Competencia Matemática Ernesto Paenza

 19^0 REALIZACIÓN — 26 DE AGOSTO DE 2004 Participante N^0 :

- 1 Sea n un entero positivo.
 - i) ¿De cuántas maneras se puede escribir n como suma de números enteros consecutivos?

Ejemplo: sin = 3, las maneras son cuatro: 3, 1+2, 0+1+2, (-2)+(-1)+0+1+2+3.

- ii) ¿De cuántas maneras se puede escribir n como suma de números enteros positivos consecutivos?
- 2 Para cada $k \in \mathbb{N}$, consideremos el polinomio $f_k = \prod_{i=0}^{k-1} (x-i)$. Se definen los números S(n,k) por la igualdad:

$$x^n = \sum_{k=1}^n S(n,k) f_k.$$

- i) Probar que S(n,k) es un entero positivo $\forall n \in \mathbb{N}, \ \forall \ 1 \leq k \leq n$.
- ii) Probar que n es primo si y solo si n/S(n,k) $\forall k=2,\ldots,n-1$.
- 3- Sean T un triángulo equilátero cuyos lados miden 1, o el centro de TyCel conjunto de todos los puntos de Tque están más cerca de oque del borde de T. Calcular el área de C.
- 4 -
- i) Dados $p_1, p_2, p_3, p_4 \in \mathbb{R}^2$, consideremos la matriz

$$A = \begin{pmatrix} 0 & d_{12} & d_{13} & d_{14} \\ d_{21} & 0 & d_{23} & d_{24} \\ d_{31} & d_{32} & 0 & d_{34} \\ d_{41} & d_{42} & d_{43} & 0 \end{pmatrix}$$

donde $d_{ij} = ||p_i - p_j||^2$. Probar que si p_1, \ldots, p_4 no están alineados, los cuatro puntos están en una circunferencia si y solo si $\det(A) = 0$.

ii) Sean ahora $p_1, p_2, p_3, p_4, p_5 \in \mathbb{R}^3$ y se considera la matriz

$$A = \begin{pmatrix} 0 & d_{12} & d_{13} & d_{14} & d_{15} \\ d_{21} & 0 & d_{23} & d_{24} & d_{25} \\ d_{31} & d_{32} & 0 & d_{34} & d_{35} \\ d_{41} & d_{42} & d_{43} & 0 & d_{45} \\ d_{51} & d_{52} & d_{53} & d_{54} & 0 \end{pmatrix}$$

donde, como antes, $d_{ij} = ||p_i - p_j||^2$. Probar que si p_1, \ldots, p_5 no están en un mismo plano, los cinco puntos están en una esfera si y solo si $\det(A) = 0$.

- 5 Sea $f:[0,1] \to \mathbb{R}$ una función continua y estrictamente creciente, tal que f(0)<0 y f(1)>0. Supongamos que la única raíz r de f en [0,1] es un número irracional. Sea x_n la sucesión generada por el método de bisección para hallar r, o sea $x_1=\frac{1}{2}, x_2=\frac{1}{4}$ si $f(\frac{1}{2})>0$ ó $x_2=\frac{3}{4}$ si $f(\frac{1}{2})<0$, etc. Sea $e_n:=|x_n-r|$. Hallar el radio de convergencia de la serie $\sum_{n=1}^{\infty}e_nX^n$.
- 6 Decidir si existen o no polinomios de dos variables $p(x,y), q(x,y) \in \mathbb{R}[x,y]$ tales que si se considera la función $F: \mathbb{R}^2 \to \mathbb{R}^2, \ F(x,y) = (p(x,y),q(x,y)),$ la imagen de F es $\mathbb{R}^2 \setminus \{(0,0)\}.$

Nota: Se asigna puntaje no nulo a argumentos conducentes a una solución, casos particulares, respuestas correctas no justificadas, etc. Por otro lado, para obtener el máximo puntaje en un ejercicio, es necesario justificar apropiadamente la respuesta.