The rotation number for the nonlinear *p*-Laplacian with a periodic potential and new results for the eigenvalue problem on a bounded interval

KIRILL CHEREDNICHENKO (UNIVERSITY OF BATH, UNITED KINGDOM)

We analyse the eigenvalue problem

$$-(|u'|^{p-2}u')' + Qu = \lambda |u|^{p-2}u, \quad p \in (0, +\infty), \quad \lambda \ge 0,$$
(1)

with $Q \in L^1_{loc}(\mathbb{R})$, such that Q(x+a) = Q(x), a > 0 for all $x \in \mathbb{R}$.

The notion of a rotation number $\rho = \rho(\lambda)$, $\lambda \ge 0$, has been used to study the problem (1) in the linear case, p = 2, and it is well known that the spectrum of (1) on \mathbb{R} coincides with the union of the intervals where ρ takes the constant values $n\pi/a$, $n \in \mathbb{N}$.

Using a suitable version of the function ρ adapted to the equation (1), we show that in the case $p \neq 2$ there are additional intervals of λ that can be interpreted as elements of the spectrum of (1).

This is joint work with Matthew Lewis and Karl Michael Schmidt (Cardiff).