 0 \). From the second equation we have: \(a(ab_{n-1} + b_n) = ab_{n-1} + ab_n = 0 \), and from the first \(ab_{n-1} = 0 \), hence \(b_n = 0 \). By the same reasoning all \(b_i (i \geq 1) \) are zero, and by the last condition \(b_0 = 0 \), hence \(g(X) = 0 \) and \(f(X) g(X) = 0 \), that is, \((f(X)) \cap A = \{0\} \) and the equation is solvable. We can see at the same time that \(f(X) g(X) \) is of lower degree than \(f(X) \) if and only if \(g(X) \) is a constant polynomial \(b \) with \(ab = 0 \), then \(b \cdot f(X) = bX + b \). In a Boolean ring, \(ab = 0 \)
implies that \(b \) is a multiple of \(1 - a \). The \(bX + b \) are precisely the m-d-polynomials of \((f(X)) \). All these polynomials are divisible by \(X + 1 + c \) with \(bc = 0 \) for every \(b \). Since the set of the \(b \)'s contains \(1 - a \) and every \(b \) is a multiple of \(1 - a \) the conditions \(bc = 0 \) for every \(b \) amounts to \(c(1 - a) = 0 \), that is, to \(ca = c \). If \(f(X) \) has a monic divisor, the divisor must be also a divisor of every m-d-polynomial of \((f(X)) \), hence it must be one of the \(X + 1 + c \) just obtained. By the division algorithm, \(ax^2 + X + 1 / X + 1 + c \) is uniquely determined for each \(d \), and, as it is easily seen, its remainder is always equal to \(a \). This proves that \(f(X) \) has no monic divisors, hence that \((f(X)) \) is not contained in any (solvable) monic ideal, and, a fortiori, that no ideal containing \(f(X) \) is contained in a monic ideal.

4. b. Algebraic simple extensions of semi-fields. If \(B \) is a simple extension of a semi-field \(A \), we shall say that \(B \) is a monic extension if there is a monic ideal \(I \) such that \(B = A[X]/I \).

If \(B \) is a simple extension of a semi-field \(A \), \(B \) is isomorphic to a homomorphic image of the polynomial ring \(A[X] \), modulo some ideal \(I \). If \(I = (0) \) the extension is transcendental, and if \(I \neq (0) \), \(B \) is an algebraic extension of \(A \). Considering only the polynomials appearing in \(I \), we have proved that every m-d-polynomial is a multiple of (at least) one monic polynomial, which is not necessarily an element of \(I \).

We can consider \(B \) as an \(A \)-module, and, if the m-d-polynomials of \(I \) are of degree \(n \), we can choose a set of \(n \) linearly independent elements of \(B \) such that the set of these, together with some other element of \(B \), is always dependent.

If \(p = \sum a_iX^i \) is a such m-d-polynomial in \(I \), we will have (writing \(a \) for \(a_i \)) \(p = ap' = a(X^n + \sum c_iX^i) \), where \(ac = a_i \). For every polynomial in \(A[X] \), we write: \(q(X) = p'(X)s(X) + r(X) \), where \(r(X) \) has smaller degree than \(n \).

The set \(\{1, X, X^2, \ldots, X^{n-1}\} \) has no linear combination in \(I \), for otherwise, \(I \) would have a polynomial of lower degree than \(n \); hence, their images in \(B \) are linearly independent.

Let \(q \) be an element of \(B \), that is, the image of some \(q(X) \) in the polynomial ring. We can write then \(aq(X) = ap'(X)s(X) + ar(X) \). But \(ar(X) \) is a linear combination of the set \(\{X^i \mid 0 \leq i \leq n - 1 \} \), and, since \(ap'(X) = p(X) \in I \), we have in \(B \): \(aq = \sum d_iX^i \) (the \(X^i \) in \(B \) representing the images of the \(X^i \) in \(A[X] \)). We have proved our assertion.
If B is a monic extension of A, then $a = 1$, and every element of B is a linear combination of X's. Furthermore, since the remainder in the division algorithm is unique, this representation is unique. In this case, B is a vector space over A.

We have seen in section 1, that there may be transcendental elements in an algebraic extension of a ring. We wish to prove now that this is not true for semi-fields, that is, that in a simple algebraic extension of a semi-field every element is algebraic.

Theorem 4.4. — Every element of a simple algebraic extension B of a semi-field A is algebraic over A.

Proof. Let A be a semi-field, $A(\theta)$ a simple extension isomorphic with $A[X]/I$ (I a proper ideal in $A[X]$), n the degree of an m-d-polynomial in I, and a the leading coefficient of such polynomial. Hence, we may express the powers of $A(\theta)$ linearly in terms of the θ^i's:

$$ \theta^i = a \left(\sum_{j=0}^{n-1} b_j \theta^j \right), \quad 1 \leq i \leq n, \quad (1) $$

Let Δ be the determinant $|b_{ij}| (1 \leq i \leq n - 1; 1 \leq j \leq n - 1)$ and Δ_{ij} the cofactor of b_{ij} in Δ. Then, multiplying the $n - 1$ first expressions (1) by Δ_{ij} (with j fixed), and adding:

$$ a \sum_{i=0}^{n-1} \Delta_{ij} \theta^i = a \Delta \theta^j + a \sum_{i=0}^{n-1} \Delta_{ij} b_{ij} (1 \leq j \leq n - 1). \quad (2) $$

If we multiply the n^{th} identity in (1) by Δ and replace the $\Delta \theta^j$ by their expression obtained from (2), we get:

$$ a \sum_{i=0}^{n-1} \Delta_{ij} \theta^i = a \Delta b_{n0} - a \sum_{i=0}^{n-1} \Delta_{ij} b_{ij0}, \quad (3) $$

in which no power of θ appears. If $a\Delta \neq 0$, then (3) is an equation of degree n satisfied by θ, hence θ is algebraic over A. If $a\Delta = 0$, (2) gives us a set of equations of degree lower than n satisfied by θ, unless all $a\Delta_{ij}$ are zero.

The Δ_{ij} are, then, determinants of order $n - 2$ obtained from the $n - 1$ first expressions (1) by neglecting the column b_{n0}.

We consider now the determinants of order $n - 2$ of the first $n - 2$ equations (1) obtained by omitting one arbitrary column (besides the constants). Let Δ_1 and Δ_2 be two such determinants, and let $b_{i(1)}$ be the elements appearing in Δ_1 and not in Δ_2, and, conversely, $b_{i(2)}$ those appearing in Δ_2 but not in Δ_1. The cofactors (now called Δ_{i2})
of \(b_{1(0)} \) in \(\Delta_1 \) are, up to the sign, respectively equal to the cofactors of \(b_{1(2)} \) in \(\Delta_2 \).

Multiplying each of the first \(n-2 \) expressions (1) by \(\Delta_i \) and adding we have:

\[
a \sum_{i=1}^{n-2} \Delta_i \alpha^i = a \sum_{i=1}^{n-2} \Delta_i b_{i2},
\]

since \(\Delta_1 \) and \(\Delta_2 \) are zero by our previous hypothesis.

But here, since we have imposed no restriction on the selection of the columns of \(b_{1(2)} \) and \(b_{1(0)} \), (4) gives us a set of equations of degree lower than \(n-1 \) satisfied by \(\alpha \), unless every determinant of order \(n-3 \) obtained from the \(n-2 \) first equations (1), is orthogonal to \(a \).

In this case, we consider the first \(n-3 \) equations of (1) and repeat the operation. If we have some \(\Delta' \) such that \(a \Delta' \neq 0 \), then there is an equation in \(A \) solved by \(\alpha \). Otherwise, our process continues until to arrive to an equation solved by \(\alpha \), or until all the determinants are of order 1. In the latter case the determinants are the coefficients of the first equation (1), hence \(a \alpha = 0 \), and \(\alpha \) always satisfies an \(A \) equation. The theorem is proved.

Since this theorem is true for simple extensions, a new problem appears: Which are necessary and sufficient conditions for a simple extension of a semi-field to be also a semi-field?

It is known, under which conditions an extension of a field is a field. It is however easy to prove that every simple extension of a field is a semi-field. It is a particular case of the following theorem.

Theorem 4.5. — If \(B \) is a monic simple extension of a complete semi-field, then \(B \) is also a complete semi-field.

If \(B \) is a monic extension of a complete semi-field \(A \), \(\theta \) the image of \(X \) in the homomorphism \(A[X] \to A\langle X \rangle/I = B \), and \(\sum_{i=0}^{n} x_i X^i \) the monic (\(m_n = 1 \)) basis of \(I \), then, in \(B \):

\[
\theta^n = \sum_{k=0}^{n-1} H_k^0 \theta_k \text{ with } H_k^0 = -m_k
\]

(1)

By our previous considerations, every element of \(B \) is a linear combination of \(\theta^j \)s (\(0 \leq j \leq n-1 \)), with coefficients in \(A \). In particular, for \(\theta^{n+1} \) we have the following recurrence formula:

\[
\theta^{n+1} = \sum_{k=0}^{n-1} H_k^1 \theta_k \text{ with } H_k^1 = H_{k-1}^1 + H_{n-1}^1 H_k^0
\]
To prove it by induction, notice that if
\[\theta^{n+i-1} = \sum_{i=0}^{n-1} H_k^{i-1} \theta^i, \]
then
\[\theta^{n+i} = (\sum_{k=0}^{n-1} H_k^{i-1} \theta^i) \theta = H_{n-1}^{i-1} \theta^n + \sum_{k=0}^{n-1} H_k^{i-1} \theta^i, \]
where \(H_k^{i-1} = 0 \) if \(k = 0 \); now, replacing \(\theta^n \) by its expression (1), one has
\[\theta^{n+i} = \sum_{i=0}^{n-1} (H_{k-1}^{i-1} + H_{k-1}^{i-1} H_k) \theta^i, \]
as we wanted to prove.

We shall now show how to express the product of two arbitrary elements of \(B \) as a linear combination of the \(\theta^i \)'s.

Let \(\pi = \sum_{t=0}^{n-1} p_t \theta^t \) and \(\rho = \sum_{t=0}^{n-1} r_t \theta^t \) be two arbitrary elements in \(B \), then
\[\pi \rho = \sum_{j=0}^{2n-2} (\sum_{t+j-i} p_t r_s) \theta^j \]
and replacing the \(\theta^i \)'s \((n \leq j \leq 2n - 2) \) by their expressions in terms of the \(H_k^i \)'s, we arrive to:
\[\pi \rho = \sum_{k=0}^{n-1} \theta^k \left[\sum_{t=0}^{k} p_t r_{t-k} + \sum_{t=0}^{n-1} r_{t-k+1} (H_k^{t-k} \theta^t) \right], \]
or
\[\pi \rho = \sum_{k=0}^{n-1} \theta^k \left[\sum_{t=0}^{k} p_t r_{t-k} + \sum_{t=0}^{n-1} r_{t-k+1} (H_k^{t-k} \theta^t) + \sum_{t=0}^{n-1} r_{t-k+1} (H_k^{t-k} \theta^t) \right]. \]

Remembering that, in general, \(n = \sum_{k=0}^{n-1} r_k \theta^k = 0 \) implies \(r_k = 0 \) for every \(k \), we can assert that, if \(\xi = \sum_{k=0}^{n-1} a_k \theta^k \) and \(\gamma = \sum_{k=0}^{n-1} c_k \theta^k \), then \(\gamma \xi = 0 \) if and only if
\[0 = c_0 a_k + \sum_{t=1}^{k-1} c_t (a_{k-t} + \sum_{t=1}^{n-1} H_k^{t-1} \theta^t) + \sum_{t=k+1}^{n-1} c_t (\sum_{i=0}^{t-1} H_k^{i-1} a_{n+i-t}) \tag{2} \]
for every \(k \) \((0 \leq k \leq n - 1) \).

To prove the theorem it is sufficient to show that \(B \) is a semi-field. A slight generalization of the proof shows that it is also a complete semi-field.

If \(\xi \beta = 0 \) is a solvable equation, then, for every \(\gamma \), \(\gamma \xi = 0 \) implies \(\gamma \beta = 0 \); hence conditions (2) imply similar conditions with the \(b_r \)'s in place of the \(a_r \)'s.

In particular, the \((n-1)\)'th expression (2) becomes:
\[c_0 b_{n-1} + \sum_{t=1}^{n-1} c_t (b_{n-1-t} + \sum_{t=1}^{n-1} H_{n-1}^{t-1} b_{n+t-t}) = 0. \tag{3} \]
Let C_i^k be the coefficient of c_i in the k^{th} expression (2) and C_i^b the coefficient of c_i in (3). Then the solvability of $\alpha x = \beta$ is equivalent to the solvability of the set

$$C_i^b = \sum_{k=0}^{n-1} C_i^k a_k^{(b)},$$

which, if solvable, must have a common system of solutions X_k, that is,

$$C_i^b = \sum_{k=0}^{n-1} C_i^k x_k.$$

We shall now construct a solution for our original solvable equation $\alpha x = \beta$.

If $\xi = \sum_{k=0}^{n-1} d_k \theta^k$ is such a solution, its coefficients d_k must solve the set

$$a_0 d_0 + \sum_{t=1}^{n-1} \left(a_{n-t} + \sum_{i=0}^{n-1} H_i a_{n+i-t} \right) d_t + \sum_{t=k+1}^{n-1} \left(\sum_{i=0}^{n-1} H_i a_{n+i-t} \right) d_t = b_k.$$

Thus, taking

$$d_{n-1} = X_0 \text{ and } d_{n-t-1} = X_t - \sum_{i=0}^{t-1} H_i a_{n+i-t},$$

ξ is the solution.

The following counter-example shows that there are simple extensions of a complete semi-field which are not semi-fields.

Let A be a Boolean ring with four elements: 0, a, $b = a + 1$, 1, and B the simple extension $B = A[X]/(aX^2 - aX)$. For the element $m(\theta) = \theta^2 + \theta$, and any $q(X) = \sum_{i=0}^{n} c_i X^i$.

$m(X), q(X) = c_0 X^{n+2} + \sum_{i=0}^{n} (c_{i-1} + c_i) X^{i+1}$ belongs to $(aX^2 - aX)$ if $c_n = a$, and, if all c_i are equal to zero or to a, so that, $q(X) \in (a)$ and $q(\theta) \in (a)$ in B. Conversely, for every $r(\theta) \in (a) \subseteq B$, $r(X) \in (a) \subseteq A[X]$, and $m(X) r(X) \in (aX^2 - aX)$. Hence $m(\theta) r(\theta) = 0$, that is, $0_m(\theta) = (a)$.

Now, for the element $b \in B$, we have: $b q(X) \in (aX^2 - aX)$ implies $b \cdot q(X) \in (a)$, and, since $b = a + 1$, $q(X) \in (a)$. Conversely, for $r(X) \in (a)$, since $ab = 0$, $b \cdot r(X) = 0 \epsilon (aX^2 - aX)$, and $b_a = (a)$.

Hence, $m(\theta) \cdot x = b$ is a solvable equation in B. Moreover for every $s(\theta)$ in B we have in $A[X]: s(X) = \sum_{i=0}^{n} s_i X^i$ and

$$m(X), s(X) = \sum_{i=0}^{n} s_i (X^2 + X), \text{ implying } (m(X), aX^2 - aX) \cap A = (0).$$
Hence, no multiple of \(m(0) \) is different from zero in \(A \), that is \(m(0), x=b \) has no solution in \(B \), and \(B \) is not a semi-field.

Added in proof. It can be shown that in unrestricted or identity preserving extensions (types \(a \)) and \(b \), section 1b any family of right (left) solvable equations is compatible. Yet, the problem remains of finding out if this is true for commutative extensions for which the theorem of Ricabarra is still valid.

REFERENCES

Instituto de Matemática
Departamento de Investigaciones Científicas
Universidad Nacional de Cuyo, Mendoza.
ESTE FACÍCULO
SE TERMINÓ DE IMPRIMIR EL 31 DE OCTUBRE DE 1955
EN LA IMPRENTA Y CASA EDITORA «CÔNI»
CALLE PRÚ 684, BUENOS AIRES
CONTENIDO

ORLANDO E. VILLAMAYOR, On the theory of unilaterial equations in associative rings.