Control Óptimo para Ecuaciones No Lineales de tipo Schrödinger

IMAS-CONICET y DM, FCEyN, UBA

22 de mayo de 2018

Constanza S. F. de la Vega

Control Óptimo NLS

Schrödinger equation Well posedness

The equations

Bilinear control

$$\begin{cases} i\partial_t u = -\Delta u + V_0(x)u + \lambda |u|^{2\sigma}u + Wu, \ t \in [0, T], x \in \Omega \subset \mathbb{R}^n\\ u(0, x) = u_0(x) \text{ for all } x \in \Omega \end{cases}$$

Distributed control

$$\begin{cases} i\partial_t u = -\Delta u + V_0(x)u + \lambda |u|^{2\sigma}u + h, \ t \in [0, T], x \in \Omega \subset \mathbb{R}^n\\ u(0, x) = u_0(x) \text{ for all } x \in \Omega \end{cases}$$

Schrödinger equation Well posedness

Well posedness

T. Cazenave; "Semilinear Schrödinger Equation"; Courant Lecture Notes 10, AMS, 2003.

For $\Omega = \mathbb{R}^n$ we can solve the nonlinear problem

$$\begin{cases} i\partial_t u = -\Delta u + h(u), t \in [0, T], x \in \mathbb{R}^n \\ u(0, x) = u_0(x) \text{ for all } x \in \mathbb{R}^n \end{cases}$$

For the linear problem, h(u) = 0

- For $u_0 \in L^2$, there exists solution in $C(\mathbb{R}, L^2) \cap C^1(\mathbb{R}, H^{-2})$.
- Smoothing effect: For $u_0 \in L^2$, then $u(t) \in H^{1/2}_{loc}(\mathbb{R}^n)$ aa.
- The same results holds for $-\Delta + V_0$, with potentials $V_0 \in C^{\infty}(\mathbb{R}^n)$ nonnegative and subquadratic.

For h(u) = Vu, $h(u) = \lambda |u|^{2\sigma} u$ and h of Hartree type, we have local well posedness in H^1 .

Schrödinger equation Well posedness

With time dependent potentials

R. Carles; "Nonlinear Schrödinger Equation with time dependent potential"; Communications Math. Sci. 2011. Given the nonlinear equation

$$\begin{cases} i\partial_t u = -\Delta u + V(t, x)u + \lambda |u|^{2\sigma}u, t \in [0, T], x \in \mathbb{R}^n\\ u(0, x) = u_0(x) \end{cases}$$

 $V(t)\in C^\infty(\mathbb{R}^n)$ locally bounded in time and subquadratic in space.

It is proved the global existence of solution in the energy space

$$\Sigma = \{ u \in H^1(\mathbb{R}^n) : xu \in L^2(\mathbb{R}^n) \},\$$

• For $\lambda \in \mathbb{R}$, $0 < \sigma < 2/n$.

• For $\lambda > 0$, $2/n \le \sigma < 2/(n-2)$ and more regularity on V.

Schrödinger equation Well posedness

Optimal control problems

We will study the problem of proving the existence of a solution and first order necessary conditions for

mín $\mathcal{J}(u,h)$

subject to the condition that the state u is the solution of a type Schrödinger equation for a given control h.

Optimal control of quantum systems Laser control of chemical reactions Linear modelling of a hydrogen atom Abstract linear Schrödinger equation BEC for dilute gases Quantum control via external potentials

Optimal control of quantum systems

A. Pierce and M. Dahleh; " Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications"; Physical Review A, 1988.

$$\begin{split} &\min \|u(T) - \hat{u}\|_{L^{2}(\Omega)}^{2} + \alpha \|v\|_{L^{2}([0,T],\Omega\times\Omega)}^{2} \\ &\text{subject to} \\ &i\partial_{t}u = -\Delta u + (V_{0} + W)u, \quad t \in [0,T], \, x \in \Omega \\ &u(0) = u_{0} \end{split}$$

- V₀(x) is a potential for which -Δ + V₀ generates a C₀ semigroup on L²(Ω).
- W is a linear Hilbert Schmidt operator given by

$$W u(t,x) := \int_{\Omega} v(t,x,x')u(t,x')dx', v \in L^2([0,T],\Omega \times \Omega).$$

Optimal control of quantum systems Laser control of chemical reactions Linear modelling of a hydrogen atom Abstract linear Schrödinger equation BEC for dilute gases Quantum control via external potentials

Laser control of chemical reactions

E. Cances, C. Le Bris and M. Pilot; "Control Optimal Bilineare d'une equation de Schrödinger"; C. R. Acad. Sci. Paris, 2000.

$$\begin{split} \min \|u(T) - \hat{u}\|_{L^{2}(\mathbb{R}^{3})}^{2} + \alpha \|E\|_{L^{2}([0,T],\mathbb{R})}^{2} \\ \text{subject to} \\ i\partial_{t}u &= -\Delta u - \frac{1}{|x|}u + \left(|u|^{2} * \frac{1}{|x|}\right)u + (E(t)x)u, \\ & t \in [0,T], x \in \mathbb{R}^{3} \\ u(0) &= u_{0} \end{split}$$

• Well posedness in $\Sigma = \{f \in H^2 : \sqrt{1 + |x|^2} f \in L^2\}.$

Optimal control of quantum systems Laser control of chemical reactions Linear modelling of a hydrogen atom Abstract linear Schrödinger equation BEC for dilute gases Quantum control via external potentials

Linear modelling of a hydrogen atom

L. Baudouin, O. Kavian and J.P. Puel; "Regularity for a Schrödinger equation with a singular potentials and application to bilinear optimal control"; J. Differential Equations, 2005.

$$\begin{split} \min \|u(T) - \hat{u}\|_{L^{2}(\mathbb{R}^{3})}^{2} + \alpha \|V_{1}\|_{H^{1}(0,T;W)}^{2} \\ \text{s. t.} \quad i\partial_{t}u &= -\Delta u + \frac{1}{|x - a(t)|}u + V_{1}(t,x)u, \quad t \in [0,T], \, x \in \mathbb{R}^{3} \\ u(0) &= u_{0} \end{split}$$

a ∈ W^{1,1}(0, T).
V₁ y ∂V₁/∂t are subquadratic in space.
Well posedness in Σ = {f ∈ H² : |x|²f ∈ L²}.

Optimal control of quantum systems Laser control of chemical reactions Linear modelling of a hydrogen atom Abstract linear Schrödinger equation BEC for dilute gases Quantum control via external potentials

Abstract linear Schrödinger equation

K. Ito and K. Kunisch; "Optimal Bilinear Control of an Abstract Schrödinger Equation"; SIAM Journal on Control and Optimization, 2007.

$$\begin{split} \max \langle u(T), Au(T) \rangle &- \alpha \|\mu\|_{L^2(0,T;\mathcal{L}(H))}^2 \\ \text{s. t.} \quad i\partial_t u &= H_0 u - \mu(t) u, \quad t \in [0,T], \, x \in \Omega \\ \quad u(0) &= u_0 \end{split}$$

- H_0 is densely defined self adjoint positive semidefinite operator in H real Hilbert.
- A is the observable operator (self adjoint positive definite) that encodes the goal.

Optimal control of quantum systems Laser control of chemical reactions Linear modelling of a hydrogen atom Abstract linear Schrödinger equation BEC for dilute gases Quantum control via external potentials

BEC for dilute gases

M. Hintermuller, D. Marahrens, P. Markowich and C. Sparber; "Optimal Bilinear Control of Gross-Pitaevskii Equations"; SIAM Journal on Control and Optimization, 2013.

$$\begin{split} \min\langle u(T), Au(T) \rangle_{L^2(\mathbb{R}^n)} &+ \alpha_1 \int_0^T (\dot{E}(t))^2 dt + \alpha_2 \int_0^T (\dot{\alpha}(t))^2 dt \\ \text{s.t. } i\partial_t u &= -\Delta u + U(x)u + \lambda |u|^{2\sigma} u + \alpha(t)V(x)u, t \in [0, T], x \in \mathbb{R}^n \\ u(0) &= u_0 & \text{for } n = 1, 2, 3 \end{split}$$

•
$$\lambda \ge 0, \ 0 < \sigma < 2/(n-2), \ \alpha_1 \ge 0, \ \alpha_2 > 0.$$

- $U \in C^{\infty}(\mathbb{R}^n)$ subquadratic potential and $V \in W^{1,\infty}(\mathbb{R}^n)$.
- The energy space $\Sigma = \left\{ u \in H^1(\mathbb{R}^n) : xu \in L^2(\mathbb{R}^n) \right\} \hookrightarrow L^2(\mathbb{R}^n).$
- $E(t) = \int_{\mathbb{R}^n} \frac{1}{2} |\nabla u(t)|^2 + \frac{\lambda}{\sigma+1} |u(t)|^{2\sigma+2} + (U(x) + \alpha(t)V(x))|u(t)|^2 dx.$

•
$$\dot{E}(t) = \dot{\alpha}(t) \int_{\mathbb{R}^n} V(x) |u(t,x)|^2 dx.$$

Optimal control of quantum systems Laser control of chemical reactions Linear modelling of a hydrogen atom Abstract linear Schrödinger equation BEC for dilute gases Quantum control via external potentials

Quantum control via external potentials

B. Feng, D. Zhao and P. Chen; "Optimal Bilinear Control of nonlinear Schrödinger equations with Singular Potentials"; SIAM Journal on Control and Optimization, 2013.

$$\min\langle u(T), Au(T)\rangle_{L^2(\mathbb{R}^n)} + \alpha_1 \int_0^T (\dot{E}(t))^2 dt + \alpha_2 \int_0^T (\dot{\alpha}(t))^2 dt$$

subject to

$$i\partial_t u = -\Delta u + \lambda |u|^{2\sigma} u + \alpha(t)V(x)u, t \in [0, T], x \in \mathbb{R}^n$$

 $u(0) = u_0$

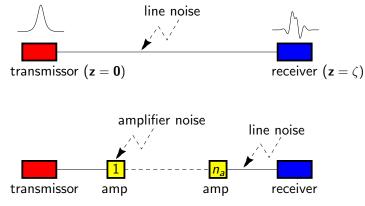
- For $\lambda < 0$, $0 \le \sigma < 2/(n-2)$ and for $\lambda > 0$, $0 \le \sigma < 2/n$.
- $V \in L^{p}(\mathbb{R}^{n}) + L^{\infty}(\mathbb{R}^{n}).$
- The energy space $H^1(\mathbb{R}^n)$.

•
$$E(t) = \int_{\mathbb{R}^n} \frac{1}{2} |\nabla u(t)|^2 + \frac{\lambda}{\sigma+1} |u(t)|^{2\sigma+2} + \alpha(t) V(x) |u(t)|^2 dx.$$

Transmission line

R.O. Moore, G. Biondini, W.L. Kath, "A Method to Compute Statistics of Large, Noise-Induced Perturbations of

Nonlinear Schrödinger Solitons", SIAM Review, 2008.



Control Óptimo NLS

The model

Optimal control problem Well posedness of the state equation Compactness Existence of optimal control Differentiability with respect to the control First order necessary conditions

Transmission with noise

$$\begin{cases} \partial_z u = i \partial_t^2 u + i |u|^2 u + g, & z \in [0, \zeta], t \in \mathbb{R} \\ u(0, t) = u_0(t) \end{cases}$$

- $g \in L^2([0, \zeta], L^2(\mathbb{R})).$
- $u_0 \in L^2(\mathbb{R})$, $|u_0|^2$ initial signal.
- The L^2 norm is not conserved:

$$\|u(z)\|_{L^{2}(\mathbb{R})}^{2} = \|u_{0}\|_{L^{2}(\mathbb{R})}^{2} + \int_{0}^{z} 2\operatorname{Re}\left(\langle u(z'), g(z') \rangle_{L^{2}(\mathbb{R})}\right) dz'$$

The model Optimal control problem Well posedness of the state equation Compactness Existence of optimal control Differentiability with respect to the control First order necessary conditions

Signal error

- σ : temporal window, $\sigma(t) = \alpha e^{-\beta(t-T)^2}$, $T = \zeta/c$.
- Given u_0, v_0 initial data and u_ζ, v_ζ the solution without noise repectively we choose η such that

$$\int_{\mathbb{R}}\sigma^{2}\left(t
ight)\left|u_{\zeta}\left(t
ight)-v_{\zeta}(t)
ight|^{2}dt>2\eta.$$

• Assume that the signal with initial data u_0 with noise is recognized if

$$\int_{\mathbb{R}}\sigma^{2}\left(t
ight)\left|u[u_{0},g]\left(\zeta,t
ight)-u_{\zeta}(t)
ight|^{2}dt\leq\eta.$$

• We say that an error occurs when

$$\int_{\mathbb{R}} \sigma^{2}(t) \left| u[u_{0},g](\zeta,t) - v_{\zeta}(t) \right|^{2} dt \leq \eta.$$

The model Optimal control problem Well posedness of the state equation Compactness Existence of optimal control Differentiability with respect to the control First order necessary conditions

The optimal control problem

$$\min \kappa \|\sigma(u(\zeta) - v_{\zeta})\|_{L^{2}(\mathbb{R})}^{2} + \|g\|_{L^{2}([0,\zeta],L^{2}(\mathbb{R}))}^{2}$$

subject to

- $g \in L^2([0, \zeta], L^2(\mathbb{R})).$
- u = u[g] ∈ C([0, ζ], L²(ℝ)) is the solution of the nonlinear Schrödinger equation

$$\begin{cases} \partial_z u = i \partial_t^2 u + i |u|^2 u + g \\ u(0, t) = u_0(t). \end{cases}$$

• $\|\sigma(u[g](\zeta) - v_{\zeta})\|_{L^2(\mathbb{R})}^2 \leq \eta.$

Introduction Previous results for bilinear optimal control Optical fibre transmission Optimal control of BEC	The model Optimal control problem Well posedness of the state equation Compactness Existence of optimal control Differentiability with respect to the control First order necessary conditions
--	--

The results

D. Rial, C. Sánchez de la Vega, "Optimal distributed control problem for the cubic nonlinear Schrödinger

equation", sent for publication, 2017.

- It is proved:
 - Well posedness.
 - Regularizing effect of the solution.
 - Existence of minimizer.
 - Fréchet differentiability of the solution with respect to the control.
 - First order necessary conditions.

Integral equation

Given the equation

$$\begin{cases} \partial_z u = i \partial_t^2 u + i |u|^2 u + g \\ u(0, t) = u_0(t). \end{cases}$$

- Let S(z) be the unitary group generated by $i\partial_t^2$.
- A mild solution for the state equation with noise is

$$u(z) = S(z)u_0 + \int_0^z S(z-z')(i|u(z')|^2u(z') + g(z'))dz'.$$

Introduction Previous results for bilinear optimal control Optical fibre transmission Optimal control of BEC	Optimal o Well pose Compactr Existence Differenti
--	---

The model Optimal control problem Well posedness of the state equation Compactness Existence of optimal control Differentiability with respect to the control First order necessary conditions

Local existence

Space of solutions: $\mathcal{X}_z = C([0, z], L^2(\mathbb{R})) \cap L^6([0, z], L^6(\mathbb{R})).$

Theorem

Given
$$u_0 \in L^2(\mathbb{R})$$
, let $r = \max\left\{ \|u_0\|_{L^2}, \|g\|_{L^1(0,\zeta,L^2)} \right\}$. Then, there exist $z = z(r) \in (0,\zeta]$ and $u \in \mathcal{X}_z$ solution of the integral equation
 $u(z) = S(z)u_0 + \int_0^z S(z-z') (i|u(z')|^2 u(z') + g(z')) dz'.$

The solution u depends continuously on u_0 , g and

$$\|u\|_{C(0,z,L^2)} \le \|u_0\|_{L^2} + 2 \|g\|_{L^1(0,\zeta,L^2)}.$$

				Intro	duction
Previous	results		bilinear	optimal	
Optical fibre transmission					
			Optimal		of BEC

The model Optimal control problem Well posedness of the state equation Compactness Existence of optimal control Differentiability with respect to the control First order necessary conditions

Global existence

Theorem

Given $u_0 \in L^2(\mathbb{R})$ and $g \in L^1([0, \zeta], L^2(\mathbb{R}))$, there exists a unique $u \in \mathcal{X}_{\zeta}$ solution of the state equation which verifies

$$\|u\|_{\mathcal{X}_{\zeta}} \leq C\left(\zeta, \|u_0\|_{L^2}, \|g\|_{L^1(0,\zeta,L^2)}\right).$$

Furthermore, $u \in W^{1,1}\left([0,\zeta], H^{-2}\left(\mathbb{R}\right)\right)$,

$$\|u\|_{W^{1,1}(0,\zeta,H^{-2})} \leq C\left(\zeta, \|u_0\|_{L^2}, \|g\|_{L^1(0,\zeta,L^2)}\right)$$

and the state equation is posed in H^{-2} for a.e. $z \in [0, \zeta]$.

The model Optimal control problem Well posedness of the state equation **Compactness** Existence of optimal control Differentiability with respect to the control First order necessary conditions

Compactness

Theorem

Let $u \in \mathcal{X}_{\zeta}$ be the solution of the initial value problem with $u_0 \in L^2$, then for any $\omega \in \mathcal{S}(\mathbb{R})$ it is verified that $\omega u \in L^2([0, \zeta], H^{1/2})$ and

$$\|\omega u\|_{L^2([0,\zeta],H^{1/2})} \leq C(\omega,\zeta,\|g\|_{L^1([0,\zeta],L^2)})$$

Corollary

Let g_k be a sequence of controls bounded in $L^1([0, \zeta], L^2(\mathbb{R}))$, then there exist a subsequence u_k and u^* such that $u_k \to u^*$ in $L^2([0, \zeta], L^2_{loc}(\mathbb{R}))$.

The model Optimal control problem Well posedness of the state equation Compactness Existence of optimal control Differentiability with respect to the control First order necessary conditions

Minimizing sequence

$$\kappa \|\sigma(u_k(\zeta) - v_{\zeta}\|_{L^2}^2 + \|g_k\|_{L^2(L^2)}^2 \to \inf \kappa \|\sigma(u(\zeta) - v_{\zeta}\|_{L^2}^2 + \|g\|_{L^2(L^2)}^2$$

- Then $g_k \rightharpoonup g^*$ en $L^2([0, \zeta], L^2(\mathbb{R}))$.
- From the estimates for solution u_k associated to g_k ,

$$\|u_k\|_{\mathcal{X}_{\zeta}} \leq C.$$

• There exists
$$u^* \in \mathcal{X}_{\zeta}$$

$$u_k \to u^*$$
 in $L^2([0, \zeta], L^2_{loc}(\mathbb{R})).$

Then

$$|u_k|^2 u_k \rightharpoonup |u^*|^2 u^*$$
 in $L^2([0,\zeta], L^2(\mathbb{R})).$

• u^* the associated solution to the control g^* .

• g^* is admisible and is optimal.

The model Optimal control problem Well posedness of the state equation Compactness Existence of optimal control Differentiability with respect to the control First order necessary conditions

u[g] es Fréchet differentiable

Recall u[g] is the solution of the integral equation

$$u(z) = S(z)u_0 + \int_0^z S(z-z') \left(i|u(z')|^2 u(z') + g(z') \right) dz'.$$

Theorem

Let $u_0 \in L^2(\mathbb{R})$ and $g \in L^1([0, \zeta], L^2(\mathbb{R}))$, then u[g] is Fréchet differentiable and $D_g u[g](\delta g) \in \mathcal{X}_{\zeta}$ is the solution of the linear integral equation

$$y(z) = \int_0^z S(z - z') \left(2i \operatorname{Re} \left(\overline{u[g]} y \right) u[g] + i \left| u[g] \right|^2 y + \delta g \right) (z') dz'.$$

The model Optimal control problem Well posedness of the state equation Compactness Existence of optimal control Differentiability with respect to the control **First order necessary conditions**

Abstract theorem

Theorem (Casas 1993)

Given G and Z Banach spaces and $U \subset Z$ a convex subspace with nonempty interior. Let g_* be a solution of the problem

$$egin{cases} \mathsf{m} in\mathcal{J}(g)\ g\in \mathcal{G}, \mathsf{\Lambda}(g)\in\mathcal{U} \end{cases}$$

where $\mathcal{J} : G \to (-\infty, +\infty]$ and $\Lambda : G \to Z$ are Gateuax differentiable. Then, there exist $\lambda \geq 0$ and $\mu_* \in Z'$ such that

•
$$\lambda + \|\nu\|_{Z'} > 0$$

• $\langle \nu, z - \Lambda(g_*) \rangle \leq 0$ for all $z \in \mathcal{U}$
• $\lambda \mathcal{J}'(g_*) + [D\Lambda(g_*)]^* \nu = 0.$

The model Optimal control problem Well posedness of the state equation Compactness Existence of optimal control Differentiability with respect to the control **First order necessary conditions**

Optimal control problem

Applied to our problem we have

$$\begin{cases} \min \kappa \|\sigma(u(\zeta) - v_{\zeta})\|_{L^{2}(\mathbb{R})}^{2} + \|g\|_{L^{2}([0,\zeta],L^{2}(\mathbb{R}))}^{2} \\ g \in L^{2}([0,\zeta],L^{2}(\mathbb{R})), \Lambda(g) = \sigma(u[g](\zeta) - v_{\zeta}) \in \bar{B}_{L^{2}(\mathbb{R})}(0,\sqrt{\eta}) \end{cases}$$

Then, there exist $\lambda \geq 0$ and $\nu \in L^2(\mathbb{R})$ such that

•
$$\lambda + \|\nu\|_{L^2(\mathbb{R})} > 0$$

•
$$\langle
u, z - \sigma(u[g](\zeta) - v_{\zeta}) \rangle \leq 0$$
 for all $z \in \bar{B}_{L^{2}(\mathbb{R})}(0, \sqrt{\eta})$

•
$$\lambda \mathcal{J}'(g_*) + (D\Lambda(g_*))^* \nu = 0$$

The model Optimal control problem Well posedness of the state equation Compactness Existence of optimal control Differentiability with respect to the control **First order necessary conditions**

Dual problem

We compute $(D\Lambda(g))^* : L^2(\mathbb{R}) \to L^2([0, \zeta], L^2(\mathbb{R}))$:

Given g ∈ L² ([0, ζ], L² (ℝ)), u[g] ∈ X_ζ the associated state, and ν ∈ L²(ℝ), let μ ∈ X_ζ be the solution of the dual equation

$$\partial_z \mu = \mathrm{i} \partial_t^2 \mu + 2\mathrm{i} |u|^2 \mu - \mathrm{i} u^2 \overline{\mu},$$

$$\mu(\zeta) = \sigma \nu.$$

From

$$\langle \nu, D\Lambda(g)(\delta g) \rangle_{L^2} = \langle \nu, \sigma D_g u[g](\delta g)(\zeta) \rangle_{L^2} = \int_0^{\zeta} \langle \mu, \delta g \rangle_{L^2}.$$

• Then $(D\Lambda(g))^* \nu = \mu$.

Necessary conditions

Let g be an optimal control and u = u[g] its associated state

$$\begin{aligned} \partial_z u &= \mathrm{i} \partial_t^2 u + \mathrm{i} |u|^2 u + g, \\ \partial_z g &= \mathrm{i} \partial_t^2 g + 2\mathrm{i} |u|^2 g - \mathrm{i} (u)^2 \overline{g}, \\ u(0) &= u_0, \\ g(\zeta) &= \beta \sigma^2 (u(\zeta) - v_\zeta) \text{ with } \beta < 0 \\ \|\sigma(u(\zeta) - v_\zeta)\|_{L^2}^2 &= \eta \end{aligned}$$

The general model

The physical models

$$iu_t = -\Delta u + V(h(t), x) + \lambda |u|^2 u$$
$$u(0, x) = u_0$$

 S. van Frank et al, "Interferometry with non classical motional states of the Bose Einstein condensate": Nature Communications, 2014.

 J.F. Mennemann et al, 'Optimal control of Bose Einstein condensates in three dimensions": New Journal of Physics, 2015.

•
$$n = 3$$
.
• $h: [0, T] \to \mathbb{R}^2$ such that
 $V(h(t), x, y, z) = m((w_x(h_1(t)))^2 x^2 + (w_y(h_2(t)))^2 y^2 + (w_z)^2 z^2).$

The general model

Ongoing work in colaboration with D. Rial

$$\min\langle u(T), Au(T)\rangle_{L^2(\mathbb{R}^n)} + \alpha_1 \int_0^T (\dot{E}(t))^2 dt + \alpha_2 \int_0^T (\dot{\alpha}(t))^2 dt$$

subject to

 $h \in H^1(0, T)$ and $V : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ is bounded in time and subquadratic in space. It is proved the existence of a minimizer for $\alpha_1 = 0$.