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Introduction
Schrédinger equation
Well posedness

The equations

@ Bilinear control

iOru = —Au+ Vo(x)u+ Nu|* v+ Wu, t€[0,T],xc QCR"
u(0, x) = up(x) for all x € Q

@ Distributed control

iOru = —Au+ Vo(x)u+ Au|>*u+h, t€[0,T], x€ QCR"
u(0,x) = up(x) for all x € Q
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Introduction
Schrédinger equation
Well posedness

Well posedness

T. Cazenave; “Semilinear Schrédinger Equation”; Courant Lecture Notes 10, AMS, 2003.

For 2 = R" we can solve the nonlinear problem

i0iu = —Au+ h(u),t € [0, T], x e R"
u(0,x) = up(x) for all x € R"

For the linear problem, h(u) =0
@ For ug € L2, there exists solution in C(R, %) N CY{(R, H2).
@ Smoothing effect: For ug € L2, then u(t) € H*(R") aa.
@ The same results holds for —A + Vj, with potentials Vo € C*°(R")
nonnegative and subquadratic.
For h(u) = Vu, h(u) = A|u|?>°u and h of Hartree type, we have
local well posedness in H!.

Control Optimo NLS



Introduction
Schrédinger equation
Well posedness

With time dependent potentials

R. Carles; “Nonlinear Schrédinger Equation with time dependent potential”; Communications Math. Sci. 2011.

Given the nonlinear equation

iOru = —Au+ V(t,x)u+ Mu[*u, t €[0, T], x € R"
u(0, x) = up(x)

V(t) € C°(R") locally bounded in time and subquadratic in
space.
It is proved the global existence of solution in the energy space

Y = {ue HYR") : xu € L3(R")},

@ For \eR,0<0o<2/n.
@ For A >0, 2/n <0 <2/(n—2) and more regularity on V.
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Introduction
Schrédinger equation
Well posedness

Optimal control problems

We will study the problem of proving the existence of a solution
and first order necessary conditions for

min J (u, h)

subject to the condition that the state v is the solution of a type
Schrodinger equation for a given control h.

Control Optimo NLS



Optimal control of quantum systems
Previous results for bilinear optimal control

BEC for dil
Quantum contro ternal potentials

Optimal control of quantum systems

A. Pierce and M. Dahleh; “ Optimal control of quantum-mechanical systems: Existence, numerical approximation,

and applications”; Physical Review A, 1988.

min [[u(T) = 8720 + allvliZ o r.axa)

subject to
iotu=—Au+ (Vo+W)u, tel0,T], xeQ
u(0) = uo

e Vo(x) is a potential for which —A + V4 generates a Gy
semigroup on L2(9Q).
@ W is a linear Hilbert Schmidt operator given by

W u(t, x) ::/ v(t,x, X Yu(t,x)dx', v € L*([0, T],Q x Q).
Q
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Optimal control of quantum systems
Previous results for bilinear optimal control

B C
Quantum contro ernal potentials

Laser control of chemical reactions

E. Cances, C. Le Bris and M. Pilot; “Control Optimal Bilineare d'une equation de Schraodinger”; C. R. Acad. Sci.

Paris, 2000.

min [[u(T) = @132 sy + ol ElZ2 0,710

subject to

1 1
iy = —Au— —u+ (|uf* =) u+ (E(t)x)u,
‘ x| [x]
telo,T], x € R®
u(0) = wo

o Well posedness in ¥ = {f € H?: \/1 + |x|2f € L?}.



Previous results for bilinear optimal control

Quantum contro ernal potentials

Linear modelling of a hydrogen atom

L. Baudouin, O. Kavian and J.P. Puel; “ Regularity for a Schrédinger equation with a singular potentials and

application to bilinear optimal control”; J. Differential Equations, 2005.
; A2 2
min H U( T) — u||L2(]R3) + Oé” Vi HHl(O,T;W)

s.t. i0ju=—Au+ u+ Vi(t,x)u, tel[0,T],xeR3

1
x — a(1)|
u(0) = up

e ac WHL(0, T).
o iy 88\? are subquadratic in space.

o Well posedness in & = {f € H? : |x|*f € L?}.
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Optimal control o
L f ch
Previous results for bilinear optimal control
Abstract linear Schrodinger equation
BEC for dilu
Quantum contro rnal potentials

Abstract linear Schrodinger equation

K. Ito and K. Kunisch; "Optimal Bilinear Control of an Abstract Schrédinger Equation”; SIAM Journal on Control

and Optimization, 2007.
max(u(T), Au(T)) = allullZz0 7.00my)
s.t. i0iu= Hou—p(t)u, t€[0,T],xeQ
u(0) = wp

@ Hy is densely defined self adjoint positive semidefinite operator in H
real Hilbert.

@ A is the observable operator (self adjoint positive definite) that
encodes the goal.
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Previous results for bilinear optimal control
dinger equation

Quantum control via external potentials

BEC for dilute gases

M. Hintermuller, D. Marahrens, P. Markowich and C. Sparber; “Optimal Bilinear Control of Gross-Pitaevskii

Equations”; SIAM Journal on Control and Optimization, 2013.

T T
mfn(u(T),Au(T)>Lz(Rn)+a1/0 (E(t))2dt+a2/0 (6(t))2dt

s.t. i0iu = —Au+ U(x)u+ Mul*u+ a(t)V(x)u, t € [0, T], x € R"

u(0) = forn=1,2,3
@ A>0,0<0<2/(n—2), a1 >0, a2 >0.
@ U € C*°(R") subquadratic potential and V € W*°(R").
@ The energy space ¥ = {u € H'(R") : xu € L*(R")} — L*(R").
0 E(t) = [on 5IVu(t)? + Zxlu(t)P7** + (U(x) + a(t) V(x))|u(t)*dx.
0 E(t) = t) fpn V(x)|u(t, x)[*dx.
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Previous results for bilinear optimal control

Quantum control via external potentials

B. Feng, D. Zhao and P. Chen; “Optimal Bilinear Control of nonlinear Schrédinger equations with Singular

Potentials”; SIAM Journal on Control and Optimization, 2013.

T T
min(u(T),Au(T))Lz(Rn)+a1/0 (E(t))2dt+a2/0 (6())2dt

subject to
i0iu = —Au+ Nul*u+ a(t)V(x)u, t €0, T], x € R”
u(0) = up

@ For A<0,0<0<2/(n—=2)and for A\ >0,0<0<2/n.
o Ve LP(R") + L®(R").

@ The energy space H*(R").

@ E(t) = [z %\Vu(t“)|2 + 04+1\u(1“)|2"+2 + a(t)V(x)|u(t)*dx.
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The model

Optimal control problem

Well posedness of the state equation
Compactn

= nce of optimal control
Differentiability with respect to the control
First order necessary conditions

Optical fibre transmission

Transmission line

R.O. Moore, G. Biondini, W.L. Kath, “A Method to Compute Statistics of Large, Noise-Induced Perturbations of

Nonlinear Schrédinger Solitons”, SIAM Review, 2008.

A line noise J\\P
/
/\ /

transmissor (z = 0) receiver (z = ()

amplifier noise . .
C S line noise

transmissor  amp amp receiver
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The model
Optimal control problem
Well posedness of the state equation
Optical fibre transmission = . .
timal control
h respect to the control
First order necessary conditions

Transmission with noise

O,u=idfu+iluPutg, ze[0,(],teR
u(0, t) = uo(t)

o g € L*([0,¢], L2(R)).

o up € L2(R), |up|? initial signal.

@ The L2 norm is not conserved:

() Baggy = o2y + /0 “2Re (u(). 8()) 12wy 2’
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The model

Optimal control problem

Well posedness of the state equation
Compactness

Existence of optimal control

D ntiabil ith respect to the control
First order n conditions

Optical fibre transmission

Signal error

@ o: temporal window, o(t) = ae BT T = ¢/c.

@ Given ug, v initial data and u¢, v¢ the solution without noise
repectively we choose 7 such that

[ 7 @) ()= ve(0)Pe > 20
@ Assume that the signal with initial data ug with noise is recognized if
/Ra2 (t) [uluo, &1 (C. £) — uc(£) Pt < .
@ We say that an error occurs when

Aﬁaﬂmmd«m—mamen
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The model
Optimal control problem
Well posedness of the state equation
Optical fibre transmission = . .
timal control
h respect to the control

First order necessary conditions

The optimal control problem

min kllo(u(C) = vo)lfamy + €l E2(0.1,2w))

subject to

o g € L*([0,¢], LA(R)).
o u=ulg] € C([0,¢], L*(R)) is the solution of the nonlinear
Schrodinger equation

O,u=i0%u+iluu+g
u(0, t) = uo(t).

o llo(ulg)(¢) — vo)ll22qzy < 7
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The model
Optimal control problem
Well posedness of the state equation
Compactness

nce of optimal control

entia ith respect to the control
First order ne ary conditions

Optical fibre transmission

The results

D. Rial, C. Sénchez de la Vega, “Optimal distributed control problem for the cubic nonlinear Schrédinger

equation”, sent for publication, 2017.

It is proved:

@ Well posedness.

@ Regularizing effect of the solution.

@ Existence of minimizer.

@ Fréchet differentiability of the solution with respect to the
control.

@ First order necessary conditions.
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The model
Optimal control problem
Well posedness of the state equation
Compactness

ce of imal control
D ntiability with respect to the control
First order nec y conditions

Optical fibre transmission

Integral equation

Given the equation

Ou=i0%?u+ilufPu+g
u(0,t) = up(t).

o Let S(z) be the unitary group generated by i9?2.
@ A mild solution for the state equation with noise is

u(z) = S(z)uo + /02 S(z—2) (ilu(2)Pu(Z) + g(2))dZ.
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The model

Optimal control problem

Well posedness of the state equation
Compactness

Existence of optimal control
Differentiability with respect to the control
First order necessary conditions

Optical fibre transmission

Local existence

Space of solutions: X, = C([0, z], L?(R)) N L8(]0, z], L°(R)).

Theorem

Given ug € L2 (R), let r = ma'x{||u0||,_2 ; ||g||L1(07<,L2)}. Then, there exist
z=1z(r) € (0,(] and u € X, solution of the integral equation

u(z) = S(z)uo + /OZ S(z—2') (iju(")Pu(2) + g(2')) dz'.

The solution u depends continuously on uy, g and

||U||C(o,z,1_2) < luoll ;2 +2 ||g||L1(o,g,L2) :
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The model

Optimal control problem

Well posedness of the state equation
Compactness

Existence of optimal control
Differentiability with respect to the control
First order necessary conditions

Optical fibre transmission

Global existence

Theorem

Given ug € L? (R) and g € L* ([0,(], L? (R)), there exists a unique
u € X¢ solution of the state equation which verifies

lull, < € (¢ luolliz s lgllisgo.cez)) -

Furthermore, u € W* ([0,¢], H? (R)),

lullwaagog -2 < € (¢ lluollez Igllaoc,iz))

and the state equation is posed in H=2 for a.e. z € [0, (].

Control Optimo NLS



The model

Optimal control problem

Well posedness of the state equation
Compactness

Optical fibre transmission Existence of optimal control

Differentiability with respect to the control
First order necessary conditions

Compactness

Theorem

Let u € X be the solution of the initial value problem with
ug € L2, then for any w € S(R) it is verified that
wu € L2([0,¢], HY/?) and

lwull 20,1, 1172y < C(w, G, M8l 2(j0,¢7,22))

Corollary

Let g be a sequence of controls bounded in L*([0,¢], L>(R)), then
there exist a subsequence uy and u* such that u, — u* in

L2([0,¢], L7,c(R)).
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The model

Optimal control problem

Well posedness of the state equation
Compactness

Existence of optimal control

Differentiab: respect to the control
First order necessary conditions

Optical fibre transmission

Minimizing sequence

Rllo(ue(Q) — velIZ + llgelZagiey — inf rllo(u(€) = velZ + g2,

Then gk — g* en L2([07<]7 Lz(R))
From the estimates for solution uj associated to gy,

ukllx, < C.
@ There exists u* € X
ue — u* in L2([0,¢], L3 (R)).

loc

@ Then

| Puk — |u*Pu in L2([0, ¢], L2(R)).
@ u* the associated solution to the control g*.
@ g* is admisible and is optimal.
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The model

Optimal control problem

Well posedness of the state equation
Compactness

Existence of optimal control
Differentiability with respect to the control
First order necessary conditions

Optical fibre transmission

ulg| es Fréchet differentiable

Recall u[g] is the solution of the integral equation

u(z) = S(z)up + /OZ S(z—-2) (i|u(z')\2u(z’) + g(z’)) dz'.

Theorem

Let ug € L2 (R) and g € L* ([0,¢], L3(R)), then u[g] is Fréchet
differentiable and Dy u[g|(dg) € X¢ is the solution of the linear
integral equation

V@) = [ Stz #) (2o (4lely) ule] + 1l + 5g) ()"
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The model

Optimal control problem

Well posedness of the state equation
Compactness

Existence of optimal control
Differentiability with respect to the control
First order necessary conditions

Optical fibre transmission

Abstract theorem

Theorem (Casas 1993)

Given G and Z Banach spaces and U C Z a convex subspace with
nonempty interior. Let g, be a solution of the problem

min 7 (g)
g€ G Ng)eld

where J : G — (—00,400] and A : G — Z are Gateuax
differentiable. Then, there exist A > 0 and . € Z' such that

e A+ |v|lzz>0
o (v,z—Ng)) <O0forallzel
o \J'(g«) + [DN(g:)]" v = 0.




The model
Optimal control problem
Well posedness of the state equation
Compa

xistence of optimal control
Differentiability with respect to the control
First order necessary conditions

Optical fibre transmission

Optimal control problem

Applied to our problem we have
{ml’n kllo(u(C) — VC)Hiz(R) + ngiz([o,g]J_z(R))

gc LZ([07 g]a L2(R))7A(g) = O'(U[g](g) - VC) € BLz(R)(O7 \/ﬁ)
Then, there exist A > 0 and v € L?(R) such that

o )\t HVHLZ(IR{) >0

o (v,z—o(ulg](¢) —v)) <0forall z e BLz(R)(O, V1)
o \J'(g.) + (DN(g:)) v = 0.
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The model

Optimal control problem

Well posedness of the state equation
. . .. Compactness

Optical fibre transmission Existenc ptimal control
Differentiability with respect to the control
First order necessary conditions

Dual problem

We compute (DA(g))* : L2(R) — L2([0,¢], L?(R)):

o Given g € L% ([0,(], L2(R)), u[g] € X the associated state,

and v € L2(R), let u € X, be the solution of the dual
equation

oy = 1021 + 2i|u)?p — iU°H,
1 (C) = ov.

@ From

¢
(v, DN(8)(38))12 = (v 0 Dy ug](38)(O)) 12 = / (1, 38) .
@ Then (DA(g)) v = p.
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The model
Optimal control problem
Well posedness of the state equation
Optical fibre transmission Compriciness . .
nce of optimal control
Differentiability with respect to the control
First order necessary conditi

Necessary conditions

Let g be an optimal control and u = u[g] its associated state

O,u= i@fu +i|ul?u + g,

0.g = 102g + 2i|ul’g — i(v)%g,

u (0) = wo,

g (¢) = Bo?(u(¢) — v¢) with B <0
lo(u(¢) = vo)llf2 = n
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The general model

Optimal control of BEC

The physical models

iuy = —Au+ V(h(t),x) + Nul>u
u(0,x) = wp
@ S. van Frank et al, " Interferometry with non classical motional states of the Bose Einstein condensate”:
Nature Communications, 2014.
e n=1.
e h:[0, T] — R is the displacement inflected on the BEC =
V(h(t),x) = a(h(t) — x)?> + ....
@ J.F. Mennemann et al, 'Optimal control of Bose Einstein condensates in three dimensions”: New Journal of
Physics, 2015.
e n=23.
o h:[0, T] — R? such that
V(h(t),x,y,z) = m ((wa(h1(£)))*x* + (wy (h2(1)))?y? + (w2)*2°).



The general model
Optimal control of BEC

Ongoing work in colaboration with D. Rial

T T
mfn(u(T),Au(T))Lz(Rn)+a1/0 (E(t))zdt—i-az/o (6(t))2dt

subject to
i0;u = —Au+ V(h(t),x)u+ Mu*u,t €0, T], x € R"
u(0) = forn=1,2,3

h€ HY(0,T)and V:R x R” — R is bounded in time and
subquadratic in space.
It is proved the existence of a minimizer for a; = 0.
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