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Brunet and Derrida 1997

N branching particles in R with selection:

discrete time.

Particle at x dies and creates random offsprings around x.

Select the rightmost N particles.

iterate

Maillard 2016 N -BBM.

N particles move as independent Brownian motions in R,

Each particle, at rate 1, creates a new particle at its current position.

At each branching time, the left-most particle is removed.

The number N of particles is conserved.
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Hydrodynamics
Density ρ with

∫∞
L0
ρ(x)dx = 1 and ρ(x) = 0 for x ≤ L0 ∈ R.

Time zero: iid variables with density ρ.

Xt := set of positions of N -BBM particles at time t.

Theorem 1. [DFPS 2017 Existence]

For every t ≥ 0, there is a density function ψ(·, t) : R→ R+ such that,

lim
N→∞

∣∣Xt ∩ [a,∞)
∣∣

N
=
∫ ∞
a

ψ(r, t)dr, a.s. and in L1.

for any a ∈ R.



5

Free boundary problem. FBP.
Density ρ with

∫∞
L0
ρ(x)dx = 1 and ρ(x) = 0 for x ≤ L0 ∈ R.

FBP1: Find (u, L) =
(
(u(r, t))r∈R, Lt

)
t≥0 such that

∂tu = 1
2∂

2
ru+ u, in (Lt,+∞);

u(r, 0) = ρ(r);
u(Lt, t) = 0,∫ ∞

Lt
u(r, t)dr = 1.
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Theorem 2 (DFPS 2017). If

(u, L) = ((u(r, t), Lt) : t ∈ [0, T ])

is a solution of the free boundary problem, with L ∈ C1, then the hydro-
dynamic limit ψ coincides with u:

ψ(·, t) = u(·, t), t ∈ [0, T ].

Remark. Our proof of existence of ψ does not use existence of solution.
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FBP has solution!
Lee (2017) proved that if ρ ∈ C2

c ([L0,∞)) and ρ′L0
= 2 then there

exist T > 0 and a solution (u, L) of the free boundary problem with the
following properties:

• {Lt : t ∈ [0, T ]} is in C1[0, T ], Lt=0 = L0

• u ∈ C(DL,T ) ∩ C2,1(DL,T ),
where DL,T = {(r, t) : Lt < r, 0 < t < T}.
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Theorem 3 (Berestycki, Brunet, Penington (2018)). Non-increasing v ∈
[0, 1] with limx→−∞ v(x) = 1 and limx→∞ v(x) = 0.

L0 = inf{x : v(x) = 1} ∈ R ∪ {−∞}

There exist a solution for

FBP2: find (U,L) =
(
(U(r, t))r∈R, Lt

)
t≥0 such that

∂tU = 1
2∂

2
rU + U, x ≥ Lt, t > 0

U(r, 0) = v(r);
∂rU(Lt, t) = 0,
U(r, t)dr = 1, for r ≤ Lt

with Lt ∈ R, U(·, t) ∈ C1 for all t > 0 and U ∈ C1(R,R+).

Lt ∈ R for all t > 0 and continuous. U ∈ C2,1({(r, t) : r > Lt, t > 0})

And ∂rU = u satisfies the FBP 1.
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Berestycki, Brunet, Penington (2018)

Idea of proof: Define Un as the solution of F-KPP

∂tUn = 1
2∂

2
rUn + Un − Unn , x ≥ Lt, t > 0

Un(r, 0) =
∫ ∞
r

ρ(r′)dr′;

Known: Un exists and it is unique. Un(r, t) ∈ (0, 1).

(not a free boundary problem)

Define

U(r, t) = lim
n
Un(r, t) (1)

Then, U satisfies the FBP 2 (and u = ∂xU satisfies FBP 1).
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General strategy to prove Theorem 1
We use a Trotter-Kato approximation as upper and lower bounds.

Durrett and Remenik 2011 upperbound for the Brunet-Derrida model.
Leftmost particle motion is increasing : natural lower bounds.

Upper and lower bounds method was used in several papers:

• De Masi, F and Presutti 2015 Symmetric simple exclusion process with
free boundaries. PTRF

• Carinci, De Masi, Giardinà, and Presutti 2016 Free boundary problems
in PDEs and particle systems. SpringerBriefs in Mathematical Physics.

We introduce labelled versions of the processes and a coupling of trajec-
tories to prove the lowerbound.
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Ranked BBM, a tool
Let (Z1

0 , . . . , Z
N
0 ) BBM initial positions.

Bi,1
0 = Zi0, iid with density ρ.

N i
t : is the size of the ith BBM family.

Bi,j
t : is the j-th member of the i-th family at time t, 1 ≤ j ≤ N i

t .

birth-time order.

BBM: Zt = {Bi,j
t : 1 ≤ j ≤ N i

t , 1 ≤ i ≤ N}

Bi,j
[0,t] trajectory coincides with ancestors before birth.

(i, j) is the rank of the jth particle of i-family
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N -BBM as subset of BBM
Let X0 = Z0, τ0 = 0

τn branching times of BBM.

Xt := {Bi,j
t : Bi,j

τn ≥ Lτn , for all τn ≤ t}

Lτn := defined iteratively such that |Xt| = N for all t

Xt has the law of N -BBM.
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Stochastic barriers.
Fix δ > 0

Xδ,±
0 = Z0.

The upper barrier. Post-selection at time kδ.

Xδ,+
kδ := N rightmost {Bi,j

kδ : Bi,j
(k−1)δ ∈ X

δ,+
(k−1)δ}

LN,δ,+kδ := minXδ,+
kδ

The number of particles in Xδ,+
kδ is exactly N for all k.
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The lower barrier.

Pre selection at time (k − 1)δ.

Select maximal number of rightmost particles at time (k−1)δ keeping no
more than N particles at time kδ.

LN,δ,−(k−1)δ := cutting point at time (k − 1)δ

Xδ,−
kδ := {Bi,j

kδ : Bi,j
(k−1)δ ∈ X

δ,−
(k−1)δ ∩ [LN,δ,−(k−1)δ,∞)}

Only entire families of particles at time (k − 1)δ are kept at time kδ.

The number of particles in Xδ,−
kδ is N −O(1).
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Mass transport partial order

X 4 Y if and only if |X ∩ [a,∞)| ≤ |Y ∩ [a,∞)| ∀a ∈ R.

Proposition 4. Coupling
(
(X̂δ,−

kδ , X̂kδ, X̂
δ,+
kδ ) : k ≥ 0

)
such that

X̂δ,−
kδ 4 X̂kδ 4 X̂δ,+

kδ , k ≥ 0.

X̂δ,−
t is a subset of Ẑt, a BBM with the same law as Zt.
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Deterministic barriers. u ∈ L1(R,R+).

Gaussian kernel: Gtu(a) :=
∫ ∞
−∞

1√
2πt

e−(a−r)2/2tu(r) dr.

etGtρ solves ut = 1
2urr + u with initial ρ.

Cut operator: Cmu(a) := u(a)1
{∫ ∞

a
u(r)dr ≤ m

}
,

so that
‖Cmu‖1 = m ∧ ‖u‖1.
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For δ > 0 and k ∈ N, define upper and lower barriers:

Sδ,±0 ρ := ρ Initial condition

Sδ,+kδ ρ :=
(
C1 (eδGδ)

)k
ρ (diffuse & grow) + cut;

Sδ,−kδ ρ :=
(
(eδGδ)Ce−δ

)k
ρ cut + (diffuse & grow)

We have
∥∥Sδ,±kδ ρ∥∥1 = ‖ρ‖1 = 1 for all k.
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Hydrodynamics of δ-barriers
We prove that for fixed δ

the stochastic barriers converge to the macroscopic barriers:

Theorem 5. Conditions of Theorem 1 and fixed δ:

lim
N→∞

∣∣Xδ,±
kδ ∩ [r,∞)

∣∣
N

=
∫ ∞
a

Sδ,±kδ ρ, a.s. and in L1.

The same is true for the coupling marginals X̂δ,±
kδ .
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Convergence of macroscopic barriers
Partial order: Take u, v : R→ R+ and denote

u 4 v iff
∫ ∞
a

u ≤
∫ ∞
a

v ∀a ∈ R.

Fix t and take diadic δ = t2−n. We prove

• Sδ,−t ρ is increasing and Sδ,+t ρ decreasing in n (diadics).

•
∥∥Sδ,+t ρ− Sδ,−t ρ

∥∥
1 ≤ cδ.

• There exists a continuous function ψ such that for any t > 0,

lim
n→∞

‖Sδ,±t ρ− ψ(·, t)‖1 = 0.
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Sketch of proof of Theorem 1
By coupling X̂δ,−

t 4 X̂t 4 X̂δ,+
t .

Convergences in the sense of the Theorem 1:

N →∞:
The stochastic barriers X̂δ,±

t converge to the macroscopic barriers Sδ,±t .

δ → 0:
The macroscopic barriers converge to a function ψ, along diadics δ → 0.

Corollary:
N -BBM X̂t converge to ψ as N →∞.

This is Theorem 1.
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Sketch of proof of Theorem 2
We show that for continuous Lt, the solution u of the free boundary
problem is in between the barriers:

Sδ,−kδ ρ 4 u(·, kδ) 4 Sδ,+kδ ρ.

We use the Brownian representation of solution with initial condition ρ:∫ ∞
a

u(r, t)dr =
∫
ρ(r)Pr(Bt ≥ a , τL > t)dr∫

ρ(r)Pr(τL > t)dr

τL := inf{t > 0 : Bt ≤ Lt}.
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Hydrodynamic limit for the barriers

Macroscopic left boundaries

For δ > 0 and ` ≤ k denote

Lδ,+`δ := sup
r

{∫ r

−∞
Sδ,+`δ ρ(r′)dr′ = 0

}
;

Lδ,−`δ := sup
r

{∫ r

−∞
Sδ,−`δ ρ(r′)dr′ < 1− e−δ

}
. (2)
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Brownian representation of macroscopic barriers:

B[0,t] = (Bs : s ∈ [0, t]) Brownian motion with

B0, random variable with density ρ.

Lemma 6. For test function ϕ ∈ L∞(R) and t > 0,

∫
ϕSδ,+kδ ρ = ekδE

[
ϕ(Bkδ)1

{
B`δ > Lδ,+`δ : 1 ≤ ` ≤ k

}]
.∫

ϕSδ,−kδ ρ = ekδE
[
ϕ(Bkδ)1

{
B`δ > Lδ,−`δ : 0 ≤ ` ≤ k − 1

}]
.
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Generic LLN over trajectories of BBM

Let Bi,1
0 iid with density ρ.

N i
t := size at time t of the i-th BBM family. EN i

t = et.

Proposition 7. Let g be bounded. Then

µNt g := 1
N

N∑
i=1

N i
t∑

j=1
g(Bi,j

[0,t]) −→N→∞
etEg(B[0,t]), a.s. and in L1. (1)

a.s. and in L1.

Proof. By the many-to-one Lemma we have

EµNt g = ENtEg(B[0,t]) = etEg(B[0,t]), (2)

(The variance of µNt g is order 1/N , by family independence.)
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Corollary 8 (Hydrodynamics of the BBM).

lim
N→∞

1
N

N∑
i=1

N i
t∑

j=1
ϕ(Bi,j

t ) = etEϕ(Bt) a.s. and in L1.

= et
∫
ϕ(r)Gtρ(r)dr, (3)
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Proof of Hydrodynamics for barriers

Proof of Theorem 5 BBM representation of stochastic barriers:

πN,δ,+kδ ϕ = 1
N

N∑
i=1

N i
kδ∑

j=1
ϕ(Bi,j

kδ )1{Bi,j
`δ ≥ L

N,δ,+
`δ : 1 ≤ ` ≤ k}

πN,δ,−kδ ϕ = 1
N

N∑
i=1

N i
kδ∑

j=1
ϕ(Bi,j

kδ )1{Bi,j
`δ ≥ L

N,δ,−
`δ : 0 ≤ ` ≤ k − 1}.

As N →∞ LN,δ,±`δ can be replaced by Lδ,±`δ , and use the generic LLN.

For the replacement use that the random left boundaries are exact quan-
tiles of 1.
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Proof of Theorem 2 The limit function ψ is the solution of the free
boundary problem.

The local solution of the free boundary problem is in between the barriers:

Theorem 9. Let t ∈ (0, T ], δ ∈ {2−nt, n ∈ N}. Then

Sδ,−t ρ 4 u(·, t) 4 Sδ,+t ρ, t = kδ

The upperbound is immediate. The lower bound reduces to show the
following stochastic order between conditioned probability measures:

Pu0(Bt ≥ r|τL ≤ δ) ≤ Pu1(Bt ≥ r|τL > δ) (4)

where u1 = Ce−δu, u0 = u− u1,

Pui(Bt ∈ A) := 1
‖ui‖1

∫
ui(x)Px(Bt ∈ A)dx. (5)

and τL is the hitting time of the boundary.
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Stationary N -BBM Xt is N -BBM. Process as seen from front:

X ′t := {x−minXt : x ∈ Xt}

Durrett and Remenik for Brunet-Derrida:

Theorem 10. X ′t is Harris recurrent.

νN unique invariant measure.

Speed: αN = (N − 1) νN
[
min(X \ {0})

]
.

Law of X ′t starting with any initial condition converges to νN and

lim
t→∞

minXt

t
= αN .

αN converges to asymtotic speed of the first particle in BBM:

lim
N→∞

αN =
√

2. Berard and Gouéré
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Travelling wave solutions u(r, t) = w(r − αt), where w satisfies

1
2w
′′ + αw′ + w = 0, w(0) = 0,

∫ ∞
0

w(r)dr = 1. (5)

Groisman and Jonckheere (2013): for each α ≥
√

2, wα given by

wα(r) =
{
Mα re

−αr if α =
√

2
Mα e

−αr sinh
(
r
√
α2 − 2

)
if α >

√
2

is solution to 5, where Mα is a normalization constant.

wα is the unique qsd for Brownian motion with drift −α and absorption
rate 1 (w′(0) = 1); see Mart́ınez and San Mart́ın (1994).
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Popular open problems.

(1) Let Xt be N -BBM process with X0 ∼ stationary measure νN .

Show that the empirical distribution of Xt converges to w√2(t
√

2 + ·), as
N →∞. (strong selection principle)

X0 iid with density w√2, and w√2(t
√

2 + ·) strong solution of FBP imply
convergence, as before.

Control particle-particle correlations in X0 ∼ νN and LLN as before?

(2) “Yaglom limit”? Does u(· − Lt, t)→t wα for some α ≥
√

2?

(3) “Domain of attraction”? Fix α, which conditions must satisfy ρ to
converge to wα?
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