
Derived Invariance of Operations in Hochschild
Theory

Marco Armenta

PhD student of Claude Cibils and José Antonio de la Peña
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Notation

I Let k be a field and let A and B be derived equivalent
k-algebras.

I Let X be a two sided tilting complex of A−B bimodules, so
that

−
L
⊗AX : D(A) ∼→ D(B).

I We put X∨ = RHomB(X ,B).

I There are natural isomorphisms

u : A ∼→ X
L
⊗B X∨ and v : X∨

L
⊗AX

∼→ B

in D(Ae) and D(Be), respectively.
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Notation

I The functor

F =−
L
⊗Ae (X

L
⊗k X

∨) = X∨
L
⊗A−

L
⊗AX : Db(Ae) ∼→ D(Be)

has the following quasi-inverse

G =−
L
⊗Be (X∨

L
⊗k X ) = X

L
⊗B −

L
⊗B X∨ : D(Be) ∼→ Db(Ae).

I We denote (−)∗ = Hom(−,k) the k-dual functor.
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The cup product

I Let N and M be A-bimodules. The cup product in the
Hochschild complexes is

∪ : Hom(A⊗n,N)⊗Hom(A⊗m,M)→ Hom(A⊗(n+m),N⊗AM)

which is given by

α∪β (a1⊗·· ·⊗an+m) := α(a1⊗·· ·⊗an)⊗Aβ (an+1⊗·· ·⊗an+m).

I This operation passes to cohomology

∪ : Hn(A,N)⊗Hm(A,M)→ Hn+m(A,N⊗AM)
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The cup product

I There is an isomorphism

HHn(A) ∼→ HomD(Ae)(A,A[n]).

I It yields an interpretation (Rickard) of the cup product in the
derived category

HomD(Ae)(A,A[n])⊗HomD(Ae)(A,A[m])→HomD(Ae)(A,A[n+m])

given by f ∪g := g [n]◦ f .
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The cup product

I Let N be an A-bimodule, there is an isomorphism

Hn(A,N) ∼→ HomD(Ae)(A,N[n]).

I We extend Rickard’s interpretation of the cup product to

∪̃ : HomD(Ae)(A,N[n])⊗HomD(Ae)(A,M[m])

→ HomD(Ae)(A,N⊗AM[n+m])

given by f ∪̃g := (1N ⊗A g [n])◦ f .
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Result

Theorem
Let A and B be derived equivalent algebras and let N and M be
A-bimodules such that FN and FM are concentrated in degree
zero. The diagrams

HHn(A)⊗Hm(A,M)
∪A //

∼=
��

Hn+m(A,M)

∼=
��

HHn(B)⊗Hm(B,FM) ∪B
// Hn+m(B,FM)

and

Hn(A,N)⊗HHm(A)
∪A //

∼=
��

Hn+m(A,N)

∼=
��

Hn(B,FN)⊗HHm(B) ∪B
// Hn+m(B,FN)

are commutative. 7 / 25



Hochschild homology

I There is a canonical monomorphism

ϕ : HHn(A,N)→ HHn(A,N)∗∗ ∼→ Hn(A,N∗)∗

which is an isomorphism if HHn(A,N) is finite dimensional.

I For example, if A is a finite dimensional algebra and N is a
finite dimensional Ae-module.

I We also have that F (A∗) is concentrated in degree zero and is
isomorphic to B∗ (Zimmermann).
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The cap product

I The cap product in the Hochschild complexes

∩ :
(
N⊗A⊗n

)
⊗Hom(A⊗m,M)→ N⊗AM⊗A⊗(n−m)

is defined as

z ∩β := (−1)nmx⊗A β (a1⊗·· ·⊗am)⊗am+1⊗·· ·⊗an

for β ∈ Hom(A⊗m,M) and every
z = x⊗a1⊗·· ·⊗an ∈ N⊗A⊗n.

I The cap product also provides a well-defined cap product in
(co)homology

∩ : Hn(A,N)⊗Hm(A,M)→ Hn−m(A,N⊗AM).
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The cap product

I We get an interpretation of the cap product in termins of
Hochschild cohomology

Hn(A,N∗)∗⊗Hm(A,M) // Hn−m(A,(N⊗AM)∗)∗.

I In case N = M = A, this interpretation of the cap product
uses the interpretation of the cup product with coefficients in
A∗, which we already proved that is a derived invariant.
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Result

Theorem
Let A and B be derived equivalent algebras over a field k . Assume
that A has finite dimensional Hochschild homology HHn(A) for
each n ≥ 0. For every pair of integers n and m, the following
diagram is commutative

HHn(A)⊗HHm(A)

∼=
��

∩A // HHn−m(A)

∼=
��

HHn(B)⊗HHm(B) ∩B
// HHn−m(B).

11 / 25



Result (j.w. Keller ’17)

Lemma
Let A be an algebra projective over a commutative ring k and let
[f ] ∈ HHm(A). There is a commutative diagram

Hn(A,M)
−∩[f ] //

∼=
��

HHn−m(A,M)

∼=
��

H0

(
M

L
⊗Ae A[−n]

)
H0(1⊗[f ][−n])

// H0

(
M

L
⊗Ae A[m−n]

)
.

12 / 25



Derived invariance (j.w. Keller ’17)

Theorem
Let A and B be derived equivalent algebras projective over a
commutative ring k . Let M be an A-bimodule such that N := FM
is concentrated in degree zero. There are canonical isomorphisms

H•(A,M) ∼→ H•(B,N) and HH•(A) ∼→ HH•(B)

such that the following diagram is commutative

Hn(A,M)⊗HHm(A)

∼=
��

∩A // Hn−m(A,M)

∼=
��

Hn(B,N)⊗HHm(B) ∩B
// Hn−m(B,N)

for all n,m ≥ 0.
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Connes differential

I Connes differential is the map BA : HHn(A)→ HHn+1(A)
given by

BA([a0⊗·· ·⊗an]) =
n

∑
i=0

(−1)in([1⊗ai⊗·· ·⊗an⊗a0⊗·· ·⊗ai−1]),

I Connes periodicity long exact sequence (ISB-sequence)

· · ·HHn(A)
IA // HCn(A)

SA // HCn−2(A)
B ′A // HHn−1(A) · · · .

I These maps are related by BA = B ′AIA.

I Keller proved derived invariance of HC•(A).
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Tamarkin-Tsygan calculus

Let A be a k-algebra. The datum

(HH•(A),HH•(A),∪A, [−,−]A,∩A,BA)

is a Tamarkin-Tsygan (differential) calculus, i.e.

I (HH•(A),∪A, [−,−]A) is a Gerstenhaber algebra.
I The map

∩A : HHn(A)⊗HHm(A)→ HHn−m(A)

provides HH•(A) with the structure of a graded
(HH•(A),∪A, [−,−]A)-module.

I For each j ≥ 0 define iα : HHj(A)→ HHn−j(A) by

iα (z) := (−1)jnz ∩α,

for α ∈ HHn(A). Let α ∈ HHn(A) and β ∈ HHm(A), the map
BA : HH•(A)→ HH•+1(A) is such that B2

A = 0 and

[[BA, iα ]gr , iβ ]gr = i[α,β ],

where [−,−]gr is the commutator bracket.
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Mixed complexes

I The triple (M,b,B) is called a mixed complex if M is a
Z-graded k-module, b and B are graded endomorphisms of M
of degrees 1 and −1, respectively, that satisfy the equations
b2 = 0 and B2 = 0 as well as bB +Bb = 0.

I Let Λ be the DG-algebra (differential graded) k[ε]/(ε2) where
the degree of ε is −1 and the differential vanishes.

I We identify the category of mixed complexes with the
category of DG-Λ modules (B ↔ ε).
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Cyclic homology

Cyclic homology is by definition the homology of the bicomplex
C (A) given by

...

��

...

��

...

��

...

��
A⊗3

b
��

A⊗3
1−too

−b′
��

A⊗3

b
��

Noo A⊗3

−b′
��

1−too · · ·oo

A⊗2

b
��

A⊗2
1−too

−b′
��

A⊗2

b
��

Noo A⊗2

−b′
��

1−too · · ·oo

A A
1−too A

Noo A
1−too · · · .oo

In which the multiplicative cyclic group < t >= Cn acts on A⊗n by
cyclic permutation of the tensor factors and N = 1 + t + ...+ tn−1.
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The cyclic functor

I Let Algk be the category whose objects are the associative
DG k-algebras A such that the functor Hom(A,−) sends
quasi-isomorphisms to isomorphisms, and whose morphisms
are morphisms of DG k-algebras which do not necessarily
preserve the unit.

I Define ALGk to be the category whose objects are those of
Algk and morphisms from A to B are the isomorphism classes
of objects of rep(A,B). The composition of morphisms in
ALGk is given by the total derived tensor product.

I The derived mix category DMix is the derived category of the
DG-algebra of dual numbers Λ = k[ε]/(ε2).
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The cyclic functor

The cyclic functor
C : Algk →DMix

is defined as follows. Let A be an object of Algk , then C (A) is the
mixed complex whith underlying graded k-vector space the
mapping cone over 1− t viewed as a morphism of complexes

1− t : (A⊗•+1,b′)→ (A⊗•+1,b).

The first and second differentials of the mixed complex C (A) are[
b 1− t
0 −b′

]
and [

0 0
N 0

]
,

respectively.
19 / 25



The cyclic functor

I Consider the diagram of DG-algebras

A
αX // EndB(B⊕X ) B

βXoo

and define a morphism in DMix by

C (X ) := C (βX )−1 ◦C (αX ) : C (A)→ C (B).

Theorem
(Keller) The functor C : Algk →DMix extends uniquely to a
functor C : ALGk →DMix.
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Results (j.w. Keller ’19)

Theorem
Let A and B be derived equivalent algebras over a field k. There is
an isomorphism of exact sequences induced by the cyclic functor

· · · // HCn−1(A)
B ′n−1 //

∼=
��

HHn(A)
In //

∼=
��

HCn(A)
Sn //

∼=
��

HCn−2(A) · · ·
∼=
��

· · · // HCn−1(B)
B ′n−1 // HHn(B)

In // HCn(B)
Sn // HCn−2(B) · · ·

Corollary

There is a commutative diagram

HHn(A)

∼=
��

BA // HHn+1(A)

∼=
��

HHn(B)
BB // HHn+1(B). 21 / 25



Observations

I A priori, the isomorphism induced between Hochschild
homologies in the last theorem is not the same than the one
we used for derived invariance of the cap product.

I But ...

I They are the same!
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Result (j.w. Keller ’19)

Theorem
Let A and B be derived equivalent algebras over a field k . The
isomorphisms

HH•(X ) : HH•(A)→ HH•(B)

and
HH•(X ) : HH•(A)→ HH•(B)

define an isomorphism between the Tamarkin-Tsygan calculi of A
and B.
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Thank you!
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