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Brunet and Derrida 1997

N branching particles in R with selection:

discrete time.

Particle at x dies and creates random offsprings around =x.
Select the rightmost IV particles.

iterate

Maillard 2016 N-BBM.

N particles move as independent Brownian motions in R,

Each particle, at rate 1, creates a new particle at its current position.
At each branching time, the left-most particle is removed.

The number N of particles is conserved.
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Hydrodynamics
Density p with [7° p(z)dz = 1 and p(x) =0 for x < Lo € R.
Time zero: iid variables with density p.

X, := set of positions of N-BBM particles at time t.

Theorem 1. [DFPS 2017 Existence|
For every t > 0, there is a density function (-, t) : R — R such that,
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for any a € R.



Free boundary problem. FBP.
Density p with [/~ p(z)dz =1 and p(z) =0 for z < Ly € R.

FBPL: Find (u, L) = ((u(r,t))rer, Lt) -, such that

Oru = %8,2@ + u, in (L, +00);
u(r,0) = p(r);
U(Lt, t) == 0,

/oo u(r,t)dr = 1.

Ly



Theorem 2 (DFPS 2017). If
(u, L) = ((u(r,t), L) : t € [0,T])

is a solution of the free boundary problem, with L € C1, then the hydro-
dynamic limit i) coincides with wu:

P(-,t) = u(-,t), tel0,T].

Remark. Our proof of existence of 1) does not use existence of solution.



FBP has solution!

Lee (2017) proved that if p € CZ([Lo,0)) and pf, = 2 then there
exist T'> 0 and a solution (u, L) of the free boundary problem with the
following properties:

o {L;:t€0,T]}isin CH0,T), Lo = Lo

o U E C(DL,T) N CQ’I(DLT),
where Dy, = {(r,t) : Ly <r,0<t < T}.
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Theorem 3 (Berestycki, Brunet, Penington (2018)). Non-increasing v €
[0, 1] with lim,—,_ oo v(x) =1 and lim,;_,o v(z) = 0.

Lo =inf{z:v(z) =1} e RU{—00}

There exist a solution for

FBP2: find (U, L) = ((U(r,1))rer, Lt) ~ Such that

U = 192U + U, z>Liy t>0
U(r,0) = v(r);
OrU (L, t) =0,
U(r,t)dr=1, forr <L,
with Ly € R, U(-,t) € C! for allt > 0 and U € C*(R,R).
Ly € R for all t > 0 and continuous. U € C*Y({(r,t) : 7 > Ly, t > 0})
And 0,U = u satisfies the FBP 1.



Berestycki, Brunet, Penington (2018)

Idea of proof: Define U, as the solution of F-KPP
U, =200, + U, = U}, x>1L, t>0
Uy (r,0) = / p(r")dr';
Known: U, exists and it is unique. U,(r,t) € (0,1).

(not a free boundary problem)

Define
U(r,t) = li%n Un(r,t) (1)

Then, U satisfies the FBP 2 (and u = 9,U satisfies FBP 1).
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General strategy to prove Theorem 1
We use a Trotter-Kato approximation as upper and lower bounds.

Durrett and Remenik 2011 upperbound for the Brunet-Derrida model.
Leftmost particle motion is increasing: natural lower bounds.

Upper and lower bounds method was used in several papers:

e De Masi, F and Presutti 2015 Symmetric simple exclusion process with
free boundaries. PTRF

e Carinci, De Masi, Giardina, and Presutti 2016 Free boundary problems
in PDEs and particle systems. SpringerBriefs in Mathematical Physics.

We introduce labelled versions of the processes and a coupling of trajec-
tories to prove the lowerbound.
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Ranked BBM, a tool

Let (Z4,...,Z3) BBM initial positions.

Bé’l = Z}, iid with density p.

N}: is the size of the ith BBM family.

Bti’j: is the j-th member of the i-th family at time ¢, 1 < j < N},

birth-time order.

BBM: Z ={Bj7:1<j< N 1<i<N}

B’Lv]

0.4] trajectory coincides with ancestors before birth.

(i,7) is the rank of the jth particle of i-family



N-BBM as subset of BBM
Let Xog = Zy, 10=0
Ty, branching times of BBM.

X, :={B;’ : BY > L, , forall 7, <t}

L, := defined iteratively such that | X;| = N for all ¢

X; has the law of N-BBM.
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Stochastic barriers.
Fix 6 >0
X0* = 7.

The upper barrier. Post-selection at time k9.

X5+. N rightmost {B : Bf}i

No+ .
Lk6 mlnX

5+
15 € X(i1)s)t

The number of particles in X,fgr is exactly IV for all k.
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The lower barrier.

Pre selection at time (k — 1)6.
Select maximal number of rightmost particles at time (k—1)d keeping no
more than N particles at time k9.

Lé\;’f’l‘)g ‘= cutting point at time (k — 1)d

577 Py— '7‘ . .7' 577 N7677
Xy = 1Bis : Bil_nys € X(imys N L=y )}

Only entire families of particles at time (k — 1)J are kept at time kJ.

The number of particles in Xg;; is N —O(1).






Mass transport partial order
X =xY ifandonlyif |[XNa,00) <|YN[a,00)] VaeR.
Proposition 4. Coupling (()A(,i;;_,Xk(g,ngr) : k > 0) such that
X < X< X0h, k>0

A

Xf’f is a subset of Zt, a BBM with the same law as Z;.
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Deterministic barriers. u € L'(R,R,).

© 1
Gaussian kernel:  Gu(a) ::/ Wore
—00 ™

ethp solves u; = %um + u with initial p.

Cut operator: Cnu(a) == u(a)l{/ u(r)dr < m},
so that ‘
[Crully = m Afful]y.

e_(a_r)z/%u(r) dr.
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For § > 0 and k € N, define upper and lower barriers:

Sg’ip := p Initial condition
k
S,‘z:;rp = (01 (66G5)) p  (diffuse & grow) + cut;
S— . s k .
Sys pi= ((e Gs) Ceﬂs) p cut + (diffuse & grow)

We have HS;(z’(sile =||pll; =1 for all k.
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Hydrodynamics of d-barriers
We prove that for fixed ¢

the stochastic barriers converge to the macroscopic barriers:

Theorem 5. Conditions of Theorem 1 and fixed §:

X0 ﬂ
lim | 2EAIGED / Sk(s p, as. and in L'.

N—oo

The same is true for the coupling marginals )A(,f;;i.
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Convergence of macroscopic barriers

Partial order: Take u,v : R — RT and denote

u=<v iff / ug/ v VaeR.

Fix ¢t and take diadic 6 = t27". We prove

. Sf’fp is increasing and Sf’+p decreasing in n (diadics).
s, 5,—

o ||S; tp— S, p||1 < cd.

e There exists a continuous function 1 such that for any ¢ > 0,

. o . _
Jim (1575 p — (-, ) [l1 = 0.
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Sketch of proof of Theorem 1
By coupling Xf’_ <X < Xf’+.
Convergences in the sense of the Theorem 1:

N — oo
The stochastic barriers Xf’i converge to the macroscopic barriers Sf’i.

0—0:
The macroscopic barriers converge to a function 1, along diadics § — 0.

Corollary:
N-BBM X; converge to 1 as N — oo.

This is Theorem 1.
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Sketch of proof of Theorem 2

We show that for continuous L;, the solution u of the free boundary
problem is in between the barriers:

6, — d,
Sps p < u(-,kd) < Sk5+p.

We use the Brownian representation of solution with initial condition p:

00 [ p(r)P(B; > a, 1, > t)dr
/a s = S B, > fydr

7 :=inf{t > 0: B, < L;}.



Hydrodynamic limit for the barriers

Macroscopic left boundaries

For § > 0 and ¢ < k denote

L%‘_ = s&p{/_ ngp(rl)drl = 0};

.
Lgé_ = sup{/ SZ’S_p(T')dr’ <1- 6_6}.
T —00

23
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Brownian representation of macroscopic barriers:
Bioyg = (Bs : s € [0,t]) Brownian motion with

By, random variable with density p.

Lemma 6. For test function ¢ € L°(R) and t > 0,

/@521% = M E[p(Bys)1{Bgs > LY 1< L < k}].

/@Sils_ﬂ = " E[p(Bis)1{ B > Ly 10<(<k—1}].



Generic LLN over trajectories of BBM
Let Bé’l iid with density p.
N} := size at time t of the i-th BBM family. EN} = €.

Proposition 7. Let g be bounded. Then

Z Zg B[Z(’)]t e 'Eg(Bjy), a.s. andin L'

i=1j=1
a.s. and in L.
Proof. By the many-to-one Lemma we have
Epg=EN; Eg(Bjoy) = ¢'Eg(Bjyy),

(The variance of i)Y g is order 1/N, by family independence.)

25

(1)



26

Corollary 8 (Hydrodynamics of the BBM).

N N}
ngnooNZ;; o(B) =e'Ep(B;)  as. and in L',

= [ elr)Guplrar ©
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Proof of Hydrodynamics for barriers

Proof of Theorem 5 BBM representation of stochastic barriers:

s o = ZZso B > L0 1< <k}
i=1j5=1

oy ZZ@DB VI{BY > L) 0<e<k—1}.
i=1j=1

As N — oo L%’a’i can be replaced by Lg(’;i, and use the generic LLN.

For the replacement use that the random left boundaries are exact quan-
tiles of 1. 0
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Proof of Theorem 2 The limit function 1) is the solution of the free
boundary problem.

The local solution of the free boundary problem is in between the barriers:

Theorem 9. Lett € (0,7], § € {27"t,n € N}. Then

SYTp<u(t) < Syte,  t=ko

The upperbound is immediate. The lower bound reduces to show the
following stochastic order between conditioned probability measures:

Py, (B > r|mt < 6) < P, (B; > r|rF > ) (4)
where u; = C,-su, up = u — uy,
1
Pu(Bye A)i= e /ui(x)Pm(Bt € A)dz. (5)
211

and 7% is the hitting time of the boundary.



Stationary N-BBM X, is N-BBM. Process as seen from front:
X{:={r —minX;: z € Xy}

Durrett and Remenik for Brunet-Derrida:

Theorem 10. X/ is Harris recurrent.

VN unique invariant measure.

Speed: ay = (N — 1) vy [min(X \ {0})].

Law of X| starting with any initial condition converges to vy and
min X;

lim
t—00 t

= ay.
apn converges to asymtotic speed of the first particle in BBM:

lim ay = V2. Berard and Gouéré
N—oo
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Travelling wave solutions  u(r,t) = w(r — at), where w satisfies

1 o0
S +aw +w=0, w(0)=0, / wrydr=1.  (5)
0

Groisman and Jonckheere (2013): for each a > v/2, w, given by

M, re " if o =2
My e sinh (rva2 —2) ifa>+2

we(r) =

is solution to 5, where M, is a normalization constant.

w,, is the unique gsd for Brownian motion with drift —a and absorption
rate 1 (w'(0) = 1); see Martinez and San Martin (1994).
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Popular open problems.

(1) Let X; be N-BBM process with X ~ stationary measure /",

Show that the empirical distribution of X; converges to 111\/§(t\/§+ -), as
N — oo. (strong selection principle)

Xo iid with density w_ 5, and w\/i(t\/i—i- -) strong solution of FBP imply
convergence, as before.

Control particle-particle correlations in Xg ~ vy and LLN as before?
(2) “Yaglom limit"? Does u(- — Ly, t) —; w,, for some a > /27

(3) “Domain of attraction”? Fix «, which conditions must satisfy p to
converge to wq?
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