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Cluster algebras

Introduced by Fomin and Zelevinsky in 2000. An axiomatic class of
algebras with rich combinatorial structure, linked to problems in many
diverse areas of mathematics, including:

Representation Theory, Combinatorics,

Algebraic and Poisson geometry,

Topology and Mathematical Physics.

Input: A quiver (a directed graph) without loops and 2-cycles. Its
vertices are indexed by 1, . . . ,m.
Example. The following quivers are not allowed:
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Quiver mutation

Given a quiver Q, for k = 1, . . . ,m, define its mutation µk(Q) at the
vertex k:
Step I: Reverse all arrows to and from the vertex k .
Step II: Complete

the 2-paths k
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Step III: Cancel out pairs of opposite arrows.
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An example: µ3(Q)

Q := 3
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III: µ3(Q) = 3
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Definition of CA

Fix a quiver Q with m vertices and consider K := C(y1, . . . , ym); call

Σ := (y1, . . . , ym;Q) the initial seed.

Define the mutation of the seed at the vertex k by

µk(Σ) = (y1, . . . yk−1, y
′
k , yk+1, . . . , ym;µk(Q)), y ′k :=

1

yk

∏
j→k

yj +
∏
i←k

yi

 .

Choose n ≤ m, call 1, . . . , n mutable vertices and n + 1, . . . ,m frozen
vertices. Mutate the initial seed Σ in all mutable directions:

µk1 . . . µkl (Σ), k1, . . . , kl ∈ [1, n], l = 1, 2, . . .

Definition

The cluster algebra A(Q) is the subalgebra of K generated by the cluster
variables in all seeds (infinitely many).
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Quantum cluster algebras

Example. The space of 2× 2 matrices. Its coordinate ring
C[x11, x12, x21, x22] has cluster structure with only 2 clusters:

(x11, x12, x21,∆),

(
x22 =

x12x21 + ∆

x11
, x12, x21,∆

)
.

The variables x12, x21,∆ are frozen. The variables x11 and x22 are
mutable.

Quantum cluster algebras Aq(Q)

Introduced by Berenstein and Zelevinsky in 2004.

Idea: Replace all Laurent polynomial rings by quantum tori:

T :=
C〈y±11 , . . . , y±1m 〉
(yjyk − qjkykyj)

for some qjk ∈ C∗.
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Statement of the conjecture

Let G be an arbitrary complex simple Lie group and B± be a pair of
opposite Borel subgroups. Denote the Weyl group of G by W . Define
the double Bruhat cells

G u,w = B+uB+ ∩ B−wB−, u,w ∈W .

Theorem [Berenstein–Fomin–Zelevinsky, 2003]

For all double Bruhat cells, C[G u,w ] is an upper cluster algebra.

Conjecture [Berenstein–Zelevinsky, 2004]

For all double Bruhat cells Rq[G u,w ] is an upper quantum cluster algebra.

Previous result: [Geiss–Leclerc–Schröer] Case G = A,D,E and w = 1.
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Example

Let G = SL4 and u = w = s1s2s1s3s2s1 ∈ S4.
The Berenstein–Zelevinsky conjecture for the double Bruhat cell
Rq[SLw ,w4 ] involves the quiver
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Definitions

Lemma [Nagata] 1958

A noetherian integral domain R is a UFD if and only if every nonzero
prime ideal contains a prime element.

Definition [Chatters] 1983

Let R be a noncommutative noetherian domain.

A nonzero, nonunit element p ∈ R is prime if pR = Rp and R/pR is
a domain.

R is called a noetherian UFD if every nonzero prime ideal of R
contains a prime element.
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Quantum nilpotent algebras

For a nilpotent Lie algebra n, there exists a chain of ideals

n = nm B nm−1 B . . . B n1 B n0 = {0} with dim(nk/nk−1) = 1, and

U(n) ∼= C[x1][x2; id, δ2] . . . [xm; id, δm]

for any xk ∈ nk , xk /∈ nk−1; all derivations δk = adxk are locally nilpotent.

Definition [Cauchon–Goodearl–Letzter] late 90’s

A quantum nilpotent algebra is a C-algebra with an action of a torus H

R := C[x1][x2; (h2·), δ2] · · · [xm; (hm·), δm]

for some hk ∈ H, satisfying the following conditions:

all δk are locally nilpotent (hk ·)-derivations,

all xk are H-eigenvectors, the eigenvals hk · xk = λkxk are not roots
of unity.
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Examples

• Quantum Schubert cell algebras, (coideal subalgebras)

Uq(n+ ∩ w(n−)) := Uq(n+) ∩ Tw (Uq(n−)), w ∈W .

defined by Lusztig, De Concini–Kac–Procesi. Here Uq(n±) ⊂ Uq(g) a
quantized univ env alg, Tw denotes Lusztig’s braid group action.
• Quantum Weyl algebras.
• Quantum double Bruhat cells (nontrivial presentation)

Rq[G u,w ] = (Uq(n− ∩ u(n+))op ./ Uq(n+ ∩ w(n−))[E−1].

Theorem [Launois–Lenagan–Rigal] 2005

All quantum nillpotent algebras are UFDs (technical point H-UFD).
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Definitions

Definition I

A quantum nilpotent algebra is symmetric if for all i < k,

xkxi − λkixixk ∈ C〈xi+1, . . . , xk−1〉.

All mentioned examples are symmetric.

Definition II

Define the subset of the symmetric group Sm,

Ωm = {τ ∈ Sm | τ([1, k]) is an interval for all 1 ≤ k ≤ m}.
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Clusters on Quantum Nilpotent Algebras

Theorem [Goodearl-Y]

R = an arbitrary symmetric quantum nilpotent algebra. Chain of
subalgebras R1 ⊂ R2 ⊂ . . . ⊂ Rm.

Each Rk has a unique homogeneous (under H) prime element yk
that does not belong to Rk−1.

Each such quantum nilpotent algebra R has a quantum cluster
algebra structure with initial cluster (y1, . . . , ym).

For τ ∈ Ωm, adjoin the generators of R in the order xτ(1), . . . , xτ(m).
Chain of subalgebras Rτ,1 ⊂ Rτ,2 ⊂ . . . ⊂ Rτ,m. The sequence of
primes (yτ,1, . . . , yτ,m) is another cluster Στ .

The cluster algebra R is generated by the primes in the finitely many
clusters Στ for τ ∈ Ωm.
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An Application

Berenstein–Zelevinsky Conjecture [Goodearl-Y]

For all complex simple Lie groups G and Weyl groups elements w and u,
the quantized coordinate ring of the double Bruhat cell Rq[G u,w ] has a
canonical cluster algebra structure.

Many other applications.
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