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Abstract. We prove bifurcation at infinity for a semilinear wave equation

depending on a parameter λ and subject to Dirichlet-periodic boundary con-

ditions. We assume the nonlinear term to be asymptotically linear and not
necessarily monotone. We prove the existence of L∞ solutions tending to +∞
when the bifurcation parameter approaches eigenvalues of finite multiplicity of

the wave operator. Further details are presented in cases of simple eigenvalues
and odd multiplicity eigenvalues.

1. Introduction. The purpose of this paper is to establish bifurcation at infinity
for the equation

∂2u

∂t2
− ∂2u

∂x2
+ λu+ h(u) := �u+ λu+ h(u) = 0, x ∈ (0, π), t ∈ R, (1)

subject to the Dirichlet-periodic boundary conditions

u(0, t) = u(π, t) = 0, u(x, t) = u(x, t+ 2π). (2)

A main feature of this study is that the nonlinearity λu+h(u) need not be monotone.
For the monotone case the reader is referred to [12, 11, 1] where, taking advantage
of the monotonicity, compactness arguments motivated by elliptic theory may be
adapted to the hyperbolic equation in (1). In our case, linearizations of the left hand
side of (1) may have infinite dimensional kernel making compactness inapplicable.
We overcome this difficulty by using estimates on the measure of pre-images of
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neighborghoods of zeros of trigonometric polynomials, see Lemmas 1.4 and 1.5.
These lemmas are derived from Theorem 1.3.

We assume that h ∈ C1(R) and that there exist h0 > 0 and γ > 1 such that if
|x| ≥ h0 then

|h′(x)| ≤ 1

|x|γ
. (3)

Without loss of generality, we assume that γ < 2. Finally, we assume that there is
A > 0 such that

lim
x→∞

h(x) = A and lim
x→−∞

h(x) = −A. (4)

We let σ(�) be the spectrum of � subject to (2). It is given by

σ(�) =
{
k2 − j2 : k = 1, 2, . . . , j = 0, 1, 2, . . .

}
. (5)

For k = 1, 2, . . . and j = 0, 1, . . . , denote by

ϑk0(x, t) =
1

π
sin(kx)

ϑkj(x, t) =

√
2

π
sin(kx) cos(jt), %kj(x, t) =

√
2

π
sin(kx) sin(jt), j ≥ 1,

(6)

the normalized eigenfunctions associated to the eigenvalue k2 − j2 ∈ σ(�). Note
that 0 is the only eigenvalue of infinite multiplicity, 1 and 4 are the only simple
eigenvalues, and the eigenvalues of odd multiplicity are of the form k2 with k =
1, 2, . . ..

Let Ω = (0, π) × (0, 2π) and H be the Sobolev space of functions u ∈ L2(Ω)
with ux, ut ∈ L2(Ω) and that satisfy (2). The norm in H is given by ‖u‖1 =√
‖ux‖2 + ‖ut‖2 where ‖·‖ is the norm in L2(Ω). The kernel of � is given by

N = span {ϑkk, %kk : k = 1, 2, . . .}, (7)

where the closure is taken in L2(Ω). The range of � subject to (2) is given by the
set of elements in H that are L2(Ω)-orthogonal to N .

We say that u = v + y ∈ N ⊕ Y is a weak solution of (1) subject to (2) if∫
Ω

[(ytỹt − yxỹx)− (λu+ h(u))(ṽ + ỹ))] dxdt = 0, (8)

for all ṽ ∈ N and all ỹ ∈ Y .
Our main results are the following.

Theorem 1.1. Let λ = λ0 − ε, ε > 0 and h : R → R a C1 bounded function
satisfying (3)-(4). If −λ0 ∈ σ(�) is an eigenvalue of finite multiplicity, then there
exists ε0 ∈ (0, 1/2) such that if ε < ε0 the problem (1)-(2) has a non-trivial weak
solution uε = vε + yε ∈ (N ∩ L∞(Ω)) ⊕ (Y ∩ L∞(Ω)). Furthermore, if ε → 0 then
‖vε‖+ ‖yε‖1 →∞.

If −λ0 is an odd multiplicity eigenvalue, we further have the following result.

Theorem 1.2. If −λ0 ∈ σ(�) is an odd multiplicity eigenvalue, h : R → R is a
C1 bounded function and lim|x|→∞ h′(x) = 0, then there exists a maximal connected
set of weak solutions (λ, uλ) to (1)-(2) with limλ→λ0

‖uλ‖ = ∞. Moreover, if −λ0

is a simple eigenvalue of �, then there is δ0 > 0 such that the maximal continuum
of weak solutions (λ, uλ) to the problem (1)-(2) is a continuous curve (λ(s), u(s))
when λ ∈ (−δ0, δ0).
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For related results on (1) with non-monotone nonlinearities see [3, 6, 4, 5, 14,
10, 7, 2]. In [10, 14] the density of the range of Lu := �u+λu+h(u) subject to (2)
is proven for −λ /∈ σ(�). In [7, 6, 5] sufficient conditions for p in the range of L are
provided. In [3] sufficient conditions for the nonexistence of continuous solutions
are given. In [4] the “imperfect” bifurcation at 0 is studied. Finally in [2] the case
where u(x, t) = u(x, t+ T ) with T an irrational multiple of π is considered.

The following result on trigonometric polynomials plays a central role in the
proofs of our main Theorems. For details of its proof see [9] and [13, p. 239-236].

Theorem 1.3 (Nazarov-Turán Lemma). Let m1, . . . ,mn be non-negative integers.
If p : Rn → R is defined by

p(x) =
∑

ki≤mi,i=1,...,n

cke
ik·x, ck ∈ C, (9)

then there exists a constant CNT > 0 such that, for any measurable set E ⊂ [0, 2π]n,

µ(E)m1+···+mn sup
x∈Rn

|p(x)| ≤ CNT sup
x∈E
|p(x)|, (10)

where µ(E) denotes the n-dimensional Lebesgue measure of E.

For future use we deduce the following estimates from Theorem 1.3.

Lemma 1.4. If −λ0 ∈ σ(�) be an eigenvalue of finite multiplicity and Z the
corresponding eigenspace, then there exists C > 0 such that for each β > 0 there
exists α > 0 with

µ
(
{(x, t) ∈ Ω : |ψ(x, t)| < εβ}

)
< Cεα, (11)

for any ψ ∈ Z with ‖ψ‖ = 1.

Proof. Since Z is finite dimensional, there exists C1 > 0 such that

‖ψ‖ ≤ C1 max{|ψ(x, t)| ; (x, t) ∈ Ω} for any ψ ∈ Z. (12)

Since every ψ in Z may be written as

ψ(x, t) =
∑

k2−j2=λ0

ck,j sin(kx) cos(jt) + dk,j sin(kx) sin(jt), (13)

every element is Z satisfies (9) with m1 = m2 = |λ0|. Letting E := {(x, t) ∈
Ω ; |ψ(x, t)| < εβ}, by Theorem 1.3, we have

µ(E) ≤
(
CNTC1ε

β
) 1

2|λ0| . (14)

This proves the Lemma with α = β/|2λ0|.

Lemma 1.5. If Z is as in Lemma 1.4, then there exists K > 0 such that for each
β > 0 there exists α > 0 with

µ
(
{x ∈ [0, π]; |ψ(x, r ± x)| < εβ}

)
< Kεα, (15)

for any ψ ∈ Z with ‖ψ‖ = 1, and any r ∈ [0, 2π]. Here µ denotes the one-
dimensional Lebesgue measure.

Proof. Let ψ ∈ Z be such that ‖ψ‖ = 1. Writing ψ in Fourier series we see that
there exists positive constants k1, k2 such that

k1 ≤ ‖ψ(·, r + ·)‖L2[0,π] ≤ k2 for all r ∈ [0, 2π]. (16)
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Since

ψ(x, r ± x) =
∑

k2−j2=λ0

αk,j(r) sin(kx) sin(jx) + βk,j(r) sin(kx) cos(jx), (17)

every element is Z satisfies (9) with m1 = |λ0|. Letting E := {x ∈ [0, π]; |ψ(x, r ±
x)| < εβ}, by Theorem 1.3, we have

µ(E) ≤
(
CNTC2ε

β
)1/|λ0|

, (18)

where C2 is such that ‖ψ(·, r ± ·)‖L2[0,π] ≤ C2 max{|ψ(x, r ± x);x ∈ [0, π]}. This
proves the Lemma with α = β/|λ0|.

2. Lyapunov-Schmidt reduction. Let Z be as above, and d := dimZ. Let W
be the closure of the subspace of Y spanned by eigenfunctions corresponding to
eigenvalues in σ(�) \ {−λ0}. Projecting (8) onto the subspaces N,Z and W one
sees that u = v + z + w ∈ N ⊕ (Z ∩ Y ) ⊕ (W ∩ Y ) is a weak solution to (1)-(2) if
and only if

v = − 1

λ
PNh(u), (19)

w = −(� + λI)−1PWh(u), (20)

z =
1

ε
PZh(u), (21)

where PN , PW and PZ are the L2-orthogonal projections onto N , W and Z, respec-
tively.

Next we establish the existence of approximate solutions to (21).

Lemma 2.1. If h satisfies (3) and (4), then there exists ε0 > 0 such that for each
ε ∈ (0, ε0) there exists ϕ? ∈ Z such that

− εϕ? + PZh(ϕ?) = 0. (22)

Furthermore, there exist c1 > c0 > 0 depending only on h such that

c0ε
−1 ≤ ‖ϕ?‖ ≤ c1ε−1. (23)

Proof. Let ε > 0. For z ∈ Z we define the functional Jε : Z → R by

J(z) := Jε(z) :=
−ε
2

∫
Ω

|z|2dx+

∫
Ω

H(z)dx, (24)

where H(x) =
∫ x

0
h(s) ds. Therefore

J [z] ≤ −ε
2

∫
Ω

|z|2 + |h|∞
∫

Ω

|z|

≤ − ε
2
‖z‖2 + |h|∞ ‖z‖

√
2π

→ −∞ as ‖z‖ → +∞.

(25)

Since Z is finite dimensional and there exists ϕ? such that J [ϕ?] = maxZ J . Hence
for all z ∈ Z 〈J ′[ϕ?], z〉 = 0, which implies (22).

From (25) we see that J(z) < 0 for ‖z‖ > 2
√

2π|h|∞ε−1. This and J(ϕ?) ≥
J(0) = 0, imply

‖ϕ?‖ ≤ 2
√

2π|h|∞ε−1 := c1ε
−1. (26)
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By (4), there exists M1 > 0 such that H(x) ≥ A|x|/2−M1 for all x ∈ R. Since
Z if finite dimensional there exists a real number C > 0 such that

∫
Ω
|z|dx ≥ C‖z‖

for all z ∈ Z. Therefore, for 2ε‖z‖ = AC,

J(z) ≥ − ε
2
‖z‖2 +

CA‖z‖
2

− 2π2M1

≥ A2C2

8ε
− 2π2M1.

(27)

Hence J(ϕ?) ≥ A2C2

8ε − 2π2M1. Taking ε0 = A2C2/(32π2M1), we have J(ϕ?) ≥ AC
16ε

for ε ∈ (0, ε0). This and (25) yield

‖ϕ?‖ ≥
A2C2

16
√

2π|h|∞ε
:= c0ε

−1. (28)

This and (26) complete the proof of the lemma.

3. Kernel equation. In this section we establish the solvability of (19), given
w ∈W , and z ∈ Z.

Let B1 be the set of all 2π-periodic measurable functions p : R → R such

that
∫ 2π

0
p = 0 and ‖p‖∞ ≤ r1 := 4|h|∞. Let R1 = 8(1 + |λ0|)|h|∞, B2 :=

{w ∈W, : ‖w‖∞ ≤ R1}, and B3 :=
{
z ∈ Z : ‖z‖ ≤ c0

4ε

}
. For w ∈ B2, z ∈ B3,

and p ∈ B1 let

F (ε, w, z, p) =
1

2πλ

∫ π

0

[h(u(x, r + x))− h(u(x, r − x))] dx, (29)

where λ = λ0 − ε, u(x, t) = w(x, t) + ϕ?(x, t) + z(x, t) + v(x, t) and v(x, t) =
p(x, t)− p(x− t). Recall that v is a solution to (19) if and only if p is a fixed point
of F (see [6, Lemma 5.2]).

Lemma 3.1. Let ε0 > 0 be as in Lemma 2.1. There exists ε1 ∈ (0, ε0) such that for
each ε ∈ (0, ε1), F defines a contraction in the variable p. In particular, equation
(19) has a unique solution and such a solution depends continuously on (ε, w, z).

Proof. From the definition of r1, we have F (ε, w, z, p) ∈ B1 for any (ε, w, z, p) ∈
(0, 1/2)×B2 ×B3 ×B1.

Let ε1 := min{1/2, π(2|λ0| − 1)/(4(|h′|∞ + π)(1 + π))}, and M2 > 0 such that if
|x| ≥M2 then |h′(x)| < ε1. For i = 1, 2, let pi ∈ B1 and vi(x, t) = pi(t+x)−pi(t−x).
Let w ∈ B2, z ∈ B3, and ui(x, t) = (ϕ? + z + w + vi)(x, t). From (23), ‖ϕ? + z‖ ≥
3c0ε

−1/4. Let D = M2 + r1 +R1. By Lemma 1.5, for any r ∈ [0, 2π],

µ(G) := µ({x; |(ϕ? + z)|(x, r ± x) ≤ D}
= µ({x; |(ϕ? + z)|(x, r ± x)/‖ϕ? + z‖ ≤ D/‖ϕ? + z‖}
≤ µ({x; |(ϕ? + z)|(x, r ± x)/‖ϕ? + z‖ ≤ 4Dε/(3c0)}

≤ c2ε1/|λ0|,

(30)

where c2 > 0 is a constant independent of (ε, r).
From the definition of B1, B2, B3 and D we have |h(u2(x, r±x)−h(u1(x, r±x)| ≤

ε1|p1(x)− p2(x)| for all x ∈ [0, π] \G := Gc. Therefore,
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∫ π

0

|h(u2(x, r ± x))− h(u1(x, r ± x))| dx

≤
∫
G

|h′(ζ)||v2(x, r ± x)− v1(x, r ± x)| dxds

+

∫
Gc
ε1|v2(x, r ± x)− v1(x, r ± x)| dxds

≤ (|h′|∞c2ε1/|λ0| + ε1)‖v2 − v1‖∞
≤ 2(|h′|∞c2ε1/|λ0| + ε1)‖v2 − v1‖∞.

(31)

This prove that F is a contraction and hence the lemma.

4. Range equation. In this section we establish a priori estimates for solutions
to (20). We will use that, for w ∈W and |λ− λ0| < 1/2,∥∥(� + λI)−1w

∥∥
∞ ≤ 8(|λ0|+ 1)|h|∞. (32)

The proof of (32) follows by writing w in . Fourier series

Lemma 4.1. Let u = (ϕ? + z) +w+ v(z, w, ε) ∈ Z ⊕W ⊕N and v(z, w, ε) is as in
Lemma 3.1. If w ∈ B2, z ∈ B3, and ε ∈ (0, ε1), then∥∥(� + λI)−1PZ(h(ϕ?)− h(u))

∥∥ ≤ c0
4ε
. (33)

Proof. Let γ be as in (3), β ∈ (0, (γ − 1)/γ), and C,α as in (11). For s ∈ [0, 1], let
ψs := ϕ?+sz

‖ϕ?+sz‖ , Ω′s := {(x, t) ∈ Ω : |ψs(x, t)| < εβ}, and

Ωs :=

{
(x, t) ∈ Ω : |ϕ?(x, t) + sz(x, t)| < 3c0

4
εβ−1

}
. (34)

By (23) and the definition of B2, for z ∈ B2 we have Ωs ⊂ Ω′s. For (x, t) /∈ Ωs
define the number

ξ(x, t, s) := ϕ?(x, t) + s(v(x, t) + w(x, t) + z(x, t)). (35)

Then, if (x, t) /∈ Ωs and ζ ∈ Z is such that ‖ζ‖ = 1, we have

|((� + λI)−1PZ(h(ϕ?)− h(u)) | ζ)|

≤ 1

ε

∫
Ω

|h(ϕ?(x, t))− h(ϕ?(x, t) + v(x, t) + w(x, t) + z(x, t)||ζ(x, t)| dxdt

≤ d

ε

[∫ 1

0

∫
Ωcs

|h′(ξ(x, t, s))||v(x, t) + z(x, t) + w(x, t)| dxdtds+

∫
Ωs

2|h|∞

]

≤ d

ε

[
2π2

cγ02γ
εγ(1−β)

(
r1 +R1 +

c0
4ε

)
+ 2|h|∞εα

]
(36)

≤ c0
4ε
.

Since that ζ was arbitrary with ‖ζ‖ = 1, we have that (36) implies (33).
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5. Proof of Theorem 1.1. Let D := B2 ×B3 and

G(w, z) := ((� + λI)−1PWh(u), (� + λI)−1PZ(h(ϕ?)− h(u))). (37)

Due to the compactness of (� + λI)−1PW and (� + λI)−1PZ , G is compact. By
(32), Lemma 4.1, and the Schuader Fixed Point Theorem, G has a fixed point in
(w, z) ∈ D. Hence it is a solution to (20) and (21). This and (3.1), prove that
u = ϕ? + v(ε, w, z) + w + z is a weak solution to (1) subject to (2). From (23),
and the definition of B1, B2, B3, limε→0 ‖ϕ? + v(ε, w, z) +w+ z‖ =∞. This proves
Theorem 1.1.

6. Proof of Theorem 1.2. We assume now that −λ0 is an odd multiplicity ei-
genvalue of �. Let N , Y , W and Z as before. Take R0 := max{4|h|∞, 8(|λ0|+ 1)}
Choose M0 > 0 such that |x| > M0 for

|h′(x)| < min

{
1

16
,

1

1024(|λ0|+ 1)π

}
. (38)

For β = 1 take α0 = 0 and K = K0 as in Lemma 1.4 and α1 = α and C0 = C as
in Lemma 1.5. Recall that α0, α1,K0, C0 depend only on λ0. Let ρ0 large enough
such that

ρ0 >max

{(
16K0|h′|∞

π

)1/α0

(M0 + 4R0), (39)

(1024C0(|λ0|+ 1)π|h′|∞)
1/α1 (M0 + 4R0)

}
.

Let B1 and B2 as in Section 3. Define B3 := {z ∈ Z : ‖z‖ ≥ ρ0}, B4 := [−λ0 −
1/2,−λ0 + 1/2] and define de function Γ : B1 × B2 × B3 × B4 → B1 × B2 by the
formula

Γ(p, w, z, λ) =
( 1

2πλ

∫ π

0

h(u(x, ·+ x))− h(u(x, · − x)) dx, (40)

− (� + λI)−1PWh(u(x, t))
)

where u = v + w + z. By the same arguments used in the proof of Theorem 1.1, Γ
is well defined and is easy to verify that

d(Γ(p1, w1, z, λ); Γ(p2, w2, z, λ)) ≤ 1

2
(‖p1 − p2‖∞ + ‖w1 − w2‖∞). (41)

where d(p1, w1; p2, w2) = ‖p1 − p2‖∞ + ‖w1 − w2‖∞ . By the Contraction Prin-
ciple with Parameters, for (z, λ) ∈ B3 × B4 fixed, Γ has a unique fixed point
(p(z, λ), w(z, λ)) ∈ B1 ×B2. Even more, p and w depend continuously on (z, λ).

In order to prove Theorem 1.2 we appeal to the following results of M.A. Kras-
noselskii, M. G. Crandall and P.H. Rabinowitz in their local forms ([12, p. 491] and
[8, p. 383]).

Theorem 6.1 (Krasnoselskii-Rabinowitz). Let E a real Banach space, E = R× E
and G : E → E a compact application. Suppose that G can be written in the
form G(λ, u) = λLu + H(λ, u) with H(λ, u) = o(‖u‖) at 0 uniformly in bounded λ
intervals and L : E→ E is a compact linear map. Assume that O is a bounded set in
E containing (λ′, 0) such that G : O → E is continuous and bounded. Also assume
that 1

λ′ ∈ σ(L) has odd multiplicity. Then there is a continuum of solutions Cλ′ (a
closed connected set) of G(λ, u) = u such that or ∂O ∩ Cλ′ 6= ∅ or (λ′′, 0) ∈ Cλ′

where 1
λ′′ ∈ σ(L) and λ′′ 6= λ′.
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Theorem 6.2 (Crandall-Rabinowitz). Let X be a real Banach space, K ∈ L(X),
Ω ⊂ R × X a neighborhood of (λ0, 0) and G : Ω → X such that Gx, Gλ, Gλx are
continuous on Ω. Suppose also that (a) H(λ, x) = o(‖x‖) as x → 0, uniformly in
λ near λ0. (b) I − λK is Fredholm of index zero and λ0 is a simple characteristic
value of K.

Then (λ0, 0) is a bifurcation point for F (λ, x) = x−λKx+H(λ, x) = 0 and there
is a neighborhood U of (λ0, 0) such that

F−1(0) ∩ U = {(λ0 + σ(t), tv + tz(t)) : |t| < δ} ∪ {(λ, 0) : (λ, 0) ∈ U}
for some δ > 0, with continuous functions σ and z such that σ(0) = 0, z(0) = 0

and the range of z is contained in ker(I − λ0K)⊥ = span {v}⊥.

Proof of Theorem 1.2. For z ∈ Z, take ψ = z/ ‖z‖. Then (21) is equivalent to

(λ− λ0)ψ − ‖ψ‖2PZh(v(λ, ψ) + w(λ, ψ) + ‖ψ‖−2ψ) = 0, (42)

applying Theorem 6.1 with E = Z, O = B3 × B4, λ′ = −λ0 and H(λ, ψ) =
−‖ψ‖2PZh(v(λ, ψ)+w(λ, ψ)+‖ψ‖−2ψ) we see that there is continuum of solutions to
(42) accumulating to (−λ0, 0). Due to the equivalence between (1)-(2) and (42)-(2)
this continuum of solutions yields a continuum of solutions to (1)-(2) accumulating
in (λ0,∞).

Similarly, applying Theorem 6.2 with Y = X and H as before we see that there
is a parametrized continuous curve of solutions to (42)-(2)

{(−λ0 + σ(t), t sin(
√
−λ0·) + tz(t)) : |t| < δ} ∪ {(λ, 0) : (λ, 0) ∈ U} (43)

in Y . Arguing as before, the proof is complete.

7. Final comments. Consider the problem of finding weak solutions u : R2 → R
to the problem

�u+ λu+ h(u) = 0 (44)

subject to the double-periodic conditions

u(x, t) = u(x+ 2π, t) = u(x, t+ 2π). (45)

For the problem (44)-(45) we have a the same results with the same hypothesis
for h as in Theorem 1.1 and Theorem 1.2 respectively. The argument of the proof
is the same. The only technical difference is that a function v in the kernel N is

characterized by v(x, t) = v̄ + p(t− x) + q(t− x) where
∫ 2π

0
p =

∫ 2π

0
q = 0 and

v̄ =
−1

4π2λ

∫
Ω

h(u(x, t)) (46)

2πλ(p(r) + v̄) +

∫ 2π

0

h(u(x, r − x)) = 0 (47)

2πλ(q(r) + v̄) +

∫ 2π

0

h(u(x, r + x)) = 0. (48)

Even more, if in addition to hypothesis made on h in Theorem 1.1, we assume
that h(x) > 0 for x ≥ 0 and lim infx→∞ h(x) > 0 we can find bifurcation in the
eigenvalue of infinite multiplicity (−λ0 = 0) just taking ϕ? ∈ N as a constant
function satisfying λϕ? + h(ϕ?) = 0 and searching for solutions of the form (ϕ? +
v) + y ∈ N ⊕ Y in a similar way we did as in proof of Theorem 1.1.

The bifurcation at infinity in the eigenvalue of infinite multiplicity for the problem
(1)-(2) seems to be more difficult and is still open.
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