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Physical motivations. The model

The Heat Equation.

ut = ∆u
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Physical motivations. The model

Porous Medium Equation.

ut = ∆um = ∆(D(u) · u), D(u) = mum−1
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Physical motivations. The model

Physical motivations.

Biology - Growth of population depending on its density and a
Pearl-Verhaulst type reaction.

- Gurtin, M. E.; MacCamy, R. C. On the diffusion of biological
populations. Math. Biosci. 33 (1977), no. 1–2, 35–49.

Chemistry - Combustion with thermal conductivity depending on the
temperature.

- Zel’dovich, Ya. B.; Raizer, Yu. P. Physics of Shock Waves and
High-Temperature Hydrodynamic Phenomena. Dover Books on
Physics (1967).

Astronomy - Propagation of intergalatic civilizations.

- Newman, W. I.; Sagan, C. Galactic civilizations: population dynamics
and interstellar diffusion. Icarus 46 (1981), 293–327.
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Physical motivations. The model

The model.

For m > 1 {
ut = ∆um + h(u) in Q := RN × R+,

u(·, 0) = u0 ≥ 0 in RN ,
(1)

The reaction term h is assumed to be in C 1(R+) and to fulfill, for some
a ∈ [0, 1), 

h(0) = 0, h′(1) < 0

h(u) ≤ 0 if u ∈ [0, a],

h(u) > 0 if u ∈ (a, 1),

h(u) < 0 if u > 1,∫ 1

0
mum−1h(u) du > 0

(2)
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Physical motivations. The model

Arising questions.

When does the solution u spread the value 1 along the medium?

How fast does it propagate?

Which shape does the solution take when propagating?
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Key tool. The travelling waves

Key tool. The travelling waves.

Key tool. The travelling waves.
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Key tool. The travelling waves

The unique travelling wave solution.

If our solution propagates, it probably is similar to a travelling wave
solution, a function V (x − ct) ≡ V (ξ) that satisfies (1), i.e.,

∆(Vm) + cV ′ + h(V ) = 0. (3)

Theorem (Gilding, Kersner).

There exists a minimal speed c∗ = c∗(m, h) > 0 such that equation (1)
has an unique (up to translations) distinct monotonic “change of fase
type”TW solution satisfying

ĺım
ξ→−∞

Vc∗(ξ) = 1, ĺım
ξ→∞

Vc∗(ξ) = 0.

and this TW with speed c∗ is 0 ≤ Vc∗ < 1 and finite.
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Key tool. The travelling waves

The unique travelling wave solution.

Alejandro Gárriz, Fernando Quirós Spreading of solutions of the PME. 13 March 2018 10 / 22



Key tool. The travelling waves

Building sub- and supersolutions. A key tool.

Our goal is to define suitable sub- and supersolutions from this travelling
wave solution V .

For a special pair of functions h∗ and φ we consider the following system
of ODEs: {

f ′(t) = h∗(f ), f (0) = f0 > a,

g ′(t) = c∗φ(f )− h∗(f )/f , g(0) = g0,

and functions w(x , t) = f (t)V (x − g(t)). Let δ be such that h′(u) < 0 for
all u ∈ (1− δ, 1 + δ)

1) If 1− δ ≤ f0 < 1 then w is a subsolution of (1).

2) If 1 + δ ≥ f0 > 1 then w is a supersolution of (1).

In both cases, w(ξ + c∗t, t)→ V (ξ − ξ0) and (g(t)− c∗t)→ ξ0 when the
time t goes to infinity.
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Spreading of solutions of compact support

Spreading of solutions of compact support.

Spreading of solutions of compact support.

When does the solution u spread the value 1 along the medium?

How fast does it propagate?

We focus for now on initial data that are non-negative, bounded,
piece-wise continuous and compactly supported. We will reffer to this as
compactly supported initial data.
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Spreading of solutions of compact support

There can always be spreading for every reaction term.

Our first result states that for every reaction h there exist certain initial
data of compact support for which our solution propagates. It depends on
how much mass u0 has and how concentrated it is.

Theorem 1.1 (G., Quirós).

There exists a three-parameter (x0, η, ρ) family of functions v such that if

u(x , 0) ≥ v(x ; x , η, ρ)

for some x0 ∈ RN , η > 0 and ρ > 0, then u converges to 1 uniformly on
compact sets.
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Spreading of solutions of compact support

There can always be spreading for every initial datum.

Next, we see that certain reactions always lead to propagation, regardless
on the mass of the initial datum. It depends on the behaviour that h
presents near u = 0 compared to the Fujita exponent. This is called the
hair-trigger effect.

Theorem 1.2 (G., Quirós).

Suppose that

ĺım inf
u→0

h(u)

um+2/N
> 0.

and that u 6= 0.
Then u converges to 1 uniformly on compact sets.

Fujita exponent for the PME in dimension N:

pF = m + 2/N
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Spreading of solutions of compact support

Speed of propagation

If we move from a point y0 ∈ RN in a certain direction with a speed c ,
what will we see as time grows, an empty enviroment or a saturated one?
It depends on said speed.

Theorem 1.3 (G., Quirós).

Whenever spreading happens, for any c ∈ (0, c∗)

ĺım
t→∞

ḿın
|y−y0|≤ct

u(y , t) = 1.

and for any c > c∗

ĺım
t→∞

u(y , t) = 0 for |y − y0| ≥ ct.

Too slow will translate to c < c∗ (saturated enviroment), and too fast to
c > c∗ (empty enviroment). In this sense, the speed c∗ will be called the
critical speed of the problem.
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Spreading of solutions of class A

Spreading of solutions of class A.

Spreading of solutions of class A.

We focus in dimension N = 1.

What happens when the initial data are not compactly supported but
looks already like a travelling wave?

Can we get to uniform convergence in the whole space?

We turn our attention to initial data that are non-negative, bounded,
piecewise continuous, u0(x) ≡ 0 for all x ≥ x0, x0 ∈ R and

ĺım inf
x→−∞

u0(x) > δ,

where δ is such that h′(u) < 0 for all u ∈ (1− δ, 1 + δ). This class of
functions will be called A class.

Alejandro Gárriz, Fernando Quirós Spreading of solutions of the PME. 13 March 2018 16 / 22



Spreading of solutions of class A

Spreading of solutions of class A.

Spreading of solutions of class A.

We focus in dimension N = 1.

What happens when the initial data are not compactly supported but
looks already like a travelling wave?

Can we get to uniform convergence in the whole space?

We turn our attention to initial data that are non-negative, bounded,
piecewise continuous, u0(x) ≡ 0 for all x ≥ x0, x0 ∈ R and
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Spreading of solutions of class A

Convergencia uniforme en todo el espacio

We can achieve convergence in all R to a travelling wave V solution of (3)
with speed c∗.

Theorem 2 (G., Quirós).

Let the dimension be N = 1. Let u be a solution to (1) with u0 ∈ A. Then
there exists a ξ0 ∈ R such that

ĺım
t→∞

sup
x∈R
|u(x , t)− V (x − c∗t − ξ0)| = 0,

ĺım
t→∞

ζ(t)− c∗t = ξ0.
(4)

Here ζ(t) denotes the free boundary of the solution.
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Spreading of solutions of class A

A sketch of the proof of Theorem 2

We present the proof in six steps.

1) We bound our solution between sub- and supersolutions wi (x , t)
constructed in Section 2.

2) We see that along a certain time sequence, our solution doesn’t
degenerate.

3) This allow us to improve our bounds, tightening the gap between
them. We make use of eternal solutions, a delicate point.

4) If there is a point ξ such that u(ξ, t) converges, we are done, since we
can tighten our bounds as much as we want.

5) If u(ξ, t) oscilates, the Ascoli-Arzelá theorem and a bit of extra work
give convergence along a certain time sequence without degeneration,
perhaps different from the one in step 2.

6) We use a stability result, assuring that if our solution is close to a
profile V in a certain time, it will remain close for all posterior times,
giving convergence along all time sequences.
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Convergence of solutions of compact support

Convergence of solutions of compact support.

Convergence of solutions of compact support.

Can we get to uniform convergence in dimension 1 for compactly
supported initial data?

Keep in mind that the results about the critical speed c∗ don’t say
anything about the shape of the function for long times near the front,
i.e., near the free boundary.
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Convergence of solutions of compact support

Convergence of solutions of compact support in R.

We can prove, as expected, uniform convergence via a proof similar to the
one for the A class. We define Ω1 ≡ [0,∞) and Ω2 ≡ (−∞, 0].

Theorem 3 (G., Quirós).

Let the dimension be N = 1 and u be a solution of equation (1) of
compact support that converges to 1 uniformly in compact sets. Let W be
the reflexion of V , i.e., V (ξ) = W (−ξ) and Vξ,Wξ translations of said
profiles. Then there exist a pair of values ξ∗ and ξ∗ such that

ĺım
t→∞

|u(x , t)− Vξ∗(x , t)| = 0 in Ω1, (5)

ĺım
t→∞

|u(x , t)−Wξ∗(x , t)| = 0 in Ω2. (6)
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Convergence of solutions of compact support

Convergence in greater dimensions.

For radially symmetric initial data of compact support, we expect a
Branson correction to appear, i.e.,

ĺım
t→∞

|u(x , t)− Vξ∗(x , t) + (N − 1)c∗ log(t)| = 0.

Losely speaking, it comes from the formula for the laplacian in radial
coordinates, which transforms our equation in

ut = (um)rr +
N − 1

r
(um)r + h(u).
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