
Some inequalities in the interface between
harmonic analysis and differential equations

Mateus Sousa
Universidad de Buenos Aires

Seminario de Ecuaciones Diferenciales y Análisis Numérico
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This presentation is based on the work

Extremizers for Fourier restriction on hyperboloids, (with E. Carneiro, and
D. Oliveira e Silva), to appear at Ann. Henri Poincaré, arXiv:1708.03826
(2017).

But some events may be changed for dramatization effects.
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Our main actor

Given a subset S ⊂ Rd , and a measure σ supported in S , we define formally the
Fourier extension operator T , associated to the pair (S , σ), as

Tf (ξ) =

∫
S
f (x)e ix ·ξdσ(x).

In this talk we will learn sharp inequalities related to those operators.

By that I mean: given a functional inequality associated to T , we will discuss
what are the best constants involved in the inequality, which functions are
extremizers in case they exist etc.

Remark: When S = Rd and σ is the Lebesgue measure Tf = f̂ , i.e, the more
familiar Fourier transform of f . It will be useful today, but not the focus.
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Why these operators in a PDE seminar?

Again, we wish to study operators of the form

Tf (ξ) =

∫
S
f (x)e ix ·ξdσ(x),

where S ⊂ Rd , and σ is a measure supported in S .

One of the oldest cases of interest is when S = P = {(x , |x |2); x ∈ Rd} and
dσ(x , t) = δ(t − |x |2)dxdt, i.e, the paraboloid with projection measure. In this
case, by identifying f : P → C with a function in Rd , one has

Tf (ξ, τ) =

∫
Rd

f (x)e ix ·ξ+i |x |2τdx .

When f ∈ L2(Rd), one can see that u(ξ, τ) = Tf (ξ, τ) is obviously the solution
to the following Schrödinger equation

i∂tu = ∆xu, (x , t) ∈ Rd × R;

u(x , 0) = (2π)d f̂ (x)

(If this last part was not so obvious to you, look at the board)
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Other cases

This is not an isolated case:

The cone C = {(x , |x |) : x ∈ Rd} with the measure
dσ(x , t) = δ(t − |x |)dxdtt : generates solutions to the wave equation.

The sphere with its surface measure generations solutions to Helmholtz’s
equation.

The twisted paraboloid P̂ = {(x , sign(x)x2) : x ∈ R} with projection
measure generates solutions to the Benjamin-Ono equation.

The cubic surface A = {(x , x3) : x ∈ R} with projection measure generates
solutions to Airy’s equation (KdV for some).
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PDE x Restriction estimate

There is a sort of duality: an estimate for the the operator T gives you an
space-time control of the solution.

For the Schrödinger/Paraboloid case,one has the following inequality:

‖Tf ‖Lp(Rd+1) . ‖f ‖L2(Rd ),

when p = 2 + 4
d . Or

‖u‖Lp(Rd×R) . ‖u(·, 0)‖L2(Rd ).

The same paradigm is true for the other equations: a L2(σ)→ Lp(Rd+1) is
equivalent to a Hs

x → Lpx ,t estimate. The cone case for instance corresponds to
this:

‖u‖Lp(Rd×R) . ‖u(·, 0)‖Ḣ1/2(Rd ) + ‖∂tu(·, 0)‖Ḣ−1/2(Rd )

where u is a solution to ∂ttu = ∆xu and p = 2 + 4
d−1 .
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Back to restriction

Consider the hyperboloid Hd ⊂ Rd+1 defined by

Hd =
{

(y , y ′) ∈ Rd × R : y ′ =
√

1 + |y |2
}
,

equipped with the measure

dσ(y , y ′) = δ
(
y ′ −

√
1 + |y |2

) dy dy ′√
1 + |y |2

.

The Fourier extension operator on Hd is defined by

Tf (x , t) =

∫
Hd

f (y)e i(x ,t)·ydσ(y)

=

∫
Rd

e ix ·ye it
√

1+|y |2f (y ,
√

1 + |y |2)
dy√

1 + |y |2
,

where (x , t) ∈ Rd × R, and f : Hd → C is in a appropriate dense class.
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Hyperbolic setting

The classical work of Strichartz establishes that

‖Tf ‖Lp(Rd+1) ≤ Hd ,p ‖f ‖L2(dσ) ,

with a finite constant Hd ,p (independent of f ), in the following admissible range{
6 ≤ p <∞, if d = 1;

2 + 4
d ≤ p ≤ 2 + 4

d−1 , if d ≥ 2.
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Hyperbolic setting

-3 -2 -1 1 2 3

1

2

3

4

5

Figure: The paraboloid y = 1 + |x|2
2 osculates the hyperboloid y =

√
1 + |x |2 at its

vertex. The cone y = |x | approximates the same hyperboloid at infinity.
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Klein–Gordon equation

The restriction operator T is intimately connected with the Klein-Gordon
equation

∂2
t u = ∆xu − u, (x , t) ∈ Rd × R;

u(x , 0) = u0(x), ∂tu(x , 0) = u1(x).

trough the following operator, the Klein–Gordon propagator,

e it
√

1−∆g(x) :=
1

(2π)d

∫
Rd

ĝ(ξ) e ix ·ξ e it
√

1+|ξ|2dξ.

One can see that solutions to the equation can be written as

u(·, t) =
1

2

(
e it
√

1−∆u0(·)− ie it
√

1−∆(
√

1−∆)−1u1(·)
)

+

1

2

(
e−it

√
1−∆u0(·) + ie−it

√
1−∆(

√
1−∆)−1u1(·)

)
,

and for f (x) = ĝ(x)
√

1 + |x |2 (or f̂ = (1−∆)1/2g)

Tf (x , t) = (2π)d e it
√

1−∆g(x),
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Klein-Gordon equation

This relation implies that the restriction estimate

‖Tf ‖Lp(Rd+1) ≤ Hd ,p ‖f ‖L2(dσ)

amounts to the following inequality

‖e it
√

1−∆g‖Lpx,t(Rd×R) ≤ (2π)−d Hd ,p ‖g‖
H

1
2 (Rd )

,

and although these are equivalent, each inequality has its advantages.

Mateus Sousa Universidad de Buenos Aires Harmonic Analysis meets PDE



Klein-Gordon equation

This relation implies that the restriction estimate

‖Tf ‖Lp(Rd+1) ≤ Hd ,p ‖f ‖L2(dσ)

amounts to the following inequality

‖e it
√

1−∆g‖Lpx,t(Rd×R) ≤ (2π)−d Hd ,p ‖g‖
H

1
2 (Rd )

,

and although these are equivalent, each inequality has its advantages.

Mateus Sousa Universidad de Buenos Aires Harmonic Analysis meets PDE



Problems to come

We are interested in sharp instances of the extension inequality on the
hyperboloid.

More precisely, given a pair (d , p) in the admissible range, we study
extremizers and extremizing sequences for the restriction inequality , and are
interested in the value of the optimal constant

Hd ,p := sup
06=f ∈L2(Hd )

‖Tf ‖Lp(Rd+1)

‖f ‖L2(dσ)
.
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Brief history

This problem has been considered in different surfaces:

Paraboloid: Gaussians are extremizers for even exponent cases and there are
extremizers for all dimensions (Kunze, Foschi, Hundertmark-Zharnitsky,
Carneiro, Shao).

Cone: Exponentials are extremizers for even exponent cases and there are
extremizers for all dimensions(Foschi, Bez-Rogers, Ramos).

Sphere: Constants are the only real extremizers for the 2-sphere endpoint of
Tomas-Stein and there are extremizers for the circle. Every even exponent
case in the mixed norm setting (L2 → Lprad(L2

ang )) has constants as unique
extremizers and the same is true after some big exponent. (Foschi,
Christ-Shao, Shao, Foschi-Oliveira e Silva, Carneiro-Oliveira e Silva-S.).

Hyperboloid: All the even exponent endpoints don’t have extremizers. In
low dimensions there are extremizers for non-endpoint cases (Quilodrán,
Carneiro-Oliveira e Silva-S).

To see a picture of the history of sharp Fourier restriction theory, one can check
the recent survey ”Some recent progress on in sharp Fourier restriction theory”
by D. Foschi and D. Oliveira e Silva.
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Cone: Exponentials are extremizers for even exponent cases and there are
extremizers for all dimensions(Foschi, Bez-Rogers, Ramos).

Sphere: Constants are the only real extremizers for the 2-sphere endpoint of
Tomas-Stein and there are extremizers for the circle. Every even exponent
case in the mixed norm setting (L2 → Lprad(L2

ang )) has constants as unique
extremizers and the same is true after some big exponent. (Foschi,
Christ-Shao, Shao, Foschi-Oliveira e Silva, Carneiro-Oliveira e Silva-S.).

Hyperboloid: All the even exponent endpoints don’t have extremizers. In
low dimensions there are extremizers for non-endpoint cases (Quilodrán,
Carneiro-Oliveira e Silva-S).

To see a picture of the history of sharp Fourier restriction theory, one can check
the recent survey ”Some recent progress on in sharp Fourier restriction theory”
by D. Foschi and D. Oliveira e Silva.
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What about the hyperboloid?

Theorem (Quilodrán (2015))

Let (d , p) ∈ {(2, 4), (2, 6), (3, 4)}. Then

H2,4 = 2
3
4π, H2,6 = (2π)

5
6 , and H3,4 = (2π)

5
4 ,

and there are no extremizers for the restriction inequality in these cases.

Oberve that these cases are the only ones where d ≥ 2 and p is an even integer.
In his paper, Quilodrán left the question of what happens with the rest the even
integer cases, which are many, since for d = 1 every integer bigger than 6 is an
admissible exponent.
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Our contribution

Theorem 1 (Carneiro, Oliveira e Silva, and S. (2017))

The value of the optimal constant in the case (d , p) = (1, 6) is

H1,6 = 3−
1

12 (2π)
1
2 .

Moreover, extremizers do not exist in this case.

Theorem 2 (Carneiro, Oliveira e Silva, and S. (2017))

Extremizers for the restriction inequality do exist in the following cases:

(a) d = 1 and 6 < p <∞.

(b) d = 2 and 4 < p < 6.
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Strategy: the case of Theorem 1

From Plancherel’s Theorem it follows that

‖Tf ‖3
L6(R2) = ‖(f̂ σ)3‖L2(R2) = ‖(f σ ∗ f σ ∗ f σ)̂ ‖L2(R2) = 2π‖f σ ∗ f σ ∗ f σ‖L2(R2),

which in particular implies that

H3
1,6 = 2π sup

06=f ∈L2(H1)

‖f σ ∗ f σ ∗ f σ‖L2(R2)

‖f ‖3
L2(H1)

.

We are thus led to studying convolution measure σ ∗ σ ∗ σ in order to obtain
sharp bounds. In this case, we have access to the machinery of δ-calculus
introduced by Foschi.
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Strategy: the case of Theorem 1

Step 1: After applying the convolution equivalence, apply Cauchy-Schwartz.
This is gonna produce a bound in terms of the σ ∗ σ ∗ σ.

Step 2: Study σ ∗ σ ∗ σ and localize it maximum. This is gonna provide a
sharp constant candidante.

Step 3: Produce an extremizing sequence that converges to the candidate.
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Strategy: the case of Theorem 2

To produce extremizers, we consider extremizing sequences and show that they
converge after suitable modifications. Recent work of Fanelli-Vega-Visciglia
suggest that in non endpoint cases concentration-compactness arguments can
lead to the existence of extremizers.

The heart of the matter lies in the construction of a special cap, i.e. a set that
contains a positive universal proportion of the total mass in an extremizing
sequence, possibly after applying the symmetries of the problem. This rules out
the possibility of “mass concentration at infinity”, and is the missing part in a
observation of Quilodrán, that had originally outlined the proof of a dichotomy
for extremizing sequences.
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1D setting

Mateus Sousa Universidad de Buenos Aires Harmonic Analysis meets PDE



2D setting
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Strategy: the case of Theorem 2

Step 1: Prove a bilinear estimate that show how caps interact.

Step 2: Use the bilinear inequality to prove a improved linear inequality.

Step 3: Use the improved inequality to prove that there is a special cap.
Nonendpointness will produce a extremizer.
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Thank you!

¡Gracias!

Mateus Sousa Universidad de Buenos Aires Harmonic Analysis meets PDE


