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Introduction

These notes were originally intended to supplement lectures given at the Buenos Aires meeting in
December 2006, and have been extended to give a lot more background for a course in cohomology
at Ottawa (Summer term 2007). They introduce some of the family of crossed algebraic gadgetry
that have their origins in combinatorial group theory in the 1930s and ‘40s, then were pushed
much further by Henry Whitehead in the papers on Combinatorial Homotopy, in particular, [103].
Since about 1970, more information and more examples have come to light, initially in the work of
Ronnie Brown and Phil Higgins, (for which a useful central reference will be the forthcoming, [28]),
in which crossed complexes were studied in depth. Explorations of crossed squares by Loday and
Guin-Valery, [61, 75] and from about 1980 onwards indicated their relevance to many problems in
algebra and algebraic geometry, as well as to algebraic topology have become clear. More recently
in the guise of 2-groups, they have been appearing in parts of differential geometry, [21, 10] and
have, via work of Breen and others, [17, 18, 19, 20], been of central importance for non-Abelian
cohomology. This connection between the crossed menagerie and non-Abelian cohomology is almost
as old as the crossed gadgetry itself, dating back to Dedecker’s work in the 1960s, [47]. Yet the
basic message of what they are, why they work, how they relate to other structures, and how the
crossed menagerie works, still need repeating, especially in that setting of non-Abelian cohomology
in all its bewildering beauty.

The original notes have been augmented by additional material, since the link with non-Abelian
cohomology was worth pursuing in much more detail. These notes thus contain an introduction to
the way ‘crossed gadgetry’ interacts with non-Abelian cohomology and areas such as topological
and homotopical quantum field theory. This entails the inclusion of a fairly detailed introduction
to torsors, gerbes etc. This is based in part on Larry Breen’s beautiful Minneapolis notes, [20].

If this is the first time you have met this sort of material, then some words of warning and
welcome are in order.

There is much too much in these notes to digest in one go!
There is probably a lot more than you will need in your continuing research. For instance, the
material on torsors, etc., is probably best taken at a later sitting and the chapter ‘Beyond 2-types’
is not directly used until a lot later, so can be glanced at.

I have concentrated on the group theoretic and geometric aspects of cohomology, since the
non-Abelian theory is better developed there, but it is easy to attack other topics such as Lie
algebra cohomology, once the basic ideas of the group case have been mastered and applications in
differential geometry do need the torsors, etc. I have emphasised approaches using crossed modules
(of groups). Analogues of these gadgets do exist in the other settings (Lie algebras, etc.), and most
of the ideas go across without too much pain. If handling a non-group based problem (e.g. with
monoids or categories), then the internal categorical aspect - crossed module as internal category
in groups - would replace the direct method used here. Moreover the group based theory has the
advantage of being central to both algebraic and geometric applications.

The aim of the notes is not to give an exhaustive treatment of cohomology. That would be
impossible. If at the end of reading the relevant sections the reader feels that they have some
intuition on the meaning and interpretation of cohomology classes in their own area, and that they
can more easily attack other aspects of cohomological and homotopical algebra by themselves, then
the notes will have succeeded for them.

Although not ‘self contained’, I have tried to introduce topics such as sheaf theory as and when
necessary, so as to give a natural development of the ideas. Some readers will already have been
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introduced to these ideas and they need not read those sections in detail. Such sections are, I
think, clearly indicated. They do not give all the details of those areas, of course. For a start, those
details are not needed for the purposes of the notes, but the summaries do try to sketch in enough
‘intuition’ to make it reasonable clear, I hope, what the notes are talking about!

(This version is a shortened version of the notes. It does not contain the material on gerbes. It
is still being revised. The full version will be made available later.)
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Chapter 1

Preliminaries

1.1 Groups and Groupoids

Before launching into crossed modules, we need a word on groupoids. By a groupoid, we mean a
small category in which all morphisms are isomorphisms. (If you have not formally met categories
then do not worry, the idea will come through without that specific formal knowledge, although
a quick glance at Wikipedia for the definition of a category might be a good idea at some time
soon.You do not need category theory as such at this stage.) These groupoids typically arise in
three situations (i) symmetry objects of a fibred structure, (ii) equivalence relations, and (iii) group
actions. It is worth noting that several of the initial applications of groups were thought of, by
their discoverers, as being more naturally this type of groupoid structure.

For the first, assume we have a family of sets {Xa : a ∈ A}. Typically we have a function
f : X → A and Xa = f−1a for a ∈ A. We form the symmetry groupoid of the family by taking
the index set, A, as the set of objects of the groupoid, G, and, if a, a′ ∈ A, then G(a, a′), the set of
arrows in our symmetry groupoid from a to a′, is the set Bijections(Xa, Xa′). This G will contain
all the individual symmetry groups / permutation groups of the various Xa, but will also record
comparison information between different Xas.

Of course, any group is a groupoid with one object and if G is any groupoid, we have, for each
object a of G, a group G(a, a), of arrows that start and end at a. This is the ‘automorphism group’,
autG(a), of a within G. It is also referred to as the vertex group of G at a, and denoted G(a). This
later viewpoint and notation emphasise more the combinatorial, graph-like side of G’s structure.
Sometimes the notation G[1] may be used for G as the process of regarding a group as a groupoid
is a sort of ‘suspension’ or ‘shift’. It is one aspect of ‘categorification’, cf. Baez and Dolan, [9].

That combinatorial side is strongly represented in the second situation, equivalence relations.
Suppose that R is an equivalence relation on a set X. Going back to basics, R is a subset of X×X
satisfying:

(a) if a, b, c ∈ X and (a, b) and (b, c) ∈ R, then (a, c) ∈ R, i.e. R is transitive;

(b) for all a ∈ X, (a, a) ∈ R, alternatively the diagonal ∆ ⊆ R, i.e. R is reflexive;

(c) if a, b ∈ X and (a, b) ∈ R, then (b, a) ∈ R, i.e. R is symmetric.

Two comments might be made here. The first is ‘everyone knows that!’, the second ‘that is not the
usual order to put them in! Why?’

9
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It is a well known, but often forgotten, fact that from R, you get a groupoid (which we will
denote by R). The objects of R are the elements of X and R(a, b) is a singleton if (a, b) ∈ R and
is empty otherwise. (There is really no need to label the single element of R(a, b), when this is
non empty, but it is sometimes convenient to call it (a, b) at the risk of over using the ordered pair
notation.) Now transitivity of R gives us a composition function: for a, b, c ∈ X,

◦ : R(a, b)×R(b, c)→ R(a, c).

(Remember that a product of a set with the empty set is itself always empty, and that for any set,
there is a unique function with domain ∅ and codomain the set, so checking that this composition
works nicely is slightly more subtle than you might at first think. This is important when handling
the analogues of equivalence relations in other categories., then you cannot just write (a, b)◦(b, c) =
(a, c), or similar, as ‘elements’ may not be obvious things to handle.) Of course this composition
is associative, but if you have not seen the verification, it is important to think about it, looking
for subtle points, especially concerning the empty set and empty function and how to do the proof
without ‘elements’.

This composition makes R into a category, since (a) gives the existence of identities for each
object. (Ida = (a, a) in ‘elementary’ notation.) Finally (c) shows that each (a, b) is invertible, so
R is a groupoid. (You now see why that order was the natural one for the axioms. You cannot
prove that (a, a) is an identity until you have a composition, and similarly until you have identities,
inverses do not make sense.) We may call R, the groupoid of the equivalence relation R.

This shows how to think of R as a groupoid, R. The automorphism groups, R(a), are all
singletons as sets, so are trivial groups. Conversely any groupoid, G, gives a diagram

Arr(G)
s //
t
// Ob(G)

i
oo

with s = ‘source’, t = ‘target’. It thus gives a function

Arr(G)
(s,t) // Ob(G)×Ob(G) .

The image of this function is an equivalence relation as is easily checked. We will call this equivalence
relation R for the moment. If G is a groupoid such that each G(a) is a trivial group, then each
G(a, b) has at most one element (check it), so (s, t) is a one-one function and it is then trivial to
note that G is isomorphic to the groupoid of the equivalence relation, R.

We have looked at this simple case in some detail as in applications of the basic ideas, especially
in algebraic geometry, arguments using elements are quite tricky to give and the initial intuition
coming from this set-based case can easily be forgotten.

The third situation, that of group actions, is also a common one in algebra and algebraic
geometry. Equivalence relations often come from group actions. If G is a group and X is a G-set
with (left) G-action

G×X // X

(g, x) g · x

then we get a groupoid ActG(X) as follows:

• the objects of ActG(X) are the elements of X;
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• if a, b,∈ X,
ActG(X)(a, b) ∼= {g | g · a = b}.

An important word of caution is in order here. Logical complications can occur here ifActG(X)(a, b)
is set equal to {g | g · a = b}, since then a g can occur in several different ‘hom-sets’. A good way
to avoid this is to take

ActG(X)(a, b) = {(g, a) | g · a = b}.

This is a non-trivial change. It basically uses a disjoint union but although very simple it is
fundamental in its implications. We could also do it by taking ArrG(X) = G×X with source and
target maps s(g, x) = x, t(g, x) = g · x.

We have not discussed morphisms of groupoids. These are straightforward to define and to
work with. Most of the concepts we will be handling in what follows exist in many-object, groupoid
versions as well as single-object, group based ones. For simplicity we will often, but not always,
give concepts in the group based form, and will leave the other many-object form ‘to the reader’.
The conversion is usually not that difficult.

For more details on the theory of groupoids, the best two sources are Ronnie Brown’s book,
[23] or Phil Higgins’ monograph, now reprinted as [62].

1.2 A very brief introduction to cohomology

Partially as a case study, at least initially, we will be looking at various constructions that relate
to group cohomology. Later we will explore a more general type of (non-Abelian) cohomology, but
that is for later. To start with we will look at a simple group theoretic problem that will be used
for motivation at several places in what follows. Much of what is in books on group cohomology
is the Abelian theory, whilst we will be looking more at the non-Abelian one. If you have not
met cohomology at all, take a look at the Wikipedia entries for group cohomology. You may not
understanding everything but there are ideas there that will recur in what follows, and some terms
that are described there or on linked entries, that will be needed later.

1.2.1 Extensions.

Given a group, G an extension of G by a group K is a group E with an epimorphism p : E → G
whose kernel is isomorphic to K (i.e. a short exact sequence of groups

E : 1→ K → E
p→ G→ 1.

As we asked that K is isomorphic to Ker p, we could have different groups E perhaps fitting into
this, yet they would still be essentially the same extension. We say two extensions, E and E ′, are
equivalent if there is an isomorphism between E and E′ compatible with the other data. We can
draw a diagram

E

��

1 // K //

=

��

E //

∼=
��

G //

=

��

1

E ′ 1 // K // E′ // G // 1

A typical situation might be that you have an unknown group E′ that you suspect is really E (i.e.
is isomorphic to E). You find a known normal subgroup K of E is isomorphic to one in E′ and
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that the two quotient groups are isomorphic,

1 // K //

∼=
��

E //

?
���
�
� G //

∼=
��

1

1 // K ′ // E′ // G′ // 1

(But always remember, isomorphisms compare snap shots of the two structures and once chosen
can make things more ‘rigid’ than perhaps they really ‘naturally’ are. For instance, we might have
G a cyclic group of order 5 generated by an element a, and G′ one generated by b. ‘Naturally’
we choose an isomorphism ϕ : G → G′ to send a to b, but why? We could have sent a to any
non-identity element of G′ and need to be sure that this makes no difference. This is not just
‘attention to detail’. It can be very important. It stresses the importance of At(G), the group of
automorphisms of G in this sort of situation.)

A simple case to illustrate that the extension problem is a valid one is to consider K = C3 =
〈a | a3〉, G = C2 = 〈b | b2〉.

We could take E = S3, the symmetric group on three symbols, or alternatively D3 (also called
D6 to really confuse things, but being the symmetry group of the triangle). This has a presentation
〈a, b | a3, b2, (ab)2〉. But what about C6 = 〈c | c6〉? This has a subgroup {1, c2, c4} isomorphic to K
and the quotient is isomorphic to G. Of course, S3 is non-Abelian, whilst C6 is. The presentation of
C6 needs adjusting to see just how similar the two situations are. This group also has a presentation
〈a, b | a3, b2, aba−1b〉, since we can deduce aba−1b = 1 from [a, b] = 1 and b2 = 1 where in terms
of the old generator c, a = c2 and b = c3. So there is a presentation of C3 which just differs by a
small ‘twist’ from that of S3.

How could one be sure if S3 and C6 are the ‘on;y’ groups (up to isomorphism) that we could
put in that central position? Can we classify all the extensions of G by K?

These extension problems were one of the impetuses for the development of a ‘cohomological’
approach to algebra, but they were not the only ones.

1.2.2 Invariants.

Another group theoretic input is via group representation theory and the theory of invariants. If
G is a group of n × n invertible matrices then one can use the simple but powerful tools of linear
algebra to get good information on the elements of G and often one can tie this information in to
some geometric context, say, by identifying elements of G as leaving invariant some polytope or
pattern, so G acts as a subgroup of the group of the symmetries of that pattern or object.

If therefore we use the group Gl(n,K) of such invertible matrices over some field K, then we
could map an arbitrary G into it and attempt to glean information on elements of G from the
corresponding matrices. We thus consider a group homomorphism

ρ : G→ Gl(n,K),

then look for nice properties of the ρ(g). of course, ρ need not be a monomorphism and then we
will loose information in the process, but in any case such a morphism will make G act (linearly)
on the vector space Kn. We could, more generally, replace K by a general commutative ring R, in
particular we could use the ring of integers, Z, and then replace Kn by a general module, M , over
R. If R = Z, then this is just an Abelian group. (If you have not formally met modules look up a
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definition. The theory feels very like that of vector spaces to start with at least, but as elements
in R need not have inverses, care needs to be taken - you cannot cancel or divide in general, so
rx = ry does not imply x = y! Having looked up a definition, for most of the time you can think of
modules as being vector spaces or Abelian groups and you will not be far wrong. We will shortly
but briefly mention modules over a group algebra R[G] and that ring is not commutative, but again
the complications that this does cause will not worry us at all.)

We can thus ‘represent’ G by mapping it into the automorphism group of M . This gives M the
structure of a G-module. We look for invariants of the action of G on M - what are they? Suppose
that G is some group of symmetries of some geometric figure or pattern, that we will call X, in
Rn, then for each g ∈ G, gX = X, since g acts by pushing the pattern around back onto itself. An
invariant of G, considered as acting on M , or, to put it more neatly, of the G-module, M , is an
element m in M such that g.m = m for all g ∈ G. These form a submodule

MG = {m | gm = m for all g ∈ G}.

Clearly it will help in our understanding of the structure of G if we can calculate and analyse
these modules of invariants. Now suppose we are looking at a submodule N of M , then NG

is a submodule of MG and we can hope to start finding invariants, perhaps by looking at such
submodules and the corresponding quotient modules, M/N . We have a short exact sequence

0→ N →M →M/N → 0,

but, although applying the (functorial) operation (−)G does yield

0→ NG →MG → (M/N)G,

the last map need not be onto so we may not get a short exact sequence and hence a nice simple
way of finding invariants!

Example Try G = C2 = {1, a}, M = Z the Abelian group of integers, with G action a.n = −n,
and N = 2Z, the subgroup of even integers, with the same G action. Now calculate the invariant
modules MG and NG; they are both trivial, but M/N ∼= Z2, and ... what is (M/N)G for this
example?

The way of studying this in general is to try to to continue the exact sequence further to the right
in some universal and natural way (via the theory of derived functors). This is what cohomology
does. We can get a long exact sequence,

0→ NG →MG → (M/N)G → H1(G,N)→ H1(G,M)→ H1(G,M/N)→ H2(G,N)→ . . . .

But what are these Hk(G,M) and how does one get at them for calculation and interpretation?
In fact what is cohomology in general?

Its origins lie within Algebraic Topology as well as in Group Theory and that area provides
some useful intuitions to get us started, before asking how to form group cohomology.

1.2.3 Homology and Cohomology of spaces.

Naively homology and cohomology give methods for measuring the holes in a space, holes of different
dimensions yield generators in different (co)homology groups. The idea is easily seen for graphs
and low dimensional simplicial complexes.
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First we recall the definition of simplicial complex as we will need to be fairly precise about
such objects and their role in relation to triangulations and related concepts.

Definition. A simplicial complex K is a set of objects, V (K), called vertices and a set, S(K),
of finite non-empty subsets of V (K), called simplices. The simplices satisfy the condition that if
σ ⊂ V (K) is a simplex and τ ⊂ σ, τ 6= ∅, then τ is also a simplex.

We say τ is a face of σ. If σ ∈ S(K) has p+ 1 elements it is said to be a p-simplex. The set of
p-simplices of K is denoted by Kp. The dimension of K is the largest p such that Kp is non-empty.

(We will sometimes use the notation P(X) for the power set of a set X, i.e. the set of subsets
of X.)

When thinking about simplicial complexes, it is important to have a picture in our minds of
a triangulated space (probably a surface or similar, a wireframe as in computer graphics). The
simplices are the triangles, tetrahedra, etc., and are determined by their sets of vertices. Not every
set of vertices need be a simplex, but if a set of vertices does correspond to a simplex then all its
non-empty subsets do as well, as they give the faces of that simplex. Here is an example:
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...........................................................................................................................................................
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Here V (K) = {0, 1, 2, 3, 4} and S(K) consists of {0, 1, 2}, {2, 3}, {3, 4} and all the non-empty
subsets of these. Note the triangle {0, 1, 2} is intended to be solid, (but I did not work out how to
do it on the system I was using!)

Simplicial complexes are a natural combinatorial generalisation of (undirected) graphs. They
not only have vertices and edges joining them, but also possible higher dimensional simplices
relating paths in that low dimensional graph. It is often convenient to put a (total) order on the
set V (K) of vertices of a simplicial complex as this allows each simplex to be specified as a list
σ = 〈v0, v1, . . . , vn〉 with v0 < v1 < . . . < vn, instead of as merely a set {v0, v1, . . . , vn} of vertices.
This, in turn, allows us to talk, unambiguously, of the kth face of such a simplex, being the list
with vk omitted, so the zeroth face is 〈v1, . . . , vn〉, the first is 〈v0, v2, . . . , vn〉 and so on.

Given two simplicial complexes K, L, then a function on the vertex sets, f : V (K) → V (L)
is a simplicial map if it preserves simplices. (But that needs a bit of care to check out its exact
meaning! ... for you to do. Look it up, or better try to see what the problem might be, try to
resolve it your self and then look it up! )

1.2.4 Betti numbers and Homology

One of the first sorts of invariant considered in what was to become Algebraic Topology was the
family of Betti numbers. Given a simple shape, the most obvious piece of information to note would
be the number of ‘pieces’ it is made up of, or more precisely, the number of components. The idea
is very well known, at least for graphs, and as simplicial complexes are closely related to graphs,
we will briefly look at this case first.
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For convenience we will assume the vertices V = V (Γ) of a given finite graph, Γ, are ordered,
so for each edge e of Γ, we can assign a source s(e) and a target t(e) amongst the vertices. Two
vertices v and w are said to be in the same component of Γ if there is a sequence of edges e1, . . . , ek
of Γ joining them1. There are, of course, several ways of thinking about this, for instance, define
a relation ∼ on V by : for each e, s(e) ∼ t(e). Extend ∼ to an equivalence relation on V in the
standard way, then v ∼ w if and only if they are in the same component. The zeroth Betti number,
β0(Γ), is the number of components of Γ.

The first Betti number, β1(Γ), somewhat similarly, counts the number of cycles of Γ. We have
ordered the vertices of Γ, so have effectively also directed its edges. If e is an edge, going from u
to v, (so u < v in the order on Γ0), we write e also for the path going just along e and −e for
that going backwards along it, then extend our notation so s(−e) = t(e) = v, etc. Adding in these
‘negative edges’ corresponds to the formation of the symmetric closure of ∼. For the transitive
closure we need to concatenate these simple one-edge paths: if e′ is an edge or a ‘negative edge’
from v to w, we write e+ e′ for the path going along e then e′. Playing algebraically with s and t
and making them respect addition, we get a ‘pseudo-calculation’ for their difference ∂ = t− s:

∂(e+ e′) = t(e+ e′)− s(e+ e′) = t(e) + t(e′)− s(e)− s(e′) = t(e′)− s(e) = u− w,

since t(e) = v = s(e′). In other words, defined in a suitable way, we would get that ∂, equal to
‘target minus source’, applies nicely to paths as well as edges, so that, for instance, two vertices
would be related in the transitive closure of ∼ if there was a ‘formal sum’ of edges that mapped
down to their ‘difference’. We say ‘formal sum’ as this is just what it is. We will need ‘negative
vertices’ as well as ‘negative edges’.

We set this up more formally as follows: Let
C0(Γ) = the set of formal sums,

∑
v∈Γ0

avv with av ∈ Z, the additive group of integers, (an
alternative form is to take av ∈ R.;
C1(Γ) = the set of formal sums,

∑
e∈Γ1

bee with be ∈ Z,
where Γ1 denotes the set of edges of Γ, and ∂ : C1(Γ)→ C0(Γ) defined by extending additively the
mapping given on the edges by ∂ = t− s.

The task of determining components is thus reduced to calculating when integer vectors differ by
the image of one in C1(Γ). The Betti number β0(Γ) is just the rank of the quotient C0(Γ)/Im(∂),
that is, the number of free generators of this commutative group. This would be exactly the
dimension of this ‘vector space’ if we had allowed real coefficients in our formal sums not just
integer ones.

Having reformulated components and ∼ in an algebraic way, we immediately get a pay-off in
our determination of cycles. A cycle is a path which starts and ends at the same vertex; a path is
being modelled by an element in C1(Γ), so a cycle is an element x in C1(γ) satisfying ∂(x) = 0.
With this we have β1(Γ) = rank(Ker(∂)), a similar formulation to that for β0. The similarity is
even more striking if we replace the graph Γ by a simplicial complex K. We can then define in
general and in any dimension p, Cp(K) to be the commutative group of all formal sums

∑
σ∈Kp aσσ.

We next need to get an analogue of the ∂ = t − s formula. We want this to correspond to
the boundary of the objects to which it is applied. For instance, if σ was the triangle / 2-simplex,
〈v0, v1, v2〉, we would want ∂σ to be 〈v1, v2〉+ 〈v0, v1〉 − 〈v0, v2〉, since going (clockwise) around the
triangle, that cycle will be traced out:

1In fact here, the ordering we have assumed on the vertices complicates the exposition a little but it is useful later
on so will stick with it here.
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If we write, in general, diσ for the ith face of a p-simplex σ = 〈v0, . . . , vp〉, then in this 2-
dimensional example ∂σ = d0σ − d1σ + d2σ, changing the order for later convenience. This is the
sum of the faces with weighting (−1)i given to diσ. This is consistent with ∂ = t− s in the lower
dimension as t = d0 and s = d1. We can thus suggest that

∂ = ∂p : Cp(K)→ Cp−1(K)

be defined on p-simplices by

∂pσ =
p∑
i=0

(−1)idiσ,

and then extended additively to all of Cp(K).
As an example of what this does, look at a square K, with vertices v0, v1, v2, v3, edges 〈vi, vi+1〉

for i = 0, 1, 2 and 〈v0, v2〉, and 2-simplices σ1 = 〈v0, v1, v2〉 and σ2 = 〈v0, v2, v3〉. As the square
has these two 2-simplices, we can think of it as being represented by σ1 + σ2 in C2(K), then
∂(σ1 + σ2) = 〈v0, v1〉 + 〈v1, v2〉 + 〈v2, v3〉 − 〈v0, v3〉, as the two occurrences of the diagonal 〈v0, v2〉
cancel out as they have opposite sign, and this is the path around the actual boundary of the
square.

It is important to note that the boundary of a boundary is always trivial, that is, the composite
mapping

Cp(K)
∂p→ Cp−1(K)

∂p−1→ Cp−2(K)

is the mapping sending everything to 0 ∈ Cp−1(K).
The idea of the higher Betti numbers, βp(K) is that they measure the number of p-dimensional

‘holes’ in K. Imagine we has a tunnel-shaped hole through a space K, then we would have a cycle
around the hole at one end of the tunnel and another around the hole at the other end. If we
merely count cycles then we will get at least two such coming from this hole, but these cycles are
linked as there is the cylindrical hole itself and that gives a 2 dimensional element with boundary
the difference of the two cycles. In general a p-cycle will be an element x of Cp(K) with trivial
boundary, i.e., such that ∂x = 0, and we say that two p-cycles x and x′ are homologous if there is
an element y in Cp+1(K) such that ∂y = x − x′. The ‘holes’ correspond to classes of homologous
cycles as in our tunnel.

The number of ‘independent’ cycle classes in the various dimensions give the corresponding
Betti number. Using some algebra this is easier to define rigorously, but at the same time the
geometric insights from the vaguer description are important to try to retain. (They are not always
put in a central enough position in textbooks!) This algebraic approach identifies βp(K) as the
(torsion free) rank of a certain commutative group formed as follows: the pth homology group of
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K is defined to be the quotient:

Hp(K) =
Ker(∂p : Cp(K)→ Cp−1(K))
Im(∂p : Cp+1(K)→ Cp(K))

,

and then βp(K) = rank(Hp(K))
Thus far we have from K built a sequence of modules C(K)n, generated by the n-simplices of

K and with homomorphisms ∂p : Cp(K) → Cp−1(K) satisfying ∂p−1∂p = 0.. (We abstract this
structure calling it a chain complex. We will look at in more detail at several places later in these
notes.)

Exercises.Try to investigate this homology in some very simple situations perhaps including
some of the following:
(a) V (K) = {0, 1, 2, 3}, S(K) = P(V (K)) \ {∅, {0, 1, 2, 3}}. This is an empty tetrahedron so one
expects one 3-dimensional hole., i.e. β3(K) = 1 but the others are zero.
(b) ∆[2] is the (full) triangle and ∂∆[2] its boundary, so is an empty triangle. Find the homology
of ∂∆[2]× ∂∆[2], which is a triangulated torus.
(c) Find the homology of ∆[1]× ∂∆[2], which is a cylinder.

Note , it is up to you to find the meaning of product in this context. Remember the discussion
of the square, above, which is, of course ∆[1]×∆[1].

Often cohomology is more use that homology. Starting with K and a module M work out
Cn(K,M) = Hom(C(K)n,M). Now the boundary maps increase (upper) degree by one. The
cohomology is Hn(K,M) = Ker ∂n/Im∂n−1. Again this measures ‘holes’ detectable by M ! What
does that mean? The cohomology groups are better structured than the homology ones, but how
are these invariants be interpreted?

A simplicial map f : K → L will induce a map on cohomology groups. Try it! We can
equally well do this for chain or ‘cochain complexes’. There is a notion of chain map between chain
complexes, say, ϕ : C → D and such a map will induce maps on both homology ad cohomology.
Of special interest is when the induced maps are isomorphisms. The chain map is then called a
quasi-isomorphism.

1.2.5 Interpretation

The question of interpretation is a very crucial question but rather than answering it now, we
will return to the cohomology of groups. The terminology may seem a bit strange. Here we have
been talking about measuring holes in a space, so how does that relate to groups. The idea is
that one builds a space from a group in such a way as the properties of the space reflect those of
the group in some sense. The simplest case of this is an Eilenberg-MacLane space, K(G, 1). The
defining property of such a space is that its fundamental group is G whilst all other homotopy
groups are trivial. Eilenberg and Maclane showed that however such a space was constructed its
cohomology could be got just from G itself and that cohomology was related with the extension
problem and the invariant module problem. Their method was to build a chain complex that would
copy the structure of the chain complex on the K(G, 1). This chain complex, the bar resolution,
was very important because although in the group case there was an alternative route via the
topological space K(G, 1), for many other types of algebraic system (Lie algebras, associative
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algebras, commutative algebras, etc.), the analogous basic construction could be used, and in those
contexts no space was available. Thus from G, we want to construct a nice chain complex directly.
The construction is reasonably simple. It gives a natural way of getting a chain complex, but it
does not exploit any particular features of the group so if the group is infinite, the modules will be
infinitely generated, which will occupy us later, as we use insights from combinatorial group theory
to construct smaller models for equivalent resolutions, and better still look at ‘crossed’ versions.

For the moment we just need the definition (adapted from the account given in Wikipedia):

1.2.6 The bar resolution

The input data is a group G and a module M with a left G-action (i.e. a left G-module).
For n ≥ 0, we let Cn(G,M) be the group of all functions from the n-fold product Gn to M :

Cn(G,M) = {ϕ : Gn →M}

This is an Abelian group; its elements are called the n-cochains. We further define group homo-
morphisms

∂n : Cn(G,M)→ Cn+1(G,M)

by

∂n(ϕ)(g0, . . . , gn) = g0 · ϕ(g1, . . . , gn)

+
n−1∑
i=0

(−1)i+1ϕ(g0, . . . , gi−1, gigi+1, gi+2, . . . , gn)

+(−1)n+1ϕ(g0, . . . , gn−1)

These are known as the coboundary homomorphisms. The crucial thing to check here is ∂n+1 ◦∂n =
0, thus we have a chain complex and we can ‘compute’ its cohomology. For n ≥ 0, define the group
of n-cocycles as:

Zn(G,M) = Ker ∂n)

and the group of n-coboundaries as{
B0(G,M) = 0
Bn(G,M) = Im(∂n−1) n ≥ 1

and
Hn(G,M) = Zn(G,M)/Bn(G,M).

Thinking about this topologically it is as if we had constructed a sort of space / simplicial complex
K from G by taking Kn = Gn. We will see this idea several times later on. This cochain complex
is often called the bar resolution. It exists in a normalised and a unnormalised form. This is the
unnormalised one.

There are lots of properties that are easy to check here. Some will be suggested as exercises for
you to do.

One further point is that this cohomology used a module, and so encodes ‘commutative’ or
Abelian information. We will be also looking at the non-Abelian case.
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Before we leave this introduction to cohomology, it should be mentioned that in the topological
case, if we do not have a simplicial complex to start with, we either use the singular complex (see
next section) which is a simplicial set and not a simplicial complex, but the theory extends easily
enough, or we use open covers of the space to build a system of simplicial complexes approximating
to the space. We will see this later as Čech cohomology. This is most powerful when the module
M of coefficients is allowed to vary over the various points of the space. For this we will need the
notion of sheaf, which will be discussed in some detail later.

1.3 Simplicial things in a category

1.3.1 Simplicial Sets

Simplicial objects are extremely useful. Simplicial sets extend ideas of simplicial complexes in a neat
way. They combine a reasonably simple combinatorial definition with subtle algebraic properties.
Their original construction was motivated in algebraic topology by the singular complex of a space.

If X is a topological space, Sing(X) denotes the collection of sets and mappings defined by

Sing(X)n = Top(∆n, X), n ∈ N,

where ∆n is the usual topological n-simplex given, for example, by

{x ∈ Rn+1 |
∑

xi = 1; all xi ≥ 0}.

There are inclusion maps δi : ∆n−1 → ∆n and ‘squashing’ maps σi : ∆n+1 → ∆n and these induce
the face maps

di : Sing(X)n → Sing(X)n−1 0 ≤ i ≤ n,

and degeneracy maps

si : Sing(X)n → Sing(X)n+1 0 ≤ i ≤ n.

These satisfy the simplicial identities

didj = dj−1di if i < j,

disj =


sj−1di if i < j,
id if i = j or j + 1,
sjdi−1 if i > j + 1,

sisj = sjsi−1 if i > j.

Generally this structure is abstracted to give a family of sets, {Kn : n ≥ 0}, face maps di : Kn →
Kn−1 and degeneracy maps, si : Kn → Kn+1, satisfying these simplicial identities.

If C is any category, a simplicial object in C is given by a family of objects of C, {Kn : n ≥ 0}
and morphisms di and si as above. If ∆ denotes the category of finite ordinal sets, [n] = {0 < 1 <
. . . < n} and order preserving functions between them, then a simplicial object in C is simply a
functor, K : ∆op → C, so the obvious definition of a simplicial map will be a natural transformation
of functors, f : K → L. This translates as a family of morphisms, fn : Kn → Ln, compatible in
the obvious way with the di and si.
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We denote the category of simplicial objects in C by Simp(C), but will shorten Simp(Sets) to
S.

The category S models all homotopy types of spaces. It is a presheaf category, so is a topos
and has a lot of nice structure including products, and mapping space objects S(K,L), where

S(K,L)n = S(K ×∆[n], L).

Here ∆[n] = S(−, [n]), the standard simplicial n-simplex.

Examples of simplicial sets.
(i) If A is a small category or a groupoid, we can form a simplicial set, Ner(A), defined by

Ner(A)n = Cat([n],A), with the obvious face and degeneracy maps induced by composition with
the analogues of the δi and σi. The simplicial set, Ner(A), is called the nerve of the category A.
An n-simplex in Ner(A) is a sequence of n composable arrows in A.

This is easier to understand in pictures:
Ner(A)0 is the set of objects;
Ner(A)1 is the set of arrows or morphisms;
Ner(A)2 is the set of composable pairs of morphisms, so σ ∈ Ner(A)2 will be of form σ =

(a0
α1→ a1

α2→ a2). Visualising this as a triangle shows the faces more clearly:

a1

α2

!!BBBBBBBB

a0

α1

==||||||||
α1α2

// a2

The case Ner(A)n for n = 3, etc. are left to you. This is worth doing if you have not seen it before.
Note that in these contexts, we will usually use composition in the ‘left-to-right’ order, but in

general categorical settings will use gf being first do f then g. To stick exclusively to one or the
other is usually awkward, so we use both as appropriate.

If we have a group G, consider it as the one object groupoid G[1] as before, then Ner(G[1]) is
really the simplicial set corresponding to our construction of the bar resolution of G. It is called
the nerve of G.

(ii) Suppose we have a simplicial complex K, then it almost is a simplicial set. There are some
problems, but they are easily resolved. If we, a bit näıvely, set Kn to be the set of n-simplices of
K, then how are we to define the face maps, and if K has no simplices in dimensions greater than
n say, Kn+1 will be empty so degeneracies cause problems as you cannot map from a non-empty
set to an empty one!

That was too näıve, so we pick a partial order on the vertices ofK such that any simplex is totally
ordered, (for instance, a total order on V (K) does the job, but may not be convenient sometimes
and so may be ‘overkill’). Now reset Kn to be the set of all ordered strings σ = 〈x0, . . . , xn〉
of vertices, for which the underlying (unordered) set is a simplex of K. The degeneracies now
can be handled simply. For example, if σ = 〈x0, x1〉 is a 1-simplex in this simplicial set, then
s0σ = 〈x0, x0, x1〉, whilst s1σ = 〈x0, x1, x1〉. (The details are left to you to complete. Note we did
not specify how to define the face maps, so you need to do that as well and to verify that it all fits
together neatly.)
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If you want to learn more about simplicial set theory, the old paper of Curtis, [42] and Peter
May’s monograph, [81], are very readable. There is a fairly well behaved notion of homotopy in
S, and simplicial homotopy theory is the subject of many good books. A chatty introduction to it
can be found in Kamps and Porter, [69], which, of course, is highly recommended!

The homotopy theory of simplicial sets yields a notion of weak equivalence. (This is similar to
‘quasi-isomorphism’ in the homotopy theory of chain complexes.) There are homotopy groups and
f : K → L is a weak equivalence if f induces isomorphisms on all homotopy groups. We will not
need the detailed definition yet.

We next look at some simplicial algebraic gadgets, especially simplicial groups and simplicially
enriched groupoids. We will concentrate on the first but must mention the second for completeness.

1.3.2 Simplicial Objects in Categories other than Sets

If A is any category, we can form Simp.A = A∆op
. (Sometimes we will use a variant notation:

Simp(A), as occasionally the first notation may be ambiguous.)
These categories often have a good notion of homotopy as briefly mentioned above; see also the

discussion of simplicially enriched categories in [69]. Of particular use are:
(i) Simp.Ab, the category of simplicial Abelian groups. This is equivalent to the category of

chain complexes by the Dold-Kan theorem, which we will mention in more detail later.
(ii) Simp.Grps, the category of simplicial groups. This ‘models’ all connected homotopy

types, by Kan, [70] (cf., Curtis, [42]). There are adjoint functors G : Sconn → Simp.Grps,
W : Simp.Grps → Sconn, with the two natural maps GW → Id and Id → WG being weak
equivalences.

Results on simplicial groups by Carrasco, [35], generalise the Dold-Kan theorem to the non-
Abelian case, (cf., Carrasco and Cegarra, [36]).

(iii) ‘Simp.Grpds’: in 1984 Dwyer and Kan, [51], (and also Joyal and Tierney, and Duskin
and van Osdol, cf., Nan Tie, [92, 93]) noted how to generalise the (G,W ) adjoint pair to han-
dle all simplicial sets, not just the connected ones. (Beware there are several important print-
ing errors in the paper [51].) For this they used a special type of simplicial groupoid. Al-
though the term used in [51] was exactly that, ‘simplicial groupoid’, this is really a misnomer
and may give the wrong impression as not all simplicial objects in the category of groupoids
are used. A probably better term would be ‘simplicially enriched groupoid’, although ‘simpli-
cial groupoid with discrete objects’ is also used. We will denote this category by S − Grpds.

This category ‘models’ all homotopy types using a mix of algebra and combinatorial structure.
We will later describe both G and W in some detail.

(iv) Nerves of internal categories: Suppose that D is a category with finite limits and C is an
internal category in D. What does that mean? In our earlier discussion on groupoids, we had the
diagram that looked a bit like

C1

s //

t
// C0

i
oo

.

We complete this one stage to build in the set of composable pairs C2 = C1 ×C0 C1 and the
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multiplication/ composition map, which we denote here by m.

C2

p1 //
m //
p2 //

C1

s //

t
// C0

i
oo

.

We did this previously within the category of sets, but could do it equally well in D. We should also
mention an object C3 given by a ‘triple pullback’ which is useful when discussing the associativity
of composition. This will give us the analogue of a small category but in which the object of objects
and the object of arrows are both themselves objects of D and the source target and composition
maps are all morphisms in that category.

If one interprets this for D = Sets, it becomes clear that this diagram that we seem to be
building is part of the diagram specifying the nerve of the small category, C, with C0 the set of
objects, C1 that of morphisms, C2 that of composable pairs and so on. (We have not specified the
two degeneracies from C1 to C2 in the diagram, but this is merely because we left the details of
the rules governing identities out of our earlier discussion.) This builds a simplicial object in D as
follows: take an n-fold pullback to get

Cn = C1 ×C0 C1 ×C0 C1 ×C0 . . .×C0 C1︸ ︷︷ ︸
n

,

define face and degeneracies by the same sort of rules as in the set based nerve, that is, in dimension
n, d0 and dn each leave out an end, whilst the di use the composition in the category to get a
composite of two adjacent ‘arrows’, and the degeneracies are ‘insertion of identities’. (Working out
how to do these morphisms in terms of diagrams is quite fun!) We thus get a simplicial object in
D called the nerve of the internal category, C. We will use this in several situations later in a key
way. In particular we will use the case D = Grps.

1.3.3 The Moore complex and the homotopy groups of a simplicial group

Given a simplicial group G, the Moore complex, (NG, ∂), of G is the chain complex defined by

NGn =
n⋂
i=1

Ker dni

with ∂n : NGn → NGn−1 induced from dn0 by restriction. (Note there is no assumption that the
NGn are Abelian.

The nth homotopy group, πn(G), of G is the nth homology of the Moore complex of G, i.e.,

πn(G) ∼= Hn(NG, ∂),

=
( n⋂
i=0

Ker dni
)
/dn+1

n+1

( n⋂
i=0

Ker dn+1
i

)
.

(You should check that ∂NGn+1 / NGn.) The interpretation of NG and πn(G) is as follows:
for n = 1, g ∈ NG1,

∂g• g // •1
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and g ∈ NG2 looks like

•
∂g

��1
111111

g

•
1
//

1

FF
•

and so on.
We note that g ∈ NG2 is in Ker ∂ if it looks like

•
1

��1
111111

g

•
1
//

1

FF
•

whilst it will give the trivial element of π2(G) if there is a 3-simplex x with g on its third face and
all other faces identity.

This simple interpretation of the elements of NG and πn(G) will ‘pay off’ later by aiding
interpretation of some of the elements in other situations.

n-equivalences and homotopy n-types Let n ≥ 0. A morphism f : G → H of simpli-
cial group(oid)s is an n-equivalence if the induced homomorphisms, πk(f) : πk(G) → πk(H) are
isomorphisms for all k < n.

Inverting the n-equivalences in Simp.Grps gives a category Hon(Simp.Grps) and two simplicial
groups have the same n-type if they are isomorphic in Hon(Simp.Grps).

Remark and warning: For a space or simplicial set K, πk(K) ∼= πk−1(G(K)), so these
simplicial group n-types correspond to restrictions on πk(K) for k ≤ n in the spatial context.

To consider the application of this to homotopical and homological algebra, we will also need
the following:

Definition: A simplicial group, G, is augmented by specifying a constant simplicial group
K(G−1, 0) and a surjective group homomorphism, f = d0

0 : G0 → G−1 with fd1
0 = fd1

1 : G1 → G−1.
An augmentation of the simplicial group G is then a map

G −→ K(G−1, 0),

where K(G−1, 0) is the constant simplicial group with value G−1. An augmented simplicial group,
(G, f), is acyclic if the corresponding complex is acyclic, i.e., Hn(NG) ∼= 1 for n > 0 and H0(NG) ∼=
G−1.

1.3.4 Kan complexes and Kan fibrations

Within the category of simplicial sets, there is an important subcategory determined by those
objects that satisfy the Kan condition, that is the Kan complexes.

As before we set ∆[n] = ∆(−, [n]) ∈ S, then, for each i, 0 ≤ i ≤ n, we can form, within ∆[n],
a subsimplicial set, Λi[n], called the (n, i)-horn or (n, i)-box, by discarding the top dimensional n-
simplex (given by the identity map on [n]) and its ith face. We must also discard all the degeneracies
of those simplices.



24 CHAPTER 1. PRELIMINARIES

By an (n, i)-horn or box in a simplicial set K, we mean a simplicial map f : Λi[n]→ K. Such
a simplicial map corresponds intuitively to a family of n simplices of dimension (n − 1), fitting
together to form a ‘funnel’ or ‘empty horn’ shaped subcomplex within K. The idea is that a Kan
fibration of simplicial sets is a map in which the horns in the domain can be ‘filled’ if their images
in the codomain can be. More formally:

Definition: A map p : E → B is a Kan fibration if, for any n, i as above, given any (n, i)-horn
in E, specified by a map f1 : Λi[n]→ E, together with an n-simplex, f0 : ∆[n]→ B, such that

Λi[n]
f1 //

inc
��

E

p

��
∆[n]

f0
// B

commutes, then there is an f : ∆[n] → E such that pf = f0 and f.inc = f1, i.e., f lifts f0 and
extends f1.

Definition: A simplicial set, K, is a Kan complex if the unique map K → ∆[0] is a Kan
fibration. This is equivalent to saying that every horn in K has a filler, i.e., any f1 : Λi[n] → Y
extends to an f : ∆[n]→ Y .

Singular complexes, Sing(X), and the simplicial mapping spaces, Top(X,Y ), are always Kan
complexes. The nerve of a category, C, is a Kan complex if and only if the category is a groupoid.
This is important as the filler structure involves compositions and inverses, so encodes the algebraic
structure of C.

If G is a simplicial group, then its underlying simplicial set is a Kan complex. Moreover, given
a box in G, there is an algorithm for filling it using products of degeneracy elements. A form of
this algorithm is given below. More generally if f : G→ H is an epimorphism of simplicial groups,
then the underlying map of simplicial sets is a Kan fibration.

The following description of the algorithm is adapted from May’s monograph, [81], page 67.

Proposition 1 Let G be a simplicial group, then every box has a filler.

Proof: Let (y0, . . . , yk−1,−, yk+1, . . . , yn) give a horn in Gn−1, so the yis are (n− 1) simplices that
fit together as if they were all but one, the kth one, of the faces of an n-simplex. There are three
cases:

(i) k = 0: Let wn = sn−1yn and then wi = wi+1(si−1diwi+1)−1si−1yi for i = n, . . . , 1, then w1

satisfies diw1 = yi, i 6= 0;

(ii) 0 < k < n: Let w0 = s0y0 and wi = wi−1(sidiwi−1)−1siyi for i = 0, . . . , k − 1, then
take wn = wk−1(sn−1dnwk−1)−1sn−1yn, and finally a downwards induction given by wi =
wi+1(si−1diwi+1)−1si−1yi, for i = n, . . . , k + 1, then wk+1 gives diwk+1 = yi for i 6= k;

(iii) the third case, k = n uses w0 = s0y0 and wi = wi−1(sidiwi−1)−1siyi for i = 0, . . . , n− 1, then
wn−1 satisfies diwn−1 = yi, i 6= n. �



Chapter 2

Crossed modules - definitions,
examples and applications

We will give these for groups, although there are analogues for many other algebraic settings.

2.1 Crossed modules

Definition: A crossed module, (C,G, δ), consists of groups C and G with a left action of G on
C, written (g, c) → gc for g ∈ G, c ∈ C, and a group homomorphism δ : C → G satisfying the
following conditions:
CM1) for all c ∈ C and g ∈ G,

δ(gc) = gδ(c)g−1,

CM2) for all c1, c2 ∈ C,
δ(c2)c1 = c2c1c

−1
2 .

(CM2 is called the Peiffer identity.)

If (C,G, δ) and (C ′, G′, δ′) are crossed modules, a morphism, (µ, η) : (C,G, δ) → (C ′, G′, δ′),
of crossed modules consists of group homomorphisms µ : C → C ′ and η : G→ G′ such that

(i) δ′µ = ηδ and (ii) µ(gc) = η(g)µ(c) for all c ∈ C, g ∈ G.
Crossed modules and their morphisms form a category, of course. It will usually be denoted

CMod.

Several well known situations give rise to crossed modules. The verification is left to you.

2.1.1 Algebraic examples of crossed modules

(i) Let H be a normal subgroup of a group G with i : H → G the inclusion, then we will
say (H,G, i) is a normal subgroup pair. In this case, of course, G acts on the left of H
by conjugation and the inclusion homomorphism i makes (H,G, i) into a crossed module.
Conversely it is an easy exercise to prove

Lemma 1 If (C,G, ∂) is a crossed module, ∂C is a normal subgroup of G. �

25
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(ii) Suppose G is a group and M is a left G-module; let 0 : M → G be the trivial map sending
everything in M to the identity element of G, then (M,G, 0) is a crossed module.

Again conversely:

Lemma 2 If (C,G, ∂) is a crossed module, K = Ker ∂ is central in C and inherits a natural
G-module structure from the G-action on C. Moreover, N = ∂C acts trivially on K, so K
has a natural G/N -module structure. �

Again the proof is left as an exercise.

As these two examples suggest, general crossed modules lie between the two extremes of normal
subgroups and modules, in some sense, just as groupoids lay between equivalence relations
and G-sets. Their structure bears a certain resemblance to both - they are “external” normal
subgroups but also are “twisted” modules.

(iii) Let G be a group, then, as usual, let Aut(G), denote the group of automorphisms of G.
Conjugation gives a homomorphism

∂ : G→ Aut(G).

Of course, Aut(G) acts on G in the obvious way and ∂ is a crossed module. We will need this
later so will give it its own name: Aut(G).

More generally if L is some type of algebra then U(L) → Aut(L) will be a crossed module,
where U(L) denotes the units of L and the morphism send a unit to the automorphism given
by conjugation by it.

(iv) We suppose given a morphism
θ : M → N

of left G-modules and form the semi-direct product N o G. This group we make act on M
via the projection from N oG to G.

We define a morphism
∂ : M → N oG

by ∂(m) = (θ(m), 1), where 1 denotes the identity element of G, then (M,N o G, ∂) is a
crossed module. In particular, if A and B are Abelian groups, and B is considered to act
trivially on A, then any homomorphism, A→ B is a crossed module.

(v) As a last algebraic example for the moment, let

1→ K
a→ E

b→ G→ 1

be an extension of groups with K a central subgroup of E, i.e. a central extension of G by
K. For each g ∈ G, pick an element s(g) ∈ b−1(g) ⊆ E. Define an action of G on E by: if
x ∈ E, g ∈ G, then

gx = s(g)xs(g)−1.

This is well defined, since if s(g), s′(g) are two choices, s(g) = ks′(g) for some k ∈ K, and
K is central. (This also shows that this is an action.) The structure (E,G, b) is a crossed
module.
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A particular important case is: for R a ring, let E(R) be, as before, the group of elementary
matrices of R, E(R) ⊆ Gl(R) and St(R), the corresponding Steinberg group with b : St(R)→
E(R), the natural morphism, (see later or [83], for the definition). Then this gives a central
extension

1→ K2(R)→ St(R)→ E(R)→ 1

and thus a crossed module. In fact, more generally,

b : St(R)→ Gl(R)

is a crossed module. The group Gl(R)/Im(b) is K1(R), the first algebraic K-group of the
ring.

2.1.2 Topological Examples

In topology there are several examples that deserve looking at in detail as they do relate to
aspects of the above algebraic cases. They require slightly more topological knowledge that
has been assumed so far.

(vi) Let X be a pointed space, with x0 ∈ X as its base point, and A a subspace with x0 ∈ A.
Recall that the second relative homotopy group, π2(X,A, x0), consists of relative homotopy
classes of continuous maps

f : (I2, ∂I2, J)→ (X,A, x0)

where ∂I2 is the boundary of I2, the square, [0, 1]× [0, 1], and J = {0, 1}× [0, 1]∪ [0, 1]×{0}.
Schematically f maps the square as:

x0x0 X

x0

A

so the top of the boundary goes to A, the rest to x0 and the whole thing to X. The relative
homotopies considered then deform the maps in such a way as to preserve such structure,
so intermediate mappings also send J to x0, etc. Restriction of such an f to the top of the
boundary clearly gives a homomorphism

∂ : π2(X,A, x0)→ π1(A, x0)

to the fundamental group of A, based at x0. There is also an action of π1(A, x0) on π2(X,A, x0)
given by rescaling the ‘square’ given by

a

�
�
��

@
@
@@

f

a−1
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where f is partially ‘enveloped’ in a region on which the mapping is behaving like a.

Of course, this gives a crossed module

π2(X,A, x0)→ π1(A, x0).

A direct proof is quite easy to give. One can be found in Hilton’s book, [63] or in Brown-
Higgins-Sivera, [28]. Alternatively one can use the argument in the next example.

(vii) Suppose F
i→ E

p→ B is a fibration sequence of pointed spaces. Thus p is a fibration,
F = p−1(b0), where b0 is the basepoint of B. The fibre F is pointed at f0, say, and f0 is taken
as the basepoint of E as well.

There is an induced map on fundamental groups

π1(F )
π1(i)−→ π1(E)

and if a is a loop in E based at f0, and b a loop in F based at f0, then the composite path
corresponding to aba−1 is homotopic to one wholly within F . To see this, note that p(aba−1)
is null homotopic. Pick a homotopy in B between it and the constant map, then lift that
homotopy back up to E to one starting at aba−1. This homotopy is the required one and its
other end gives a well defined element ab ∈ π1(F ) (abusing notation by confusing paths and
their homotopy classes). With this action (π1(F ), π(E), π1(i)) is a crossed module. This will
not be proved here, but is not that difficult. Links with previous examples are strong.

If we are in the context of the above example, consider the inclusion map, f of a subspace A
into a space X (both pointed at x0 ∈ A ⊂ X). Form the corresponding fibration

if : Mf → X

by forming the pullback

Mf πf //

jf

��

XI

e0

��
A

f
// X

so Mf consists of pairs (a, λ), where a ∈ A and λ is a path from f(a) to some point λ(1). Set
if = e1π

f , so if (a, λ) = λ(1). It is standard that if is a fibration and its fibre is the subspace
Fh(f) = {(a, λ) | λ(1) = x0}, often called the homotopy fibre of f . The base point of Fh(f)
is taken to be the constant path at x0, (x0, cx0).

If we note that
π1(Fh(f)) ∼= π2(X,A, x0)

π1(Mf ) ∼= π1(A, x0)

(even down to the descriptions of the actions, etc.), the link with the previous example becomes
clear, and thus furnishes another proof of the statement there.



2.2. GROUP PRESENTATIONS, IDENTITIES AND 2-SYZYZGIES 29

(viii) The link between fibrations and crossed modules can also be seen in the category of simplicial
groups. A morphism f : G→ H of simplicial groups is a fibration if and only if each fn is an
epimorphism. This means that a fibration is determined by the fibre over the identity which
is, of course, the kernel of f . The (G,W )-links between simplicial groups and simplicial sets
mean that the analogue of π1 is π0. Thus the fibration f corresponds to

Ker f
C→ G

and each level of this is a crossed module by our earlier observations. Taking π0, it is easy to
check that

π0(Ker f)→ π0(G)

is a crossed module. In fact any crossed module is isomorphic to one of this form. (Proof left
to the reader.)

If M = (C,G, ∂) is a crossed module, then we sometimes write π0(M) := G/∂C, π1(M) :=
Ker ∂, and then have a 4-term exact sequence:

0→ π1(M)→ C
∂→ G→ π0(M)→ 1.

In topological situations when M provides a model for (part of) the homotopy type of a space X
or a pair (X,A), then typically π1(M) ∼= π2(X), π0(M) ∼= π1(X).

MacLane and Whitehead, [80], showed that crossed modules give algebraic models for all ho-
motopy 2-types of connected spaces. We will visit this result in more detail later, but loosely a
2-equivalence between spaces is a continuous map that induces isomorphisms on π1 and π2, the
first two homotopy groups. Two spaces have the same 2-type if there is a zig-zag of 2-equivalences
joining them.

We next turn to the use of crossed modules in combinatorial group theory.

2.2 Group presentations, identities and 2-syzyzgies

2.2.1 Presentations and Identities

(cf. Brown-Huebschmann, [29]) We consider a presentation P = (X : R) of a group G. The
elements of X are called generators and those of R relators. We then have a short exact sequence,

1→ N → F → G→ 1,

where F = F (X), the free group on the set X, R is a subset of F and N = N(R) is the normal
closure in F of the set R. The group F acts on N by conjugation: uc = ucu−1, c ∈ N, u ∈ F and
the elements of N are words in the conjugates of the elements of R:

c = u1(rε11 )u2(rε22 ) . . . un(rεnn )

where each εi is +1 or − 1. One also says such elements are consequences of R. Heuristically
an identity among the relations of P is such an element c which equals 1. The problem of what
this means is analogous to that of working with a relation in R. For example, in the presentation
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(a : a3) of C3, the cyclic group of order 3, if a is thought of as being an element of C3, then a3 = 1,
so why is this different from the situation with the ‘presentation’, (a : a = 1)? To get around that
difficulty the free group on the generators F (X) was introduced and, of course, in F ({a}), a3 is
not 1. A similar device, namely free crossed modules on the presentation will be introduced in a
moment to handle the identities. Before that consider some examples which indicate that identities
exist even in some quite common-or-garden cases.

Example 1: Suppose r ∈ R, but it is a power of some element s ∈ F , i.e. r = sm. Of course,
rs = sr and

srr−1 = 1

so sr.r−1 is an identity. In fact, there will be a unique z ∈ F with r = zq, q maximal with this
property. This z is called the root of r and if q > 1, r is called a proper power.

Example 2: Consider one of the standard presentations of S3, (a, b : a3, b2, (ab)2). Write
r = a3, s = b2, t = (ab)2. Here the presentation leads to F , free of rank 2, but N(R) ⊂ F , so it
must be free as well, by the Nielsen-Schreier theorem. Its rank will be 7, given by the Schreier index
formula or, geometrically, it will be the fundamental group of the Cayley graph of the presentation.
This group is free on generators corresponding to edges outside a maximal tree as in the following
diagram:

1 - a
J
J
J
J
J
J
JJ]

a2















�

b





�

�

ba
J
J
Ĵ
ab-

�

�
�

M ^ 1 - a

a2















�

b





�

�

ba

ab-
θ1 θ2 θ3

θ6 θ7

θ4 θ5

The Cayley graph of S3 and a maximal tree in it.

The set of normal generators of N(R) has 3 elements; N(R) is free on 7 elements (corresponding
to the edges not in the tree), but is specified as consisting of products of conjugates of r, s and t,
and there are infinitely many of these. Clearly there must be some slight redundancy, i.e., there
must be some identities among the relations!

A path around the outer triangle corresponds to the relation r; each other region corresponds to
a conjugate of one of r, s or t. (It may help in what follows to think of the graph being embedded
on a 2-sphere, so ‘outer’ and ‘outside’ mean ‘round the back face.) Consider a loop around a region.
Pick a path to a start vertex of the loop, starting at 1. For instance the path that leaves 1 and
goes along a, b and then goes around aaa before returning by b−1a−1 gives abrb−1a−1. Now the
path around the outside can be written as a product of paths around the inner parts of the graph,
e.g. (abab)b−1a−1b−1(bb)(b−1a−1b−1a−1) . . . and so on. Thus r can be written in a non-trivial way
as a product of conjugates of r, s and t. (An explicit identity constructed like this is given in [29].)

Example 3: In a presentation of the free Abelian group on 3 generators, one would expect the
commutators, [x, y], [x, z] and [y, z]. The well-known identity, usually called the Jacobi identity,
expands out to give an identity among these relations (again see [29], p.154 or Loday, [76].)
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2.2.2 Free crossed modules and identities

The idea that an identity is an equation in conjugates of relations leads one to consider formal
conjugates of symbols that label relations. Abstracting this a bit, suppose G is a group and
f : Y → G, a function ‘labelling’ the elements of some subset of G. To form a conjugate, you need
a thing being conjugated and an element ‘doing’ the conjugating, so form pairs (p, y), p ∈ G, y ∈ Y ,
to be thought of as py, the formal conjugate of y by p. Consequences are words in conjugates of
relations, formal consequences are elements of F (G × Y ). There is a function extending f from
G× Y to G given by

f̄(p, y) = pf(y)p−1,

converting a formal conjugate to an actual one and this extends further to a group homomorphism

φ : F (G× Y )→ G

defined to be f̄ on the generators. The group G acts on the left on G × Y by multiplication:
p.(p′, y) = (pp′, y). This extends to a group action of G on F (G × Y ). For this action, φ is
G-equivariant if G is given its usual G-group structure by conjugations / inner automorphisms.
Naively identities are the elements in the kernel of this, but there are some elements in that kernel
that are there regardless of the form of function f . In particular, suppose that g1, g2 ∈ G and
y1, y2 ∈ Y and look at

(g1, y1)(g2, y2)(g1, y1)−1((g1f(y1)g−1
1 )g2, y2)−1.

Such an element is always annihilated by φ. The normal subgroup generated by such elements is
called the Peiffer subgroup. We divide out by it to obtain a quotient group. This is the construction
of the free crossed module on the function f . If f is, as in our initial motivation, the inclusion of
a set of relators into the free group on the generators we call the result the free crossed module on
the presentation P and denote it by C(P).

We can now formally define the module of identities of a presentation P = (X : R). We form
the free crossed module on R → F (X), which we will denote by ∂ : C(P) → F (X). The module
of identities of P is Ker ∂. By construction, the group presented by P is G ∼= F (X)/Im∂, where
Im∂ is just the normal closure of the set, R, of relations and we know that Ker ∂ is a G-module.
We will usually denote the module of identities by πP .

We can get to C(P) in another way. Construct a space from the combinatorial information
in C(P) as follows. Take a bunch of circles labelled by the elements of X; call it K(P)1, it is
the 1-skeleton of the space we want. We have π1(K(P)1

∼= F (X). Each relator r ∈ R is a word
in X so gives us a loop in K(P)1, following around the circles labelled by the various generators

making up r. This loop gives a map S1 fr→ K(P)1. For each such r we use fr to glue a 2-
dimensional disc e2

r to K(P)1 yielding the space K(P). The crossed module C(P) is isomorphic to
π2(K(P),K(P)1) ∂→ π1(K(P)1.

The main problem is how to calculate πP or equivalently π2(K(P)). One approach is via an
associated chain complex. This can be viewed as the chains on the universal cover of K(P), but
can also be defined purely algebraically, for which see Brown-Huebschmann, [29], or Loday, [76].
That algebraic - homological approach leads to ‘homological syzygies’. For the moment we will
concentrate on:
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2.2.3 Homotopical syzygies:

There are both homological and homotopical syzygies. We will concentrate on the homotopical
versions. For the homological form, have a look at Loday’s article, [76] or Kapranov and Saito, [71]
and later on in these notes.

We have built a complex, K(P), from a presentation P of a group G. Any element in π2(K(P))
can, of course, be represented by a map from S2 to K(P) and by cellular approximation can be
replaced, up to homotopy, by a cellular decomposition of S2 and a cellular map φ : S2 → K(P).
We will adopt the terminology of Kapranov and Saito, [71], and Loday, [76], in referring to a pair
consisting of a cellular subdivision of S2 together with a cellular map, as above, as a homotopical
2-syzygy . Of course, such an object corresponds to an identity among the relations of P, but is a
specific representative of such an identity. A family {φλ}λ∈Λ of such homotopical 2-syzygies is then
called complete when the homotopy classes {[φλ]}λ∈Λ generate π2(K(P)).

In this case, we can use the φλ to form the next stage of the construction of an Eilenberg-
MacLane space, K(G, 1), by killing this π2. More exactly, rename K(P) as X(2) and form

X(3) := X(2) ∪
⋃
λ∈Λ

e3
λ,

by, for each λ ∈ Λ, attaching a 3-cell, e3
λ to X(2) using φλ. Of course, we then have

π1(X(3)) ∼= G, π2(X(3)) = 0.

Again π3(X(3)) may be non-trivial, so we consider homotopical 3-syzygies. Such an object, s, will
consist of an oriented polytope decomposition of S3 together with a continuous map, fs from S3 to
X(3), which sends the i-skeleton of that decomposition to X(i), i = 0, 1, 2. At this stage we have
X(0) = K(P)0, a point, X(1) = K(P)1, and X(2) = K(P)2. One wants enough such 3-syzygies,
s, identified algebraically and combinatorially, so that the corresponding homotopy classes, {[fs]}
generate π3(X(3)).

It is clear, by induction, that we get a notion of homotopical n-syzygy. We assume X(n) has
been built inductively by attaching cells of dimension ≤ n along homotopical k-syzygies for k < n,
so that

π1(X(n)) ∼= G, πk(X(n)) = 0, k = 2, . . . , n− 1,

then a homotopical n-syzygy, s, is an oriented polytope decomposition of Sn and a continuous
cellular map fs : Sn → X(n). After a choice of a set Rn of n-syzygies, so that {[ss] | s ∈ Rn}
generates πn(X(n)) as a G-module, we can form X(n+1) by attaching n+1-dimensional cells en+1

s

along these fs for s ∈ Rn.
If we can do this in a sensible way, for all n, we say the resulting system of syzygies is complete

and the limit space X(∞) =
⋃
X(n) is then a cellular model for BG, the classifying space of the

group G.

This construction is, of course, just a homotopical version of the construction of a free resolution
of the trivial G-module, Z. We could consider how to form simplicial resolutions ‘step-by-step’ (see
here, starting page 63) as another combinatorial way to replace K(P) and more generally K(G, 1).
Alternatively there is a way of using this to get what is called a crossed resolution of G, but more
on that later.

Remark: Some additional aspects of this can be found in Loday’s paper [76], in particular the
link with the ‘pictures’ of Igusa, [66, 67].
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2.2.4 Examples of homotopical syzygies

Example and construction: Given any group G, we can find a presentation with {〈g〉 | g 6=
1, g ∈ G} as set of generators and a relation rg,g′ := 〈g〉〈g′〉〈gg′〉−1 for each pair (g, g′) of elements
of G. (We write 〈1〉 = 1 for convenience.)

The relation rg,g′ gives a triangle
.

g′

  AAAAAAA

.

g
>>}}}}}}}
gg′

// .

and, for each triple (g, g′, g′′), we get a homotopical 2-syzygy in the form of a tetrahedron.
Higher homotopical syzygies occur for any tuple, (g1, . . . , gn), of non-identity elements of G,

by labelling a n-simplex. The limiting cellular space, X(∞), constructed from this context is
just the usual model of the classifying space BG as geometric realisation of the nerve of G. The
corresponding free resolution, (C∗(G), d), is the classical normalised bar resolution. Using this bar
resolution above dimension 2 together with the crossed module of the presentation at the base, one
gets the standard free crossed resolution of the group, G, to which we will return later.

Example: Syzygies for the Steinberg group (cf. Kapranov and Saito, [71]) Let R be an
associative ring with 1. The elementary matrices εij(a), over the ring R are the matrices having

εij(a)k,l =


1 if k = l
a if (k, l) = (i, j), a ∈ R
0 otherwise,

These satisfy some relations by virtue of their definition regardless of what R is. The Steinberg
group, Stn(R), has generators xij(a), corresponding to these matrices and satisfying these generic
relations. Explicitly it has relations,

St1 xi,j(a)xi,j(b) = xi,j(a+ b);

St2 [xi,j(a), xk,`(b)] =
{

1 if i 6= `, j 6= k,
xi,`(ab) i 6= `, j = k.

(These groups are nested so that Stn(R) ⊂ Stn+1(R) and our earlier mention of the Steinberg
group St(R) corresponded to the direct limit of this nested sequence.)

The identities / homotopical 2-syzygies are built from three types of polygon: a) a triangle,
Tij(a, b) for each i, j, i 6= j, coming from St1;

b) a square,

xij(a)
.....................
...................
...

......................
xij(a)

..................
...

xkl(b) xkl(b)

corresponding to the first case of St2 and
c) a pentagon, for the second:
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xij(a)
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.........
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.........
.........................

.........................................................................................................................................................
..............
..............
..............
..............
..............
..............
..............
...........................

xik(ab)

xjk(b)

xjk(b)

xij(a)

..................................................................................................................................

Then for any pairs (i, j), (k, l), (m, p) with xij(a), xkl(b), xmp(c), commuting by virtue of St2’s first
clause, we will have a homotopical syzygy in the form of a labelled cube.

There is also a homotopy 2-syzygy given by the associahedron labelled by generators as shown:
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xk`(c)

xjk(b)

xj`(bc)

xk`(c)

xk`(c)

xi`(abc)

xk`(c)

xi`(abc) xk`(c)

xij(a)

xik(ab)

xij(a)xij(a)

xik(ab) xjk(b)

xjk(b)
xij(a)

xjl(bc)

xjk(b)
xij(a)

xjk(b)

Remark: Kapranov and Saito, [71], have conjectured that the space X(∞) obtained by gluing
labelled higher Stasheff polytopes together, is homotopically equivalent to the homotopy fibre of

f : BSt(R)→ BSt(R)+,

where (−)+ denotes Quillen’s plus construction. The associahedron is a Stasheff polytope and,
by encoding the data that goes to build the identities / syzygies schematically in a ‘hieroglyph’,
Kapranov and Saito make a link between such hieroglyphs and certain polytopes.

2.3 Cohomology, crossed extensions and algebraic 2-types

2.3.1 Cohomology and extensions, continued

Suppose we have any group extension

E : 1→ K → E
p→ G→ 1,

with K Abelian, but not necessarily central. We can look at various possibilities.
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If we can split p, by a homomorphism s : G→ E, with ps = IdG, then, of course, E ∼= K oG
by the isomorphisms,

e −→ (esp(e)−1, p(e)),

ks(g)←− (k, g),

which are compatible with the projections etc., so there is an equivalence of extensions

1 // K //

=

��

E //

∼=
��

G //

=

��

1

1 // K // K oG // G // 1.

Our convention for multiplication in K oG will be

(k, g)(k′, g′) = (kgk′, gg′).

But what if p does not split. We can build a (small) category of extensions Ext(G,K) with objects
such as E above and in which a morphism from E to E ′ is a diagram

1 // K //

=

��

E //

α

��

G //

=

��

1

1 // K // E′ // G // 1.

By the 5-lemma, α will be an isomorphism, so Ext(G,K) is a groupoid.
In E , the epimorphism p is usually not splittable, but as a function between sets, it is onto so we

can pick an element in each p−1(g) to get a transversal (or set of coset representatives), s : G→ E.
We get a comparison pairing / obstruction map or ‘factor set’ :

f : G×G→ E

f(g1, g2) = s(g1)s(g2)s(g1g2)−1,

which will be trivial, (i.e. f(g1, g2) = 1 for all g1, g2 ∈ G exactly if s splits p, i.e. is a homomor-
phism). This construction assumes that we know the multiplication in E, otherwise we cannot
form this product! On the other hand given this ‘f ’, we can work out the multiplication. As a set,
E will be the product K × G, identified with it by the same formulae as in the split case, noting
that pf(g1, g2) = 1, we have

(k1, g1)(k2, g2) = (k1
s(g1)k2f(g1, g2), g1g2).

The product is twisted by the pairing f . Of course, we need this multiplication to be associative
and, to ensure that, f must satisfy a cocycle condition:

s(g1)f(g2, g3)f(g1, g2g3) = f(g1, g2)f(g1g2, g3).

This is a well known formula from group cohomology, more so if written additively:

s(g1)f(g2, g3)− f(g1g2, g3) + f(g1, g2g3)− f(g1, g2) = 0.
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Here we actually have various parts of the nerve of G involved in the formula. The group G ‘is’ a
small category (groupoid with one object), which we will, for the moment, denote G. The triple
σ = (g1, g2, g3) is a 3-simplex in Ner(G) and its faces are

d0σ = (g2, g3),
d1σ = (g1g2, g3),
d2σ = (g1, g2g3),
d3σ = (g1, g2).

This is all very classical. We can use it in the usual way to link π0(Ext(G,K)) with H2(G,K) and
so is the ‘modern’ version of Schreier’s theory of group extensions, at least in the case that K is
Abelian.

For a long time there was no obvious way to look at the elements of H3(G,K) in a similar
way. In MacLane’s homology book, [77], you can find a discussion from the classical viewpoint. In
Brown’s [22], the link with crossed modules is sketched although no references for the details are
given, for which see MacLane’s [79].

If we have a crossed module C ∂→ P , then we saw that Ker ∂ is central in C and is a P/∂C-
module. We thus have a ‘crossed 2-fold extension’:

K
i→ C

∂→ P
p→ G,

where K = Ker ∂ and G = P/∂C. (We will write N = ∂C.)
Repeat the same process as before for the extension

N → P → G,

but take extra care as N is usually not Abelian. Pick a transversal s : G→ P giving f : G×G→ N
as before (even with the same formula). Next look at

K
i→ C → N,

and lift f to C via a choice of F (g1, g2) ∈ C with image f(g1, g2) in N .
The pairing f satisfied the cocycle condition, but we have no means of ensuring that F will do

so, i.e. there will be, for each triple (g1, g2, g3), an element c(g1, g2, g3) ∈ C such that

s(g1)F (g2, g3)F (g1, g2g3) = i(c(g1, g2, g3))F (g1, g2)F (g1g2, g3),

and some of these c(g1, g2, g3) may be non-trivial. The c(g1, g2, g3) will satisfy a cocycle condition
correspond to a 4-simplex in Ner(G), and one can reconstruct the crossed 2-fold extension up to
equivalence from F and c. Here ‘equivalence’ is generated by maps of ‘crossed’ exact sequences:

1 // K //

=

��

C //

��

P //

��

G //

=

��

1

1 // K // C ′ // P ′ // G // 1,

but these morphisms need not be isomorphisms. Of course, this identifies H3(G,K) with π0 of the
resulting category.

What about H4(G,K)? Yes, something similar works, but we do not have the machinery to do
it here, yet.
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2.3.2 Not really an aside!

Suppose we start with a crossed module C = (C,P, ∂). We can build an internal category X (C) in
Grps from it. The group of objects of X (C) will be P and the group of arrows C o P . The source
map

s : C o P → P is s(c, p) = p,

the target

t : C o P → P is t(c, p) = ∂c.p.

(That looks a bit strange. That sort of construction usually does not work, multiplying two
homomorphisms together is a recipe for trouble! - but it does work here:

t((c1, p1).(c2, p2)) = t(c1
p1c2, p1p2)

= ∂(c1
p1c2).p1p2,

whilst t(c1, p1).t(c2, p2) = ∂c1.p1.∂c2.p2, but remember ∂(c1
p1c2) = ∂c1.p1.∂c2.p

−1
1 , so they are

equal.)
The identity morphism is i(p) = (1, p), but what about the composition. Here it helps to draw

a diagram. Suppose (c1, p1) ∈ C o P , then it is an arrow

p1
(c1,p1)−→ ∂c1.p1,

and we can only compose it with (c2, p2) if p2 = ∂c1.p1. This gives

p1
(c1,p1)−→ ∂c1.p1

(c2,∂c1.p1)−→ ∂c2∂c1.p1.

The obvious candidate for the composite arrow is (c2c1, p1) and it works!
In fact, X (C) is an internal groupoid as (c−1

1 , ∂c1.p1) is an inverse for (c1, p1).
Now if we started with an internal category

G1

s //

t
// G0

i
oo

,

etc., then set P = G0 and C = Ker s with ∂ = t |C to get a crossed module.

Theorem 1 (Brown-Spencer,[33]) The category of crossed modules is equivalent to that of internal
categories in Grps. �

You have, almost, seen the proof. As beginning students of algebra, you learnt that equivalence
relations on groups need to be congruence relations for quotients to work well and that congru-
ence relation ‘are the same as’ normal subgroups. That is the essence of the proof needed here,
but we have groupoids rather than equivalence relations and crossed modules rather than normal
subgroups.
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2.3.3 Perhaps a bit more of an aside ... for the moment!

This is quite a good place to mention the groupoid based theory of all this. The resulting objects
look like abstract 2-categories and are 2-groupoids. We have a set of objects K0, a set of arrows
K1, depicted x

p−→ y, and a set of two cells

x

p

$$

∂c.p

::
�� ��
�� (c,p) y .

In our previous diagrams, as all the elements of P started and ended at the same single object, we
could shift dimension down one step; our old objects are now arrows and our old arrows are 2-cells.
We will return to this later.

The important idea to note here is that a ‘higher dimensional category’ has a link with an
algebraic object. The 2-group(oid) provides a useful way of interpreting the structure of the crossed
module and indicates possible ways towards similar applications and interpretations elsewhere. For
instance, a presentation of a monoid leads more naturally to a 2-category than to any analogue of
a crossed module, since kernels are less easy to handle than congruences in Mon.

There are other important interpretations of this. Categories such as that of vector spaces,
Abelian groups or modules over a ring, have an additional structure coming from the tensor product,
A ⊗ B. They are monoidal categories. One can ‘multiply’ objects together and this is linked to a
related multiplication on morphisms between the objects. In many of the important examples the
multiplication is not strictly associative, so for instant, if A,B,C are objects there is an isomorphism
between (A⊗B)⊗C and A⊗ (B ⊗C), but this isomorphism is most definitely not the identity as
the two objects are constructed in different ways. A similar effect happens in the category of sets
with ordinary Cartesian product. The isomorphism is there because of universal properties but it
is again not the identity. It satisfies some coherence conditions, (a cocycle condition in disguise),
relating to associativity of four fold tensors and the associahedron we gave earlier is a corresponding
diagram for the five fold tensors. (Yes, there is a strong link but that is not for these notes!) Our
2-group(oid) is the ‘suspension’ or ‘categorification’ of a similar structure. We can multiply objects
and ‘arrows’ and the result is a ‘gr-groupoid’, i.e. a strict monoidal category with inverses. This is
vague here, but will gradually be explored later on. If you want to explore the ideas further now,
look at Baez and Dolan, [9].

Just as associativity in a monoid is replaced by a ‘lax’ associativity ‘up to coherent isomorphisms’
in the above, gr-groupoids are ‘lax’ forms of internal categories in groups and thus indicate the
presence of a crossed module-like structure, albeit in a weakened or ‘laxified’ form. Later we will
see naturally occurring gr-groupoid structures associated with some constructions in non-Abelian
cohomology. there is also a sense in which the link between fibrations and crossed modules given
earlier here, indicates that fibrations are like a related form of lax crossed modules. In the notion
of fibred category and the related Grothendieck construction, this intuition begins to be ‘solidified’
into a clearer strong relationship.

2.3.4 Back to 2-types

From our crossed module, C = (C,P, ∂), we build the internal groupoid X (C) as above, then apply
the nerve construction internally to the internal groupoid structure to get a simplicial group, K(C).
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We need this in some detail in low dimensions.

K(C)0 = P

K(C)1 = C o P d0 = t, d1 = s

K(C)2 = C o (C o P ),

where d0(c2, c1, p) = (c2, ∂c2.p), d1(c2, c1, p) = (c2.c1, p) and d2(c2, c1, p) = (c1, p). The pattern
continues with K(C)n = C o (. . . o (C o P ) . . .), having n-copies of C. The di, 0 < i < n are
given by multiplication in C, d0 is induced from t and dn is a projection. The si are insertions of
identities. (We will examine this in more detail later.) We say K(C) is the nerve of the crossed
module, C. The simplicial set W (K(C)) or its geometric realisation, would be called the classifying
space of C and we will look at this in much more detail later on. (A word of caution: for G a
group considered as a crossed module, this ‘nerve’ is not the nerve of G in the sense used earlier.
It is just the constant simplicial group corresponding to G. What is often called the nerve of G
is what here has been called its classifying space. One way to view this is to note that X (C) has
two independent structures, one a group, the other a category, and this nerve is of the category
structure. The group G considered as a crossed module is like a set considered as a (discrete)
category, having only identity arrows.)

The Moore complex of K(C) is easy to calculate and is just NK(C)i = 1 if i ≥ 2; NK(C)1
∼= C;

NK(C)0
∼= P with the ∂ : NK(C)1 → NK(C)0 being exactly the given ∂ of C. (This is left as an

exercise. It is a useful one to do in detail.)

Proposition 2 (Loday,[75]) The category CMod of crossed modules is equivalent to the subcate-
gory of Simp.Grps, consisting of those simplicial groups, G, having Moore complexes of length 1,
i.e. NGi = 1 if i ≥ 2. �

This raises the interesting question as to whether it is possible to find alternative algebraic descrip-
tions of the structures corresponding to Moore complexes of length n.

Is there any way of going directly from simplicial groups to crossed modules? Yes. The last two
terms of the Moore complex will give us:

∂ : NG1 → NG0 = G0

and G0 acts on NG1 by conjugation via s0, i.e. if g ∈ G0 and x ∈ NG1, then s0(g)xs0(g)−1 is
also in NG1. (Of course, we could use multiple degeneracies to make g act on an x ∈ NGn just
as easily.) As ∂ = d0, it respects the G0 action, so CM1 is satisfied. In general, CM2 will not be
satisfied. Suppose g1, g2 ∈ NG1 and examine ∂g1g2 = s0d0g1.g2.s0d0g

−1
1 . This is rarely equal to

g1g2g
−1
1 . We write 〈g1, g2〉 = [g1, g2][g2, s0d0g1] = g1g2g

−1
1 .(∂g1g2)−1, so it measures the obstruction

to CM2 for this pair g1, g2. This is often called the Peiffer commutator of g1 and g2. Noting that
s0d0 = d0s1, we have an element

{g1, g2} = [s0g1, s0g2][s0g2, s1g1] ∈ NG2

and ∂{g1, g2} = 〈g1, g2〉. This second pairing is called the Peiffer lifting (of the Peiffer commutator).
Of course, if NG2 = 1, then CM2 is satisfied (as for K(C), above).

We could work with what we will call M(G, 1), namely

∂ :
NG1

∂NG2
→ NG0,
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with the induced morphism and action. (As d0d0 = d0d1, the morphism is well defined.) This is a
crossed module, but we could have divided out by less if we had wanted to. We note that {g1, g2}
is a product of degenerate elements, so we form, in general, the subgroup Dn ⊆ NGn, generated
by all degenerate elements.

Lemma 3
∂ :

NG1

∂(NG2 ∩D2)
→ NG0

is a crossed module. �

This is, in fact, M(sk1G, 1), where sk1G is the 1-skeleton ofG, i.e. the subsimplicial group generated
by the k-simplices for k = 0, 1.

The kernel of M(G, 1) is π1(G) and the cokernel π0(G) and

π1(G)→ NG1

∂NG2
→ NG0 → π0(G)

represents a class k(G) ∈ H3(π0(G), π1(G)). Up to a notion of 2-equivalence, M(G, 1) represents
the 2-type of G completely. This is an algebraic version of the result of MacLane and Whitehead
we mentioned earlier. Once we have a bit more on cohomology, we will examine it in detail.



Chapter 3

Crossed complexes and (Abelian)
Cohomology

Accurate encoding of homotopy types is tricky. Chain complexes, even of G-modules, can only
record certain, more or less Abelian, information. Simplicial groups, at the opposite extreme, can
encode all connected homotopy types, but at the expense of such a large repetition of the essential
information that makes calculation, at best, tedious and, at worst, virtually impossible. Complete
information on truncated homotopy types can be stored in the catn-groups of Loday, [75]. We will
look at these later. An intermediate model due to Blakers and Whitehead, [103], is that of a crossed
complex. The algebraic and homotopy theoretic aspects of the theory of crossed complexes have
been developed by Brown and Higgins, (cf. [25, 26], etc., in the bibliography and the forthcoming
monograph by Brown, Higgins and Sivera, [28]) and by Baues, [12, 13, 14].

3.1 Crossed complexes: the Definition

We will initially look at reduced crossed complexes, i.e. the group rather than the groupoid based
case.)

A crossed complex, which will be denoted C, consists of a sequence of groups and morphisms

C : . . .→ Cn
δn→ Cn−1

δn−1→ . . .→ C3
δ3→ C2

δ2→ C1

satisfying the following:
CC1) δ2 : C2 → C1 is a crossed module;
CC2) each Cn, (n > 2), is a left C1/δ1C2-module and each δn, (n > 2) is a morphism of left C1/δ2C2-
modules, (for n = 3, this means that δ3 commutes with the action of C1 and that δ3(C3) ⊂ C2

must be a C1/δ2C2-module);
CC3) δδ = 0.

The notion of a morphism of crossed complexes is clear. It is a graded collection of morphisms
preserving the various structures. We thus get a category, Crsred of reduced crossed complexes.

As we have that a crossed complex is a particular type of chain complex (of non-Abelian groups
near the bottom), it is natural to define its homology groups in the obvious way.

41
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Definition: If C is a crossed complex, its nth homology group is

Hn(C) =
Ker δn
Im δn+1

.

These homology groups are, of course, functors from Crsred to the category of Abelian groups.

Definition: A morphism f : C→ C′ is called a weak equivalence if it induces isomorphisms on
all homology groups.

There are good reasons for considering the homology groups of a crossed complex as being its
homotopy groups. For example, if the crossed complex comes from a simplicial group then the
homotopy groups of the simplicial group are the same as the homology groups of the given crossed
complex (possibly shifted in dimension, depending on the notational conventions you are using).

The non-reduced version of the concept is only a bit more difficult to write down. It has C1

as a groupoid on a set of objects C0 with each Ck, a family of groups indexed by the elements
of C0. The axioms are very similar; see [28] for instance or many of the papers by Brown and
Higgins listed in the bibliography. This gives a category, Crs, of (unrestricted) crossed complexes
and morphisms between them. This category is very rich in structure. It has a tensor product
structure, denoted C⊗D and a corresponding mapping complex construction Crs(C,D), making it
into a monoidal closed category. The details are to be found in the papers and book listed above.

3.1.1 Examples: crossed resolutions

A crossed resolution of a group G is a crossed complex, C, such that for each n > 1, Im δn =
Ker δn−1 and there is an isomorphism, C1/δ2C2

∼= G.
A crossed resolution can be constructed from a presentation P = (X : R) as follows:
Let C(P ) → F (X) be the free crossed module associated with P. We set C2 = C(P), C1 =

F (X), δ1 = ∂. Let κ(P) = Ker(∂ : C(P) → F (X)). This is the module of identities of the
presentation and is a left G-module. As the category G-Mod has enough projectives, we can form
a free resolution P of κ(P). To obtain a crossed resolution of G, we join P to the crossed module
by setting Cn = Pn−2 for n > 3, δn = dn−2 for n > 3 and the composite from P0 to C(P ) for n = 3.

3.1.2 The standard crossed resolution

We next look at a particular case of the above, namely the standard crossed resolution of G. In
this, which we will denote by CG, we have

(i) C1G = the free group on the underlying set of G. The element corresponding to u ∈ G will
be denoted by [u].

(ii) C2G is the free crossed module over C0G on generators, written [u, v], considered as elements
of the set G×G, in which the map δ1 is defined on generators by

δ[u, v] = [uv]−1[u][v].

(iii) For n > 3, CnG is the free left G-module on the set Gn+1, but in which one has equated to
zero any generator [u1, . . . , un+1] in which some ui is the identity element of G.
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If n > 2, δ : Cn+1G→ CnG is given by the usual formula

δ[u1, . . . , un+1] = [u1][u2, . . . , un+1]

+
n∑
i=1

(−1)i[u1, . . . , uiui+1, . . . , un+1] + (−1)n+1[u1, . . . , un].

For n = 2, δ : C3G→ C2G is given by

δ[u, v, w] = [u][v, w].[u, v]−1.[uv,w]−1[u, vw].

This is the crossed analogue of the inhomogeneous bar resolution, BG of the group G. A groupoid
version can be found in Brown-Higgins, [24], and the abstract group version in Huebschmann, [64].
In the first of these two references, it is pointed out that CG, as constructed, is isomorphic to the
crossed complex, π(BG), of the classifying space of G considered with its skeletal filtration. For any
filtered space X = (Xn)n∈N, the fundamental crossed complex π(X) is, in general, a non-reduced
crossed complex. It is defined to have

π(X)n = (πn(Xn, Xn−1, a))a∈X0

with π(X)1, the fundamental groupoid Π1X1X0, and π(X)2, the family, (π2(X2, X1, a))a∈X0 .
There are two useful, but conflicting, conventions as to indexation in crossed complexes. In the

topologically inspired one, the bottom group is C1, in the simplicial and algebraic one, it is C0.
Both get used and both have good motivation. The natural indexation for the standard crossed
resolution would seem to be with Cn being generated by n-tuples, i.e. the topological one. (I am
not sure that all instances of the other have been avoided, so please be careful!)

G-augmented crossed complexes. Crossed resolutions of G are examples of G-augmented
crossed complexes. A G-augmented crossed complex consists of a pair (C, φ) where C is a crossed
complex and where φ : C1 → G is a group homomorphism satisfying

(i) φδ1 is the trivial homomorphism;
(ii) Ker φ acts trivially on Ci for i ≥ 3 and also on CAb2 .
A morphism

(α, IdG) : (C, φ)→ (C′, φ′)

of G-augmented crossed complexes consists of a morphism

α : C→ C′

of crossed complexes such that φ′α0 = φ.
This gives a category CrsG which behaves nicely with respect to change of groups, i.e. if

ϕ : G→ H then there are induced functors between the corresponding categories.

3.2 Crossed complexes and Chain Complexes

(Some of the proofs here are given in more detail as they are less routine and are not that available
elsewhere.)

We have introduced crossed complexes where normally chain complexes of modules would have
been used. We have seen earlier the bar resolution and now we have the standard crossed resolution.
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What is the connection between them? The answer is approximately that chain complexes form
a category equivalent to a reflective subcategory of Crs, in other words, there is a canonical way
of building a chain complex from a crossed one akin to the process of Abelianising a group. The
resulting reflection functor sends the standard crossed resolution of a group to the bar resolution.
The details involve some interesting ideas.

In chapter 2, we saw that, given a morphism θ : M → N of modules over a group G, ∂ :
M → N o G, given by ∂(m) = (θ(m), 1G) is a crossed module, where N o G acts on M via the
projection to G. That example easily extends to a functorial construction which, from a positive
chain complex, D, of G-modules, gives us a crossed complex ∆G(D) with ∆G(D)n = Dn if n > 1
and equal to D1 oG for n = 1.

Lemma 4 ∆G : Ch(G−Mod)→ CrsG is an embedding.

Proof: That ∆G is a functor is easy to see. It is also easy to check that it is full and faithful, that
is it induces bijections,

Ch(G−Mod)(A,B)→ CrsG(∆G(A),∆G(B)).

The augmentation of ∆G(A) is given by the projection of A1 oG onto G. �

We can thus turn a positive chain complex into a crossed complex. Does this functor have a
left adjoint? i.e. is there a functor ξG : CrsG → Ch(G−Mod) such that

Ch(G−Mod)(ξG(C),D)→ CrsG(C,∆G(D))?

If so it would suggest that chain complexes of G-modules are like G-augmented crossed complexes
that satisfy some additional equational axioms. As an example of a similar situation think of
‘Abelian groups’ within ‘groups’ for which the inclusion has a left adjoint, namely Abelianisation
(G)Ab = G/[G,G]. Abelian groups are of course groups that satisfy the additional rule [x, y] = 1.
Other examples of such situations are nilpotent groups of a given finite rank c. The subcategories
of this general form are called varieties and, for instance, the study of varieties of groups is a very
interesting area of group theory. Incidentally, it is possible to define various forms of cohomology
modulo a variety in some sense. We will not explore that here.

We thus need to look at morphisms of crossed complexes from a crossed complex C to one of
form ∆G(D), and we need therefore to look at morphisms into a semidirect product. These are
useful for other things, so are worth looking at in detail.

3.2.1 Semi-direct product and derivations.

Suppose that we have a diagram

H
f //

α
  @@@@@@@@ K oG

proj{{wwwwwwwww

G
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where K is a G-module (written additively, so we write g.k not gk for the action). This is like the
very bottom of the situation for a morphism f : C→ ∆G(D).

As the codomain of f is a semidirect product, we can decompose f , as a function, in the form

f(h) = (f1(h), α(h)),

identifying its second component using the diagram. The mapping f1 is not a homomorphism. As
f is one, however, we have

(f1(h1h2), α(h1h2)) = f(h1)f(h2) = (f1(h1) + α(h1)f1(h2), α(h1h2)),

i.e. f1 satisfies
f1(h1h2) = f1(h1) + α(h1)f1(h2)

for all h1, h2 ∈ H.

3.2.2 Derivations and derived modules.

We will use the identification of G-modules for a group G with modules over the group ring Z[G]
of G. Recall that this ring is obtained from the free Abelian group on the set G by defining a
multiplication extending linearly that of G itself. (Formally if, for the moment, we denote by eg, the
generator corresponding to g ∈ G, then an arbitrary element of Z[G] can be written as

∑
g∈G ngeg

where the ng are integers and only finitely many of them are non-zero. The multiplication is by
‘convolution’ product, that is,(∑

g∈G
ngeg

)(∑
g∈G

mgeg

)
=
∑
g∈G

( ∑
g1∈G

ng1mg−1
1 geg

)
.

We will also need the augmentation ε : Z[G] → Z, given by ε(
∑

g∈G ngeg) =
∑

g∈G ng and its
kernel I(G), known as the augmentation ideal.

Definitions: Let φ : G→ H be a homomorphism of groups. A φ-derivation

∂ : G→M

from G to a left Z[H]-module, M , is a mapping from G to M , which satisfies the equation

∂(g1g2) = ∂(g1) + φ(g1)∂(g2)

for all g1, g2 ∈ G.

Such ϕ-derivations are really all derived from a universal one.

A derived module for φ consists of a left Z[H]-module, Dφ, and a φ-derivation, ∂φ : G → Dφ

with the following universal property:
Given any left Z[H]-module, M , and a φ-derivation ∂ : G→M , there is a unique morphism

β : Dφ →M

of Z[H]-modules such that β∂φ = ∂.
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The set of all φ-derivations from G to M has a natural Abelian group structure. We denote
this set by Derφ(G,M). This gives a functor from H-Mod to Ab, the category of Abelian groups.
If (Dφ, ∂φ) exists, then it sets up a natural isomorphism

Derφ(G,M) ∼= H−Mod(Dφ,M),

i.e., (Dφ, ∂φ) represents the φ-derivation functor.

3.2.3 Existence

The treatment of derived modules that is found in Crowell’s paper, [40], provides a basis for what
follows. In particular it indicates how to prove the existence of (Dφ, ∂φ) for any φ.

Form a Z[H]-module, D, by taking the free left Z[H]-module, Z[H](X), on a set of generators,
X = {∂g : g ∈ G}. Within Z[H](X) form the submodule, Y , generated by the elements

∂(g1g2)− ∂(g1)− φ(g1)∂(g2).

Let D = Z[H](X)/Y and define d : G→ D to be the composite:

G
η→ Z[H](X) quotient→ D,

where η is “inclusion of the generators”, η(g) = ∂g. Thus d by construction, will be a φ-derivation.
The universal property is easily checked and hence (Dφ, ∂φ) exists.

We will later on construct (Dφ, ∂φ) in a different way which provides a more amenable descrip-
tion of Dφ, namely as a tensor product. As a first step towards this description, we shall give a
simple description of DG, that is, the derived module of the identity morphism of G. More precisely
we shall identify (DG, ∂G) as being (I(G), ∂), where, as above, I(G) is the augmentation ideal of
Z[G] and ∂ : G→ I(G) is the usual map, ∂(g) = g − 1.

Our earlier observations give us the following useful result:

Lemma 5 If G is a group and M is a G-module, then there is an isomorphism

DerG(G,M)→ Hom/G(G,M oG)

where Hom/G(G,MoG) is the set of homomorphisms from G to MoG over G, i.e., θ : G→MoG
such that for each g ∈ G, θ(g) = (g, θ′(g)) for some θ′(g) ∈M . �

3.2.4 Derivation modules and augmentation ideals

Proposition 3 The derivation module DG is isomorphic to I(G) = Ker(Z[G]→ Z). The univer-
sal derivation is

dG : G→ I(G)

given by dG(g) = g − 1.

Proof:
We introduce the notation fδ : I(G) → M for the Z[G]-module morphism corresponding to a

derivation
δ : G→M.
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The factorisation fδdG = δ implies that fδ must be defined by fδ(g − 1) = δ(g). That this works
follows from the fact that I(G), as an Abelian group, is free on the set {g − 1 : g ∈ G} and that
the relations in I(G) are generated by those of the form

g1(g2 − 1) = (g1g2 − 1)− (g1 − 1).

�

We note a result on the augmentation ideal construction that is not commonly found in the
literature.

The proof is easy and so will be omitted.

Lemma 6 Given groups G and H in C and a commutative diagram

G
δ //

ψ

��

M

φ

��
H

δ′
// N

(∗)

where δ, δ′ are derivations, M is a left Z[G]-module, N is a left Z[H]-module and φ is a module
map over ψ, i.e., φ(g.m) = ψ(g)φ(m) for g ∈ G, m ∈M . Then the corresponding diagram

I(G)
fδ //

ψ

��

M

φ

��
I(H)

fδ′
// N

(∗∗)

is commutative. �

The earlier proposition has the following corollaries:

Corollary 1 The subset ImdG = {g − 1 : g ∈ G} ⊂ I(G) generates I(G) as a Z[G]-module.
Moreover the relations between these generators are generated by those of the form

(g1g2 − 1)− (g1 − 1)− g1(g2 − 1).

�

It is useful to have also the following reformulation of the above results stated explicitly.

Corollary 2 There is a natural isomorphism

DerG(G,M) ∼= G−Mod(I(G),M).

�
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3.2.5 Generation of I(G).

The first of these two corollaries raises the question as to whether, if X ⊂ G generates G, does the
set GX = {x− 1 : x ∈ X} generate I(G) as a Z[G]-module.

Proposition 4 If X generates G, then GX generates I(G).

Proof: We know I(G) is generated by the g − 1s for g ∈ G. If g is expressible as a word of length
n in the generators X then we can write g − 1 as a Z[G]-linear combination of terms of the form
x−1 in an obvious way. (If g = w.x with w of lesser length than that of g, g−1 = w−1+w(x−1),
so use induction on the length of the expression for g in terms of the generators.) �

When G is free: If G is free, say, G ∼= F (X), i.e., is free on the set X, we can say more.

Proposition 5 If G ∼= F (X) is the free group on the set X, then the set {x − 1 : x ∈ X} freely
generates I(G) as a Z[G]-module.

Proof: (We will write F for F (X).) The easiest proof would seem to be to check the universal
property of derived modules for the function δ : F → Z[G](X), given on generators by

δ(x)(y) =
{

1 if x = y
0 if y 6= x;

then extended using the derivation rule to all of F using induction. This uses essentially that each
element of F has a unique expression as a reduced word in the generators, X.

Suppose then that we have a derivation ∂ : F → M , define ∂ : Z[G](X) → M by ∂(ex) = ∂(x),
extending linearly. Since by construction ∂δ = ∂ and is the unique such homomorphism, we are
home. �

Note: In both these proofs we are thinking of the elements of the free module on X as being
functions from X to the group ring, these functions being of ‘finite support’, i.e. being non-zero
on only a finite number of elements of X. This can cause some complications if X is infinite or
has some topology as it will in some contexts. The idea of the proof will usually go across to that
situation but details have to change. (A situation in which this happens is in profinite group theory
where the derivations have to be continuous for the profinite topology on the group, see [98].)

3.2.6 (Dφ, dφ), the general case.

We can now return to the identification of (Dφ, dφ) in the general case.

Proposition 6 If φ : G→ H is a homomorphism of groups, then Dφ
∼= Z[H]⊗G I(G), the tensor

product of Z[H] and I(G) over G.

Proof: If M is a Z[H]-module, we will write φ](M) for the restricted Z[G]-module, i.e. M with
G-action given by g.m := φ(g).m. Recall that the functor φ] has a left adjoint given by sending a
G0-module, N to Z[H]⊗G N , i.e. take the tensor of Abelian groups, Z[H]⊗N and divide out by
x⊗ g.n ≡ xφ(g)⊗ n.
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With this notation we have a chain of natural isomorphisms,

Derφ(G,M) ∼= DerG(G,φ](M))
∼= G−Mod(I(G), φ](M))
∼= H−Mod(Z[H]⊗G I(G),M),

so by universality,
Dφ
∼= Z[H]⊗G I(G),

as required. �

3.2.7 Dφ for φ : F (X)→ G.

The above will be particularly useful when φ is the “co-unit” map, F (X) → G, for X a set
that generates G. We could, for instance, take X = G as a set, and φ to be the usual natural
epimorphism.

In fact we have the following:

Corollary 3 Let φ : F (X)→ G be an epimorphism of groups, then there is an isomorphism

Dφ
∼= Z[G](X)

of Z[G]-modules. In this isomorphism, the generator ∂x, of Dφ corresponding to x ∈ X, satisfies

dφ(x) = ∂x

for all x ∈ X. �

(You should check that you see how this follows from our earlier results.)

3.3 Associated module sequences

3.3.1 Homological background

Given an exact sequence
1→ K → L→ Q→ 1

of abstract groups, then it is a standard result from homological algebra that there is an associated
exact sequence of modules,

0→ KAb → Z[Q]⊗L I(L)→ I(Q)→ 0.

There are several different proofs of this. Homological proofs give this as a simple consequence of
the TorL-sequence corresponding to the exact sequence

0→ I(L)→ Z[L]→ Z→ 0

together with a calculation of TorL1 (Z[Q],Z), but we are not assuming that much knowledge of
standard homological algebra. That homological proof also, to some extent, hides what is happening
at the ‘elementary’ level, in both the sense of ‘simple’ and also that of‘what happens to the ‘elements’
of the groups and modules concerned.

The second type of proof is more directly algebraic and has the advantage that it accentuates
various universal properties of the sequence. The most thorough treatment of this would seem to
be by Crowell, [40], for the discrete case. We outline it below.
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3.3.2 The exact sequence.

Before we start on the discussion of the exact sequence, it will be useful to have at our disposal
some elementary results on Abelianisation of the groups in a crossed module. Here we actually
only need them for normal subgroups but we will need it shortly anyway in the more general form.
Suppose that (C,P, ∂) is a crossed module, and we will set A = Ker∂ with its module structure
that we looked at before, and N = ∂C, so A is a P/N -module.

Lemma 7 The Abelianisation of C has a natural Z[P/N ]-module structure on it.

Proof: First we should point out that by “Abelianisation” we mean CAb = C/[C,C], which is,
of course, Abelian and it suffices to prove that N acts trivially on CAb, since P already acts in a
natural way. However, if n ∈ N , and ∂c = n, then for any c′ ∈ C, we have that nc′ = ∂cc′ = cc′c−1,
hence nc′(c′)−1 ∈ [C,C] or equivalently

n(c′[C,C]) = c′[C,C],

so N does indeed act trivially on CAb. �

Of course NAb also has the structure of a Z[P/N ]-module and thus a crossed module gives one
three P/N -modules. These three are linked as shown by the following proposition.

Proposition 7 Let (C,P, ∂) be a crossed module. Then the induced morphisms

A→ CAb → NAb → 0

form an exact sequence of Z[P/N ]-modules.

Proof: It is clear that the sequence

1→ A→ C → N → 1

is exact and that the induced homomorphism from CAb to NAb is an epimorphism. Since the
composite homomorphism from A to N is trivial, A is mapped into Ker(CAb → NAb) by the
composite A→ C → CAb. It is easily checked that this is onto and hence the sequence is exact as
claimed. �

Now for the main exact sequence result here:

Proposition 8 Let

1→ K
φ→ L

ψ→ Q→ 1

be an exact sequence of groups and homomorphisms. Then there is an exact sequence

0→ KAb φ̃→ Z[Q]⊗̂LI(L)
ψ̃→ I(Q)→ 0

of Z[Q]-modules.
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Proof: By the universal property of Dψ, there is a unique morphism

ψ̃ : Dψ → I(Q)

such that ψ̃∂ψ = I(ψ)∂L.
Let δ : K → KAb = K/[K,K] be the canonical Abelianising morphism. We note that ∂ψφ :

K → Dψ is a homomorphism (since

∂ψφ(k1k2) = ∂ψφ(k1) + ψφ(k1)∂ψφ(k2)
= ∂ψφ(k1) + ∂ψφ(k2), )

so let φ̃ : KAb → Dψ be the unique morphism satisfying φ̃δ = ∂ψφ with KAb having its natural
Z[Q]-module structure.

That the composite ψ̃φ̃ = 0 follows easily from ψφ = 0. Since Dψ is generated by symbols d`
and ψ̃(d`) = ψ(`)− 1, it follows that ψ̃ is onto. We next turn to “Ker ψ̃ ⊆ Im φ̃”.

If we can prove α : Dψ → I(Q) is the cokernel of φ̃, then we will have checked this inclusion
and incidentally will have reproved that ψ̃ is onto.

Now let Dψ → C be any morphism such that αφ̃ = 0. Consider the diagram

K
φ //

δ
��

L

∂ψ
��

ψ // Q

∂Q
��

KAb
φ̃ // Dψ

ψ̃ //

α
""EEEEEEEEE C(Q)

C

The composite α∂ψ vanishes on the image of φ since α∂ψφ = αφ̃δ and αφ̃ is assumed zero.
Define d : Q → C by d(q) = α∂ψ(`) for ` ∈ L such that ψ(`) = q. As α∂ψ vanishes on Im φ, this
is well defined and

d(q1q2) = α∂ψ(`1`2)
= α∂ψ(`1) + α(ψ(`1)∂ψ(`2))
= d(q1) + q1d(q2)

so d factors as ᾱ∂Q in a unique way with ᾱ : I(Q)→ C. It remains to prove that α = ψ̃, but

ψ̃∂ψ = IC(ψ)∂L
= ∂Qψ

by the naturality of ∂. Now finally note that ᾱ∂Q = d and dψ = α∂ψ to conclude that ψ̃∂ψ and α∂ψ
are equal. Equality of α and ᾱψ̃ then follows by the uniqueness clause of the universal property of
(Dψ, ∂ψ).

Next we need to check that KAb → Dψ is a monomorphism. To do this we use the fact that
there is a transversal, s : Q → L, satisfying s(1) = 1. This means that, following Crowell, [40] p.
224, we can for each ` ∈ L, q ∈ Q, find an element q × ` uniquely determined by the equation

φ(q × `)) = s(q)`s(qψ(`))−1,
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which, of course, defines a function from Q× L to K. Crowell’s lemma 4.5 then shows

q × `1`2 = (q × `1)(qψ(`1)× `2) for `1, `2 ∈ L.

Now let M = Z[Q](X), with X = {∂` : ` ∈ L}, so that there is an exact sequence

M → Dψ → 0.

The underlying group of Z[Q] is the free Abelian group on the underlying set of Q. Similarly M ,
above, has, as underlying group, the free Abelian group on the set Q×X.

Define a map τ : M → KAb of Abelian groups by

τ(a, ∂`) = δ(q × `).

We check that if p(m) = 0, then τ(m) = 0. Since Ker p is generated as a Z[Q]-module by elements
of the form

∂(`1`2)− ∂`1 − ψ(`1)∂`2,

it follows that as an Abelian group, Ker p is generated by the elements

(q, ∂(`1`2))− (q, ∂`1)− (qψ(`1), ∂`2).

We claim that τ is zero on these elements; in fact

τ(q, ∂(`1`2)) = δ(q × (`1`2))
= δ(q × `1) + δ(qψ(`1)× `2)
= τ(q, `1) + τ(qψ(`1), `2).

Thus τ induces a map η : Dψ → KAb of Abelian groups.
Finally we check ηφ̃ = identity, so that φ̃ is a monomorphism: let b ∈ KAb, k ∈ K be such that

δ(k) = b, then

ηφ̃(b) = ηφ̃δ(k)
= η∂ψ(k)
= δ(1× φ(k)),

but 1× φ(k) is uniquely determined by

φ(1× φ(k)) = s(1)φ(k)s(1ψφ(k))−1 = φ(k),

since s(1) = 1, hence 1× φ(k) = k and ηφ̃(b) = δ(k) = b as required. �

A discussion of the way in which this result interacts with the theory of covering spaces can
be found in Crowell’s paper already cited. We will very shortly see the connection of this module
sequence with the Jacobian matrix of a group presentation and the Fox free differential calculus. It
is this latter connection which suggests that we need more or less explicit formulae for the maps φ̃
and ψ̃ and hence requires that Crowell’s detailed proof be used, not the slicker homological proof.
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3.3.3 Reidemeister-Fox derivatives and Jacobian matrices

At various points we will refer to Reidemeister-Fox derivatives as developed by Fox in a series of
articles, see [58], and also summarised in Crowell and Fox, [41]. We will call these derivatives Fox
derivatives.

Suppose G is a group and M a G-module and let δ : G → M be a derivation, (so δ(g1g2) =
δ(g1) + g1δ(g2) for all g1, g2 ∈ G), then, for calculations, the following lemma is very valuable,
although very simple to prove.

Lemma 8 If δ : G→M is a derivation, then
(i) δ(1G) = 0;
(ii) δ(g−1) = −g−1δ(g) for all g ∈ G;
(iii) for any g ∈ G and n ≥ 1,

δ(gn) = (
n−1∑
k=0

gk)δ(g).

Proof: As was said, these are easy to prove.
δ(g) = δ(1g) + 1δ((g), so δ(1) = 0, and hence (i); then

δ(1) = δ(g−1g) = δ(g−1) + g−1δ(g)

to get (ii), and finally induction to get (iii). �

The Fox derivatives are derivations taking values in the group ring as a left module over itself.
They are defined for G = F (X), the free group on a set X. (We usually write F for F (X) in what
follows.)

Definition: For each x ∈ X, let
∂

∂x
: F → ZF

be defined by
(i) for y ∈ X,

∂y

∂x
=
{

1 if x = y
0 if y 6= x;

(ii) for any words, w1, w2 ∈ F ,

∂

∂x
(w1w2) =

∂

∂x
w1 + w1

∂

∂x
w2.

Of course, a routine proof shows that the derivation property in (ii) defines ∂w
∂x for any w ∈ F .

This derivation, ∂
∂x , will be called the Fox derivative with respect to the generator x.

Example: Let X = {u, v}, with r ≡ uvuv−1u−1v−1 ∈ F = F (u, v), then

∂r

∂u
= 1 + uv − uvuv−1u−1,

∂r

∂v
= u− uvuv−1 − uvuv−1u−1v−1.
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This relation is the typical braid group relation, here in Br3, and we will come back to these simple
calculations later.

It is often useful to extend a derivation δ : G→M to a linear map from ZG to M by the simple
rule that δ(g + h) = δ(g) + δ(h).

We have
Der(F,ZF ) ∼= F−Mod(IF,ZF ),

and that
IF ∼= ZF (X),

with the isomorphism matching each generating x−1 with ex, the basis element labelled by x ∈ X.
(The universal derivation then sends x to ex.)

For each given x, we thus obtain a morphism of F -modules:

dx : ZF (X) → ZF

with

dx(ey) = 1 if y = x

dx(ey) = 0 if y 6= x,

i.e., the ‘projection onto the xth-factor’ or ‘evaluation at x ∈ X’ depending on the viewpoint taken
of the elements of the free module, ZF (X).

Suppose now that we have a group presentation, P = (X : R), of a group, G. Then we have a
short exact sequence of groups

1→ N
φ→ F

γ→ G→ 1,

where N = N(R), F = F (X), i.e., N is the normal closure of R in the free group F . We also have
a free crossed module,

C
∂→ F,

constructed from the presentation and hence, two short exact sequences of G-modules with κ(P) =
Ker ∂, the module of identities of P,

0→ κ(P)→ CAb → NAb → 0,

and also
0→ NAb φ̃→ IF ⊗F ZG→ IG→ 0.

We note that the first of these is exact because N is a free group, further

CAb ∼= ZG(R),

(the proof is left to you to manufacture from earlier results), and the map from this to NAb in the
first sequence sends the generator er to r[N,N ].

We next revisit the derivation of the associated exact sequence (Proposition 8, page 50) in some
detail to see what φ̃ does to r[N,N ]. We have φ̃(r[N,N ]) = ∂γφ(r) = ∂γ(r), considering r now as
an element of F , and by Corollary 3, on identifying Dγ with ZG(X) using the isomorphism between
IF and ZF (X), we can identify ∂γ(x) = ex. We are thus left to determine ∂γ(r) in terms of the
∂γ(x), i.e., the ex. The following lemma does the job for us.
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Lemma 9 Let δ : F →M be a derivation and w ∈ F , then

δw =
∑
x∈X

∂w

∂x
δx.

Proof: By induction on the length of w. �

In particular we thus can calculate

∂γ(r) =
∑ ∂r

∂x
ex.

Tensoring with ZG, we get

φ̃(r[N,N ]) =
∑ ∂r

∂x
ex ⊗ 1.

There is one final step to get this into a usable form:
From the quotient map γ : F → G, we, of course, get an induced ring homomorphism, γ :

ZF → ZG, and hence we have elements γ( ∂r∂x) ∈ ZG. Of course,

∂r

∂x
ex ⊗ 1 = ex ⊗ γ(

∂r

∂x
),

so we have, on tidying up notation just a little:

Proposition 9 The composite map

ZG(R) → NAb → ZG(X)

sends er to
∑
γ( ∂r∂x)ex and so has a matrix representation given by JP =

(
γ( ∂ri∂xj

)
)
. �

Definition: The Jacobian matrix of a group presentation, P = (X : R) of a group G is

JP =
(
γ(
∂ri
∂xj

)
)
,

in the above notation.

The application of γ to the matrix of Fox derivatives simplifies expressions considerable in the
matrix. The usual case of this is if a relator has the form rs−1, then we get

∂rs−1

∂x
=
∂r

∂x
− rs−1 ∂s

∂x

and if r or s is quite long this looks moderately horrible to work out! However applying γ to the
answer, the term rs−1 in the second of the two terms becomes 1. We can actually think of this as
replacing rs−1 by r − s when working out the Jacobian matrix.

Example: Br3 revisited. We have r ≡ uvuv−1u−1v−1, which has the form (uvu)(vuv)−1.
This then gives

γ(
∂r

∂u
) = 1 + uv − v and γ(

∂r

∂v
) = u− 1− vu,
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abusing notation to ignore the difference between u, v in F (u, v) and the generating u, v in Br3.

Homological 2-syzygies: In general we obtain a truncated chain complex:

ZG(R) d2→ ZG(X) d1→ ZG d0→ Z→ 0,

with d2 given by the Jacobian matrix of the presentation, and d1 sending generator e1
x to 1− x, so

Imd1 is the augmentation ideal of ZG.

Definition: A homological 2-syzygy is an element in Ker d2..

A homological 2-syzygy is thus an element to be killed when building the third level of a
resolution of G. What are the links between homotopical and homological syzygies? Brown and
Huebschmann, [29], show they are isomorphic, as Ker d2 is isomorphic to the module of identities.
We will examine this result in more detail shortly.

Homological Syzygies for the braid group presentations:
The Artin braid group, Brn+1, defined using n+ 1 strands is given by

• generators: yi, i = 1, . . . , n;

• relations: rij ≡ yiyjy−1
i y−1

j for i+ 1 < j;
rii+1 ≡ yiyi+1yiy

−1
i+1y

−1
i y−1

i+1 for 1 ≤ i < n.

We will look at such groups only for small values of n.
By default, Br2 has one generator and no relations, so is infinite cyclic.

The group Br3: (We will simplify notation writing u = y1, v = y2.)
This then has presentation P = (u, v : r ≡ uvuv−1u−1v−1). It is also the ‘trefoil group’, i.e.

the fundamental group of the complement of a trefoil knot. If we construct X(2) = K(P), this is
already a K(Br3, 1) space, having a trivial π2. There are no higher syzygies.

We have all the calculation for working with homological syzygies here. The key part of the
complex is the Jacobian matrix as that determines d2:

d2 =
(

1 + uv − v u− 1− vu
)
.

This has trivial kernel, but, in fact, that comes most easily from the identification with homotopical
syzygies.

The group Br4: simplifying notation as before, we have generators u, v, w and relations

ru ≡ vwvw−1v−1w−1,

rv ≡ uwu−1w−1,

rw ≡ uvuv−1u−1v−1.

The 1-syzygies are made up of hexagons for ru and rw and a square for rv. There is a fairly obvious
way of fitting together squares and hexagons, namely as a permutohedron, and there is a labelling
of such that gives a homotopical 2-syzygy.
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The presentation yields a truncated chain complex with d2

ZG(ru,rv ,rw) d2−→ ZG(u,v,w)

with

d2 =

 0 1 + vw − w v − 1− wv
1− w 0 u− 1

1 + uv − v u− 1− vu 0


and Loday, [76], has calculated that for the permutohedral 2-syzygy, s, one gets another term of
the resolution, ZG(s), and a d3 : ZG(s) → ZG(ru,rv ,rw) given by

d3 =
(

1 + vu− u− wuv v − vwu− 1− uv − vuwv 1 + vw − w − uvw
)
.

For more on methods of working with these syzygies, have a look at Loday’s paper, [76], and some
of the references that you will find there.

3.4 The reflection from Crs to chain complexes

It is now time to return to the construction of a left adjoint for ∆G.

Proposition 10 The functor ∆G has a left adjoint.

Proof: We construct the left adjoint explicitly as follows:
Let f. : (C, φ) → ∆G(M.) be a morphism in CrsG, then we have the following commutative

diagram

. . . // C2
δ2 //

f2
��

C1
δ1 //

f1
��

C0
φ //

f0
��

G

IdG
��

. . . //M2
δ2 //M1

δ1 //M0 oG
prG // G

Since the right hand square commutes, f0 is given by some formula

f0(c) = (∂(c), φ(c)),

where ∂ : C0 →M0 is a φ-derivation. Thus ∂ = f̃0∂φ for a unique G-module morphism, f̃0 : Dφ →
M0, and f0 factors as

C0
φ̄→ Dφ oG

f̃0oG→ M0 oG,

where φ̄(c) = (∂φ(c), φ(c)).
The map ∂φδ1 : C1 → Dφ is a homomorphism since

∂φδ1(c1c2) = ∂φ∂1(c1) + φ∂1(c1)∂φ∂1(c2)
= ∂φ∂1(c1) + ∂φ∂1(c2),

φ∂1 being trivial (because (C, φ) is G-augmented). We thus obtain a map d : CAb1 → Dφ given
by d(c[C,C]) = ∂φ∂1(c) for c ∈ C1. As we observed earlier the Abelian group CAb1 has a natural
Z[G]-module structure making d a G-module morphism.
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Similarly there is a unique G-module morphism,

f̃1 : CAb1 →M1,

satisfying
f̃1(c[C,C]) = f1(c).

Since for c ∈ C1,
(d1f̃1(c), 1) = f0(δ1c) = (f̃0∂φ(δ1c1), 1),

we have that the diagram

CAb1

f̃1 //

d
��

M1

d1
��

Dφ
f̃0 //M0

commutes.
We also note that since δ2 : C2 → C1 maps into Ker δ1, the composite

C2
δ2→ C1

can→ CAb1
d→ Dφ,

being given by d(δ2(c)[C,C] = ∂φδ1δ2(c), is trivial and that f̃1δ2(c[C,C]) = f1δ2(c) = d2f2(c), thus
we can define ξ = ξG(C, φ) by

ξn = Cn if n ≥ 2
ξ1 = CAb1 ,

ξ0 = Dφ,

the differentials being as constructed. We note that as Ker φ acts trivially on all Cn for n ≥ 2, all
the Cn have Z[G]-module structures.

That ξG gives a functor
Crs→ Ch(G−Mod)

is now easy to check using the uniqueness clauses in the universal properties of Dφ and Abeliani-
sation. Again uniqueness guarantees that the process “f goes to f̃” gives a natural isomorphism

Ch(G−Mod)(ξG(C, φ),M) ∼= CrsG((C, φ),∆G(M))

as required. �

It is relatively easy to extend the above natural isomorphism to handle morphisms of crossed
complexes over different groups. For a detailed treatment one needs a discussion of the way that
the change of groups functors work with crossed modules or crossed complexes, that is, if we have
a morphism of groups θ : G → H then we would expect to get functors between CrsG and CrsH
induced by θ. These do exist and are very nicely behaved, but they will not be discussed here, see
[98] for a full treatment in the more general context of profinite groups.
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3.4.1 Crossed resolutions and chain resolutions

One of our motivations for introducing crossed complexes was that they enable us to model more
of the sort of information encoded in a K(G, 1) than does the usual standard algebraic models,
e.g. a chain complex such as the bar resolution. In particular, whilst the bar resolution is very
good for cohomology with Abelian coefficients for non-Abelian cohomology the crossed version can
allow us to push things further, but then comparison on the Abelian theory is very necessary! It is
therefore of importance to see how this K(G, 1) information that we have encoded changes under
the functor ξ : Crs→ Ch(G−Mod).

We start with a crossed resolution determined in low dimensions by a presentation P = (X : R)
of a group, G. Thus, in this case, C0 = F (X) with φ : F (X) → G, the ‘usual’ epimorphism, and
C1 → C0 is C → F (X), the free crossed module on R → F (X). It is not too hard to show that
CAb1

∼= Z[G](R), the free Z[G]-module on R. (The proof is left as an exercise.) This maps down
onto N(R)Ab, the Abelianisation of the normal closure of R in F (X) via a map

∂∗ : Z[G](R) → N(R)Ab,

given by ∂∗(er) = r[N(R), N(R)], where er is the generator of Z[G] corresponding to r ∈ R.
There is also a short exact sequence

1→ N(R) i→ F (X)
φ→ G→ 1

and hence by Proposition 8, a short exact sequence

0→ N(R)Ab ĩ→ Z[G]⊗F I(F )
φ̃→ I(G)→ 0

(where we have written F = F (X)).
By the Corollary to Proposition 6, we have

Z[G]⊗F I(F ) ∼= Z[G](X).

The required map CAb1 → Dφ is the composite

Z[G](R) ∂∗→ N(R)Ab ĩ→ Z[G](X).

We have given an explicit description of ∂∗ above, so to complete the description of d, it remains to
describe ĩ, but ĩ satisfies ĩδ = ∂φi, where δ : N(R)→ N(R)Ab, so ĩ(r[N(R), N(R)]) = dφ(r). Thus
if r is a relator, i.e., if it is in the image of the subgroup generated by the elements of R, then ∂(er)
can be written as a finite sum of the form

∑
x axex and the elements ax ∈ Z[G] are the images of

the Fox derivatives.
This operator can best be viewed as the Alexander matrix of a presentation of a group, further

study of this operator depends on studying transformations between free modules over group rings,
and we will not attempt to study those here.

The rest of the crossed resolution does not change and so, on replacing I(G) by Z[G]→ Z, we
obtain a free pseudocompact Z[G]-resolution of the trivial module Z,

. . .→ Z[G](R) d→ Z[G](X) → Z[G]→ Z

built up from the presentation. This is the complex of chains on the universal cover, K̃(G, 1), where
K(G, 1) is constructed starting from a presentation P.
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3.4.2 Standard crossed resolutions and bar resolutions

We next turn to the special case of the standard crossed resolution of G discussed briefly earlier.
Of course this is a special case of the previous one, but it pays to examine it in detail.

Clearly in ξ = ξ(CG,φ), we have:
ξ0 = the free Z[G]-module on the underlying set of G, individual generators being written [u], for
u ∈ G;
ξ1 = the free Z[G] -module on G×G, generators being written [u, v];
ξn = CnG, the free Z[G] -module on Gn+1, etc.

The map d2 : ξ2 → ξ1 induced from δ2 is given by

d2[u, v, w] = u[v, w]− [u, v]− [uv,w] + [u, vw],

and the map d1 : ξ1 → ξ0 by

d1([u, v]) = dφ([uv]−1[u][v])
= v−1u−1(−[uv] + [u] + u[v]),

a unit times the usual bar resolution formula. Thus, as claimed earlier, the standard crossed
resolution is the crossed analogue of the bar resolution.

3.4.3 The intersection A ∩ [C,C].

We next turn to a comparison of homological and homotopical syszygies. We have almost all the
preliminary work already. The next ingredient is a result that will identify the intersection of the
kernel of a crossed module, A = Ker(C ∂→ P ) and the commutator subgroup of C.

The kernel of the homomorphism from A to CAb is, of course, A ∩ [C,C] and this need not be
trivial. In fact, Brown and Huebschmann ([29], p.160) note that in examples of type (G,Aut(G), ∂),
the kernel of ∂ is, of course, the centre ZG of G and ZG ∩ [G,G] can be non-trivial, for instance,
if G is dicyclic or dihedral.

We will adopt the same notation as previously with N = ∂P etc.

Proposition 11 If in the exact sequence of groups

1→ A→ C → N → 1,

the epimorphism from C to N is split (the splitting need not respect G action), then A ∩ [C,C] is
trivial.

Proof: Given a splitting s : N → C, the group C can be written as Ao s(N). The commutators
in C, therefore, all lie in s(N) since A is Abelian, but then, of course, A ∩ [C,C] cannot contain
any non-trivial elements. �

Brown and Huebschmann, [29], p. 168, prove that for an group G with presentation P, the
module of identities for P is naturally isomorphic to the second homology group, H2(K̃(P)), of the
universal cover of K(P), the 2-complex of the presentation. We can approach this via the algebraic
constructions we have.
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Given a presentation P = 〈X : R〉 of a group G, the algebraic analogue of K(P), we have
argued above, is the free crossed module C(P) d→ F (X) and the chains on the universal cover of
K(P) will be given by ξG of this, i.e., by the chain complex

Z[G](R) d→ Z[G](X).

In general there will be a short exact sequence

0→ κ(P) ∩ [C(P), C(P)]→ κ(P)→ H2(ξ(C(P))→ 0.

This short exact sequence yields the Brown-Huebschmann result as N(R) will a free group so
the epimorphism onto N(R) splits and we can use the above Proposition 11. We thus get

Proposition 12 If P = 〈X : R〉 is a free presentation of G, then there is an isomorphism

κ
∼=−→ H2(ξ(CC(P)) = Ker(d : Z[G]R → Z[G]X).

�

Note: Here we are using something that will not be true in all algebraic settings. A subgroup
of a free group is always free, but the analogous statement for free algebras of other types is not
true.

3.5 From simplicial groups to crossed complexes:

Given any simplicial group G, the formula,

C(G)n+1 =
NGn

(NGn ∩Dn)d0(NGn+1 ∩Dn+1)
,

in higher dimensions with at its ‘bottom end’ the crossed module,

NG1

d0(NG2 ∩D2)
→ NG0

gives a crossed complex with ∂ induced from the boundary in the Moore complex. (The detailed
proof is too long to indicate here. It just checks the axioms one by one.)

We need this because we can also use simplicial resolutions to ‘resolve’ a group (and in many
other situations). We first sketch in some historical background.

In the 1960s, the connection between simplicial groups and cohomology was examined in detail.
The basic idea was that given the adjoint “free-forget” pair of functors between Groups and Sets,
one could generate a free resolution of a group, G, using the resulting monad (or triple) (cf.
MacLane, [77]). This resolution was not, however, by a chain complex but by a free simplicial
group, F , say. It was then shown (Barr and Beck, [11]) that given any G-module, M , and working
in the category of groups over G, one could form the cosimplicial G-module, HomGps/G(F,M),
and hence, by a dual form of the Dold-Kan theorem, a cochain complex C(G,M), whose homotopy
type, and hence whose homology, was independent of the choice of F . This homology was the usual
Eilenberg-MacLane cohomology of G with coefficients in M , but with a shift in dimension (cf. Barr
and Beck, [11]).
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Other theories of cohomology were developed at about the same time by Grothendieck and
Verdier, [5], André, [3, 4], and Quillen, [99, 100]. The first of these was designed for use with
“sites”, that is, categories together with a Grothendieck topology.

André and Quillen developed, independently, a method of defining cohomology using simpli-
cial resolutions. Their work is best known in commutative algebra, but their methods work in
greater generality. Unlike the theory of Barr and Beck (monadic cohomology), they only assume
there is enough structure to construct free resolutions; a monad is just one way of doing this. In
particular, André, [3, 4], describes a step-by-step, almost combinatorial, process for constructing
such resolutions. This ties in well with our earlier comments about using a presentation of a group
to construct a crossed resolution and the important link with syzygies. André’s method is the
simplicial analogue of this.

We will assume for the moment that we have a simplicial resolution, F , of our group, G.
Both André and Quillen then consider applying a derived module construction dimensionwise to
F , obtaining a simplicial G-module. They then use “Dold-Kan” to give a chain complex of G-
modules, which they call the “cotangent complex”, denoted LG or LAb(G), of G (at least in the
case of commutative algebras). The homotopy type of LAb(G) does not depend on the choice of
resolution and so is a useful invariant of G. We will need to look at this construction in more detail,
but will consider a slightly more general situation to start with.

3.5.1 Free simplicial resolutions

Standard theory (cf. Duskin, [49]) shows that if F and F ′ are free pro-C simplicial resolutions of
groups G and H, say, and f : G → H is a morphism, then f can be lifted to f ′ : F → F ′. The
method is the simplicial analogue of lifting a homomorphism of modules to a map of resolutions
of those modules, which you should look at first as it is technically simpler. Any two such lifts are
homotopic (by a simplicial homotopy).

Of course, f will also lift to a morphism of crossed complexes, f : C(F ) → C(F ′), and any
two such lifts will be homotopic as crossed complex morphisms. Thus whatever simplicial lift,
f ′ : F → F ′, we choose, C(f ′) will be a lift in the “crossed” case, and although we do not know at
this stage of our discussion of the theory if a homotopy between two simplicial lifts is transferred
to a homotopy between the images under C, this does not matter as the relation of homotopy is
preserved at least in this case of resolutions.

Any group has a free simplicial resolution. There is the obvious adjoint pair of functors

U : Groups→ Sets

F : Sets→ Groups

Writing η : Id → UF and ε : FU → Id for the unit and counit of this adjunction (cf. MacLane,
[77, 78]), we have a comonad (or cotriple) on Groups, the free group comonad 〈FU, ε, FηU〉. We
write T = FU , µ = FηU , so that

ε : T → I

is the counit of the comonad whilst
µ : T → T 2

is the comultiplication. (For the reader who has not met monads or comonads before, (T, η, µ)
behaves as if it was a monoid in the dual of the category of “endofunctors” on Groups, see MacLane,
[78] Chapter VI.)
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Now suppose G is a group and set F (G)i = T i+1(G), so that F (G)0 is the free group on the
underlying set of G and so on. The counit (which is just the augmentation morphism from FU(G)
to G) gives, in each dimension, face morphisms

di = T i−1εTn−i+1(G) : Tn+1(G)→ Tn(G),

whilst the comultiplication gives degeneracies

si : Tn(G)→ Tn+1(G)

si = T iµT (n−1)−i

satisfying the simplicial identities.
This simplicial group, F (G), satisfies π0(F (G)) ∼= G (the isomorphism being induced by ε(G) :

F0(G) → G) and πn(F (G)) is trivial if n ≥ 1. The reason for this is simple. If we apply U once
more to F (G), we get a simplicial set and the counit of the adjunction

η : 1→ UF

allows one to define for each n
ηUTn : UTn → UTn+1,

which gives a natural contraction of the augmented simplicial, UF (G)→ U(G), (cf. Duskin, [49]),
but note that his conventions for the construction of the di and si are the reverse of ours). If
we denote the constant simplicial group on G by K(G, 0), the augmentation defines a simplical
homomorphism

ε : F (G)→ K(G, 0)

satisfying Uε.inc = Id, where inc : UK(G, 0) → UF (G) is the ‘inclusion’ of simplicial sets given
by η, and then these extra maps, ηUTn, in fact, give a homotopy between inc.Uε and the identity
map on UF (G), i.e., ε is a weak homotopy equivalence of simplicial groups. Thus F (G) is a free
simplicial resolution of G. It is called the comonadic free simplicial resolution of G.

This simplicial resolution has the advantage of being functorial, but the disadvantage of being
very big. We turn next to a ‘step-by-step’ method of constructing a simplicial resolution using
ideas pioneered by André, [4], although most of his work was directed more towards commutative
algebras, cf. [3].

3.5.2 Step By Step Constructions

This section is a brief résumé of how to construct simplicial resolutions by hand rather than
functorially. This allows a better interpretation of the generators in each level of the resolution.
These are the simplicial analogues of higher syzygies. The work depends heavily on a variety of
sources, mainly [3], [73] and [86]. André only treats commutative algebras in detail, but Keune
[73] does discuss the general case quite clearly. The treatment here is adapted from the paper by
Mutlu and Porter, [89].

Recall of notation: We first recall some notation and terminology which will be used in the
construction of a simplicial resolution. Let [n] be the ordered set, [n] = {0 < 1 < · · · < n}. Define
the following maps: the injective monotone map δni : [n− 1]→ [n] is given by

δni (k) =
{
k if k < i,
k + 1 if k ≥ i,
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for 0 ≤ i ≤ n 6= 0. The increasing surjective monotone map αni : [n+ 1]→ [n] is given by

αni (k) =
{
k if k ≤ i,
k − 1 if k > i,

for 0 ≤ i ≤ n. We denote by {m,n} the set of increasing surjective maps [m]→ [n].

3.5.3 Killing Elements in Homotopy Groups

Let G be a simplicial group and let k ≥ 1 be fixed. Suppose we are given a set, Ω, of elements:
Ω = {xλ : λ ∈ Λ}, xλ ∈ πk−1(G), then we can choose a corresponding set of elements θλ ∈ NGk−1 so
that xλ = θλ ∂k(NGk). (If k = 1, then as NG0 = G0, the condition that θλ ∈ NG0 is immediate.)
We want to ‘kill’ the elements in Ω.

We form a new simplicial group Fn where
1) Fn is the free Gn-group, (i.e., group with Gn action)

Fn =
∐
λ,t

Gn{yλ,t} with λ ∈ Λ and t ∈ {n, k},

where Gn{y} = Gn∗ < y >, the co-product of Gn and a free group generated by y.
2) For 0 ≤ i ≤ n, the group homomorphism sni : Fn → Fn+1 is obtained from the homomorphism

sni : Gn → Gn+1 with the relations

sni (yλ,t) = yλ,u with u = tαni , t : [n]→ [k].

3) For 0 ≤ i ≤ n 6= 0, the group homomorphism dni : Fn → Fn−1 is obtained from dni : Gn →
Gn−1 with the relations

dni (yλ,t) =


yλ,u if the map u = tδni is surjective,
t′(θλ) if u = δkkt

′,
1 if u = δkj t

′ with j 6= k,

by extending multiplicatively.
We sometimes denote the F so constructed by G(Ω).

Remark: In a ‘step-by-step’ construction of a simplicial resolution, (see below), there will
thus be the following properties: i) Fn = Gn for n < k, ii) Fk = a free Gk-group over a set of
non-degenerate indeterminates, all of whose faces are the identity except the kth, and iii) Fn is a
free Gn-group on some degenerate elements for n > k.

We have immediately the following result, as expected.

Proposition 13 The inclusion of simplicial groups G ↪→ F, where F = G(Ω), induces a homomor-
phism

πn(G) −→ πn(F)

for each n, which for n < k − 1 is an isomorphism,

πn(G) ∼= πn(F)

and for n = k−1, is an epimorphism with kernel generated by elements of the form θ̄λ = θλ∂kNGk,
where Ω = {xλ : λ ∈ Λ}. �
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3.5.4 Constructing Simplicial Resolutions

The following result is essentially due to André, [3].

Theorem 2 If G is a group, then it has a free simplicial resolution F.

Proof: The repetition of the above construction will give us the simplicial resolution of a group.
Although ‘well known’, we sketch the construction so as to establish some notation and terminology.

Let G be a group. The zero step of the construction consists of a choice of a free group F and
a surjection g : F → G which gives an isomorphism F/Ker g ∼= G as groups. Then we form the
constant simplicial group, F (0), for which in every degree n, Fn = F and dni = id = snj for all i, j.
Thus F (0) = K(F, 0) and π0(F (0)) = F. Now choose a set, Ω0, of normal generators of the closed
normal subgroup N = Ker (F

g−→ G), and obtain the simplicial group in which F (1)
1 = F (Ω0) and

for n > 1, F (1)
n is a free Fn-group over the degenerate elements as above. This simplicial group will

be denoted by F (1) and will be called the 1-skeleton of a simplicial resolution of the group G.
The subsequent steps depend on the choice of sets, Ω0, Ω1,Ω2, . . . ,Ωk, . . . . Let F (k) be the

simplicial group constructed after k steps, that is, the k-skeleton of the resolution. The set Ωk is
formed by elements a of F (k)

k with dki (a) = 1 for 0 ≤ i ≤ k and whose images ā in πk(F (k)) generate
that module over F (k)

k and F (k+1).
Finally we have inclusions of simplicial groups

F (0) ⊆ F (1) ⊆ · · · ⊆ F (k−1) ⊆ F (k) ⊆ · · ·

and in passing to the inductive limit (colimit), we obtain an acyclic free simplicial group F with
Fn = F

(k)
n if n ≤ k. F or rather (F, g) is thus a simplicial resolution of the group G.

The proof of theorem is completed. �

Remark: A variant of the ‘step-by-step’ construction gives: if G is a simplicial group, then there
exists a free simplicial group F and a continuous epimorphism F −→ G which induces isomorphisms
on all homotopy groups. The details are omitted as they are the variants of arguments in the
discrete case that are well known.

The key observation, which follows from the universal property of the construction, is a freeness
statement:

Proposition 14 Let F(k) be a k-skeleton of a simplicial resolution of G and (Ωk, g(k)) k-dimension
construction data for F(k+1). Suppose given a simplicial group morphism Θ : F(k) −→ G such that
Θ∗(g(k)) = 0, then Θ extends over F(k+1).

This freeness statement does not contain a uniqueness clause. That can be achieved by choosing
a lift for Θkg

(k) to NGk+1, a lift that must exist since Θ∗(πk(F(k))) is trivial.
When handling combinatorially defined resolutions, rather than functorially defined ones, this

proposition is as often as close to ‘left adjointness’ as is possible without entering the realm of
homotopical algebra to an extent greater than is desirable for us here.

We have not talked here about the homotopy of simplicial group morphisms, and so will not dis-
cuss homotopy invariance of this construction for which one adapts the description given by André,
[3], or Keune, [73]. Of course, the resolution one builds by any means would be homotopicallly
equivalent to any other so, for cohomological purposes, it makes no difference how the resolution
is built.

Of course, from any simplicial resolution F of G, you can get an augmented crossed complex
C(F) over G using the formula given earlier and this is a crossed resolution.
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3.6 Cohomology and crossed extensions

3.6.1 Cochains

Consider a G-module, M , and a non-negative integer n. We can form the chain complex, K(M,n),
having M in dimension n and zeroes elsewhere. We can also form a crossed complex, K(M,n),
that plays the role of the nth Eilenberg-MacLane space of M in this setting. We may call it the
nth Eilenberg-MacLane crossed complex of M :

If n = 0, K(M,n)0 = GnM , K(M,n)i = 0, i > 0.
If n ≥ 1, K(M,n)0 = G, K(M,n)n = M , K(M,n)i = 0, i 6= 0 or n.
One way to view cochains is as chain complex morphisms. Thus on looking at Ch(BG,K(M,n)),

one finds exactly Zn+1(G,M), the (n+ 1)-cocycles of the cochain complex C(G,M). We can also
view Zn+1(G,M) as CrsG(CG,K(M,n)).

In the category of chain complexes, one has that a homotopy from BG to K(M,n) between
0 and f , say, is merely a coboundary, so that Hn+1(G,M) ∼= [BG,K(M,n)], adopting the usual
homotopical notation for the group of homotopy classes of maps from the bar resolution BG to
K(M,n). This description has its analogue in the crossed complex case as we shall see.

3.6.2 Homotopies

Let C, C′ be two crossed complexes with Q and Q′ respectively as the cokernels of their bottom
morphism. Suppose λ, µ : C→ C′ are two morphisms inducing the same map ϕ : Q→ Q′.

A homotopy from λ to µ is a family, h = {hk : k ≥ 1}, of maps hk : Ck → C ′k+1 satisfying the
following conditions:

H1) h0 : C1 → C ′2 is a derivation along µ0 (i.e. for x, y ∈ C0,

h0(xy) = h0(x)(µ0h0(y)), )

such that
δ1h0(x) = λ0(x)µ0(x)−1, x ∈ C0.

H2) h1 : C1 → C ′2 is a C0-homomorphism with C0 acting on C ′2 via λ0 (or via µ0, it makes no
difference) such that

δ2h1(x) = µ1(x)−1(h0δ1(x)−1λ1(x)) for x ∈ C1.

H3) for k ≥ 2, hk is a Q-homomorphism (with Q acting on the C ′k via the induced map
ϕ : Q→ Q′) such that

δk+1hk + hk−1δk = λk − µk.

We note that the condition that λ and µ induce the same map, ϕ : Q→ Q′, is, in fact, superfluous
as this is implied by H1.

The properties of homotopies and the relation of homotopy are as one would expect. One finds
Hn+1(G,M) ∼= [CG,K(M,n)]. Given that in higher dimensions, this is the same set exactly as
[BG,K(M,n)] means that there is not much to check and so the proof has been omitted.

3.6.3 Huebschmann’s description of cohomology classes

The transition from this position to obtaining Huebschmann’s descriptions of cohomology classes,
[64], is now more or less formal. We will, therefore, only sketch the main points.
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If G is a group, M is a G-module and n ≥ 1, a crossed n-fold extension is an exact augmented
crossed complex,

0→M → Cn → . . .→ C2 → C1 → G→ 1.

The notion of similarity of such extensions is analogous to that of n-fold extensions in the Abelian
Yoneda theory, (cf. MacLane, [77]), as is the definition of a Baer sum. We leave the details to you.
This yields an Abelian group, Opextn(G,M), of similarity classes of crossed n-fold extensions of G
by M .

Given a cohomology class in Hn+1(G,M) realisable as a homotopy class of maps, f : CG →
K(M,n), one uses f to form an induced crossed complex, much as in the Abelian Yoneda theory:

Jn(G) //

f ′ pushout

��

Cn //

��

. . . // C1
//

��

G

0 //M //Mn
// . . . //M1

// G

where Jn(G) is Ker(CnG → Cn−1G). (Thus JnG is also Im(Cn+1G → CnG) and as the map f
satisfies fδ = 0, it is zero on the subgroup δ(Cn+2G) (i.e. is constant on the cosets) and hence passes
to Im(Cn+1G → CnG) in a well defined way.) Arguments using lifting of maps and homotopies
show that the assignment of this element of Opextn(G,M) to cls(f) ∈ Hn+1(G,M) establishes an
isomorphism between these groups.

3.6.4 Abstract Kernels.

The importance of having such a description of classes in Hn(G,M) probably resides in low di-
mensions. To describe classes in H3(G,M), one has, as before, crossed 2-fold extensions

0→M → C2
∂→ C1 → G→ 1,

where ∂ is a crossed module. One has for any group G, a crossed 2-fold extension

0→ Z(G)→ G
∂G→ Aut(G)→ Out(G)→ 1

where ∂G sends g ∈ G to the corresponding inner automorphism of G. An abstract kernel (in the
sense of Eilenberg-MacLane, [54]) is a homomorphism ψ : Q → Out(G) and hence provides, by
pulling back, a 2-fold extension of Q by the centre Z(G) of G.

3.7 2-types and cohomology

In classifying homotopy types and in obstruction theory, one frequently has invariants that are
elements in cohomology groups of the form Hm(X,π), where typically π is the nth homotopy group
of some space. When dealing with homotopy types, π will be a group, usually Abelian with a π1

action, i.e. we are exactly in the situation described earlier, except that X is a homotopy type not
a group. Of course, provided that X is connected, we can replace X by a simplicial group, bringing
us even nearer to the situation of this section. We shall work within the category of simplicial
groups.
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3.7.1 2-types

A morphism
f : G→ H

of simplicial groups is called a 2-equivalence if it induces isomorphisms

π0(f) : π0(G)→ π0(H, )

and
π1(f) : π1(G)→ π1(H).

We can form a quotient category, Ho2(Simp.Grps), of Simp.Grps by formally inverting the
2-equivalences. Then we say two simplicial groups, G and H, have the same 2-type if they are
isomorphic in Ho2(Simp.Grps).

This is, of course, just a special case of the general notion of n-type in which “n-equivalences” are
inverted, thus forming the quotient category Hon(Simp.Grps). An n-equivalence is a morphism,
f , inducing isomorphisms, πi(f), for i = 0, 1, . . . , n− 1.

3.7.2 Example: 1-types

Before examining 2-types in detail, it will pay to think about 1-types. A morphism f as above is
a 1-equivalence if it induces an isomorphism on π0, i.e. π0(f) is an isomorphism. Given any group
G, there is a simplicial group, K(G, 0) consisting of G in each dimension with face and degeneracy
maps all being identities. Given a simplicial group H, having G ∼= π0(H), the natural quotient
map

H0 → π0(H) ∼= G,

extends to a natural 1-equivalence between H and K(π0(H), 0).
It is fairly routine to check that

π0 : Simp.Grps→ Grps

has K(−, 0) as an adjoint and that, as the unit is a natural 1-equivalence, and the counit an
isomorphism, this adjoint pair induces an equivalence between the category Ho1(Simp.Grps) of
1-types and the category, Grps, of groups. In other words,

groups are algebraic models for 1-types.

3.7.3 Algebraic models for n-types?

So much for 1-types. Can one provide algebraic models for 2-types or, in general, n-types? We
touched on this earlier. The criteria that any such “models” might satisfy are debatable. Perhaps
ideally, or even unrealistically, there should be an isomorphism class of algebraic “gadgets” for each
2-type. An alternative weaker solution is to ask that a notion of equivalence between the models
is possible, and that only equivalence classes, not isomorphism classes, correspond to 2-types, but,
in addition, the notion of equivalence is algebraically defined. It is this weaker possibility that
corresponds to our aim here.
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3.7.4 Algebraic models for 2-types.

If G is a simplicial group, then we can form a crossed module

∂ :
NG1

d0(NG2)
→ G0,

where the action of G0 is via the degeneracy, s0 : G0 → G1, and ∂ is induced by d0. (As before we
will denote this crossed module by M(G, 1).) The kernel of ∂ is

Ker d0 ∩Ker d1

d0(NG2)
∼= π1(G),

whilst its cokernel is
G0

d0(NG1)
∼= π0(G),

and so we have a crossed 2-fold extension

0→ π1(G)→ NG1

d0(NG2)
→ G0 → π0(G)→ 1

and hence a cohomology class k(G) ∈ H3(π0(G), π1(G)).
Suppose now that f : G → H is a morphism of simplicial groups, then one obtains a commu-

tative diagram

0 // π1(G) //

π1(f)

��

NG1
d0(NG2)

//

��

G0
//

f0

��

π0(G) //

π0(f)

��

1

0 // π1(H) // NH1
d0(NH2)

// H0
// π0(H) // 1

If, therefore, f is a 2-equivalence, π0(f) and π1(f) will be isomorphisms and the diagram shows
that, modulo these isomorphisms, k(G) and k(H) are the same cohomology class, i.e. the 2-type
of G determines π0, π1 and this cohomology class, k in H3(π0, π1).

Conversely, suppose we are given a group π, a π-module, M , and a cohomology class k ∈
H3(π,M), then we can realise k by a 2-fold extension

0→M → C
∂→ G→ π → 1

as above. The crossed module, C = (C,G, ∂), determines a simplicial group K(C) as follows:
Suppose C = (C,P, ∂) is any crossed module, we construct a simplicial group K(C) by

K(C)0 = P, K(C)1 = C o P,

s0(p) = (1, p), d1
0(c, p) = ∂c.p, d1

1(c, p) = p.

Assuming K(C)n is defined and that it acts on C via the unique composed face map to K(C)0 = P
followed by the given action of P on C, we set

K(C)n+1 = C oK(C)n;
dn+1

0 (cn+1, . . . , c1, p) = (cn+1, ..., c2, ∂c1.p);
dn+1
i (cn+1, . . . , ci+1, ci, . . . , c1, p) = (cn+1, . . . , ci+1ci, . . . c1, p)

for 0 < i < n+ 1;
dn+1
n+1(cn+1, . . . , c1, p) = (cn, . . . , c1, p);

sni (cn, . . . , c1, p) = (cn, . . . , 1, . . . , c1, p),
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where the 1 is placed in the ith position.
Clearly Ker d1

1 = {(c, p) : p = 1} ∼= C, whilst Ker d2
1 ∩ Ker d2

2 = {(c2, c1, p) : (c1, p) =
(1, 1) and (c2c1, p) = (1, 1)} ∼= {1}, hence the “top term” of M(K(C), 1) is isomorphic to C
itself, whilst K(C)0 is P itself. The boundary map ∂ in this interpretation is the original ∂, since
it maps (c, 1) to d0(c), i.e., we have

Lemma 10 There is a natural isomorphism

C ∼= M(K(C), 1).

�
This construction is the internal nerve of the internal category in Grps as we noted earlier. All

the ideas that go into defining the nerve of a category adapt to handling internal categories, and
they produce simplicial objects in the corresponding ambient category.

Suppose now that we had chosen an equivalent 2-fold extension

0→M → C ′
d′→ G′ → π → 1

The equivalence guarantees that there is a zig-zag of maps of 2-fold extensions joining it to that
considered earlier. We need only look at the case of a direct basic equivalence:

0 //M //

=

��

C
∂ //

��

G //

��

π //

=

��

1

0 //M // C ′
∂′ // G′ // π // 1

giving a map of crossed modules, ϕ : C→ C′, where C′ = (C ′, G′, ∂′). This induces a morphism of
simplicial groups,

K(ϕ) : K(C)→ K(C′),

that is, of course, a 2-equivalence. If there is a longer zig-zag between C and C′ then the intermediate
crossed modules give intermediate simplicial groups and a zig-zag of 2-equivalences so that K(C)
and K(C′) are isomorphic in Ho2(Simp.Grps), i.e. they have the same 2-type. This argument can,
of course, be reversed.

If G and H have the same 2-type, they are isomorphic within the category Ho2(Simp.Grps),
so they are linked in Simp.Grps by a zig-zag of 2-equivalences, hence the corresponding coho-
mology classes in H3(π0(G), π1(G)) are the same up to identification of H3(π0(G), π1(G)) and
H3(π0(H), π1(H)). This proves the simplicial group analogue of the result of MacLane and White-
head, [80], that we mentioned earlier, giving an algebraic model for 2-types of connected CW-
complexes.

Theorem 3 (MacLane and Whitehead, [80]) 2-types are classified by a group π0, a π0-module, π1

and a class in H3(π0, π1). �

We have handled this in such a way so as to derive an equivalence of categories:

Proposition 15 There is an equivalence of categories,

Ho2(Simp.Grps) ∼= Ho(CMod),

where Ho(CMod) is formed from CMod by formally inverting those maps of crossed modules that
induce isomorphisms on both the kernels and the cokernels. �



Chapter 4

Beyond 2-types

4.1 Crossed squares: an introduction

The title of this section promises to go beyond 2-types and we have so far only done this with the
crossed complexes. These do give all the homotopy groups of a simplicial groups, but the homotopy
types they represent are of a fairly simple type as they have vanishing Whitehead products.

We will return to crossed complexes later on but will now go to 3-types and crossed squares.
We saw earlier that crossed modules were like normal subgroups except that the inclusion

map is replaced by a homomorphism that need not be a monomorphism. We even noted that
all crossed modules are, up to isomorphism, obtainable by applying π0 to a simplicial “inclusion
crossed module”.

Given a pair of normal subgroups M , N of a group G, we can form a square

M ∩N //

��

N

��
M // G

in which each morphism is a inclusion crossed module and there is a commutator map

h : M ×N →M ∩N

h(m,n) = [m,n].

This forms a crossed square of groups. We will be dealing with crossed squares as crossed n-cubes,
for n = 2, later. Here we will give an interim definition of crossed squares. The notion is due to
Guin-Walery and Loday, [61], and this slightly shortened form of the definition is adapted from
Brown-Loday, [31].

A crossed square (more correctly crossed square of groups) is a commutative square of groups
and homomorphisms

L
λ //

λ′

��

M

µ

��
N

ν // P

together with actions of the group P on L, M and N (and hence actions of M on L and N via
µ and of N on L and M via ν) and a function h : M × N → L. This structure is to satisfy the

71
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following axioms:
(i) the maps λ , λ′ preserve the actions of P , furthermore with the given actions, the maps µ, ν
and κ = µλ = µ′λ′ are crossed modules;
(ii) λh(m,n) = mnm−1, λ′h(m,n) = mnn−1;
(iii) h(λ`, n) = `n`−1, h(m,λ′`) = m``−1;
(iv) h(mm′, n) = mh(m′, n)h(m,n), h(m,nn′) = h(m,n)nh(m,n′) ;
(v) h(pm, pn) = ph(m,n) ;
for all ` ∈ L, m,m′ ∈M , n, n′ ∈ N and p ∈ P .

There is an evident notion of morphism of crossed squares and we obtain a category Crs2, the
category of crossed squares.

Examples
(a) Given any simplicial group G and two simplicial normal subgroups M and N , the square

M ∩N //

��

N

��
M // G

with inclusions and with h = [ , ] : M × N → G is a simplicial “inclusion crossed square” of
simplicial groups. Applying π0 to the diagram gives a crossed square and, in fact, all crossed
squares arise in this way (up to isomorphism).

b) Any simplicial group G yields a crossed square, M(G, 2), defined by

NG2

d0(NG3)

��

// Ker d1

��
Kerd2

// G1

for suitable maps. This is, in fact, part of the construction that shows that all connected 3-types
are modelled by crossed squares.

Another way of encoding 3-types is using the truncated simplicial group and Conduché’s notion
of 2-crossed module.

4.2 2-crossed modules

The theory of crossed n-cubes that we have hinted at above is not the only way of encoding higher
n-types. One ‘obvious’ method would be to use truncated simplicial groups. A detailed study of
this is feasible for 3-types and in fact reveals some interesting insights into crossed squares in the
process.

As a first step to understanding truncated simplicial groups a bit more, we will give a variant
of an argument that we have already seen. We will look at a 1-truncated simplicial group. The
analysis is really a simple use of the sort of insights given by the Brown-Loday lemma.

Proposition 16 (The Brown-Loday lemma) Let N2 be the (closed) normal subgroup of G2 gener-
ated by elements of the form

F(1),(0)(x, y) = [s1x, s0y][s0y, s0x]
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for x, y ∈ NG1 = Ker d1. Then NG2 ∩D2 = N2 and consequently

∂(NG2 ∩D2) = [Ker d0,Ker d1].

This form of element, F(1),(0)(x, y), is obtained by taking the two elements, x and y, of degree 1
in the Moore complex of a simplicial group, G, mapping them up to degree 2 by complementary
degeneracies, and then looking at the component of the result that is in the Moore complex term,
NG2. (It is easy to show that G2 is a semidirect product of NG2 and degenerate copies of lower
degree Moore complex terms.) The idea behind this pairing can be extended to higher dimensions.
It gives the Peiffer pairings

Fα,β : NGp ×NGq → NGp+q.

In general these take x ∈ NGp and y ∈ NGq and (α, β) a complimentary pair of index strings (of
suitable lengths), and sends (x, y) to the component in NGp+q of [sαx, sβy]; see the series of papers
[91, 87, 89, 88, 90]. This uses the Conduché decomposition lemma, [38], that we will see later on,
cf. page 101.

A very closely related concept is that of hypercrossed complex as in Carrasco and Cegarra,
[36]. There one uses the component of sαx.sβy in NGp+q to give a pairing and adds cohomological
information to the result to get a reconstruction technique for G from NG, i.e. an ultimate Dold-
Kan theorem. Thus hypercrossed complexes generalise 2-crossed modules and 2-crossed modules
complexes.

1- and 2-truncated simplicial groups: Suppose that G is a simplicial group and that
NGi = 1 for i ≥ 2. This leaves us just with

∂ : NG1 → NG0.

We make NG0 = G0 act on NG1 by conjugation as before

gc = s0(g)cs0(g)−1 for g ∈ G0, c ∈ NG1,

and, of course, ∂( gc) = g.∂c.g−1. Thus the first crossed module axiom is satisfied. For the other
one, we note that F(1),(0)(c1, c2) ∈ NG2, which is trivial, so

1 = d0([s1c1, s0c2][s0c2, s0c1])
= [s0d0c1, c2][c2, c1] = ( ∂c1c2)(c1c2c

−1
1 )−1,

so the Peiffer identity holds as well. Thus ∂ : NG1 → NG0 is a crossed module. As we have already
seen that the functor G provides a way to construct a simplicial group from a crossed module and
that the result has Moore complex of length 1, we have the following slight reformulation of earlier
results:

Proposition 17 The category of crossed modules is equivalent to the subcategory T1] of 1-truncated
simplicial groups. �

The main reason for restating and proving this result in this form is that we can glean more
information from the proof for examining the next level, 2-truncated simplicial groups.

If we replace our 1-truncated simplicial group by an arbitrary one, then we have already intro-
duced the idea of a Peiffer commutator of two elements, and there we used the term ‘Peiffer lifting’
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without specifying what particular interest the construction had. We recall that here: Given a
simplicial group, G, and two elements c1, c2 ∈ NG1 as above, then the Peiffer commutator of c1

and c2 is defined by
〈c1, c2〉 = (∂c1c2)(c1c2c

−1
1 )−1.

We met earlier, F(1),(0), which gives the Peiffer lifting denoted

{−,−} : NG1 ×NG1 → NG2,

where
{c1, c2} = [s1c1, s0c2][s0c2, s0c1]

and we noted
∂{c1, c2} = 〈c1, c2〉.

These structures come into their own for a 2-truncated simplicial group. Suppose that G is now
a simplicial group, which is 2-truncated, so its Moore complex looks like:

. . . 1→ NG2
∂2−→ NG1

∂1−→ NG0.

For the moment, we will concentrate our attention on the morphism ∂2.
The group NG1 acts on NG2 via conjugation using s0 or s1. We will use s0 for the moment,

so that if g ∈ NG1 and c ∈ NG2,
gc = s0(g)cs0(g)−1.

It is once again clear that ∂2( gc) = g.∂2(c).g−1 and, as before, we consider, for c1, c2 ∈ NG2 this
time, the Peiffer pairing given by

[s1c1, s0c2][s0c2, s0c1],

which is, this time, the component of [s1c1, s0c2] in NG3. However that latter group is trivial, so
this element is trivial, and hence, so is its image in NG2. The same calculation as before shows
that, with this s0-based action of NG1 on NG2, (NG2, NG1, ∂2) is a crossed module.

We also know that there is a Peiffer lifting

{−,−} : NG1 ×NG1 → NG2,

which measures the obstruction to NG1 → NG0 being a crossed module, since ∂{−,−} is the
Peiffer commutator, whose vanishing is equivalent to NG1 → NG0 being a crossed module. We do
not have yet in our investigation a detailed knowledge of how the two structures interact, nor any
other distinguishing properties of { , }. We will not give such a detailed treatment here, but from
it we can obtain the following:

Proposition 18 Let G be a 2-truncated simplicial group. The Peiffer lifting

{−,−} : NG1 ×NG1 → NG2,

has the following properties:
(i) it is a map such that if m0,m1 ∈ NG1,

∂{m0,m1} = ∂m0m1.(m0m1m
−1
0 )−1;
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(ii) if `0, `1 ∈ NG2,
{∂`0, ∂`1} = [`0, `1];

(iii) if ` ∈ NG2 and m ∈ NG1, then

{m, ∂`}{∂`,m} = ∂m`.`−1;

(iv) if m0,m1,m2 ∈ NG1, then
a) {m0,m1m2} = {m0,m1} (m0m1m

−1
0 ){m0,m2},

b) {m0m1,m2} = ∂m0{m1,m2}{m0,m1m2m
−1
1 };

(v) if n ∈ NG0 and m0,m1 ∈ NG1, then

n{m0,m1} = { nm0,
nm1}.

�

The above can be encoded in the definition of a 2-crossed module.

Definition: A 2-crossed module is a normal complex of groups

L
∂2−→M

∂1−→ N,

together with an action of N on all three groups and a mapping

{−,−} : M ×M → L

such that

(i) the action of N on itself is by conjugation, and ∂2 and ∂1 are N -equivariant;

(ii) for all m0,m1 ∈M ,
∂2{m0,m1} = ∂1m0m1.m0m

−1
1 m−1

0 ;

(iii) if `0, `0 ∈ L, then
{∂2`0, ∂2`} = [`1, `0];

(iv) if ` ∈ L and m ∈M , then
{m, ∂`}{∂`,m} = ∂m`.`−1;

(v) for all m0,m1,m2 ∈M ,

(a) {m0,m1m2} = {m0,m1}{∂{m0,m2}, (m0m1m
−1
0 )}{m0,m2};

(b) {m0m1,m2} = ∂m0{m1,m2}{m0,m1m2m
−1
1 };

(vi) if n ∈ N and m0,m1 ∈M , then

n{m0,m1} = { nm0,
nm1}.
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The only one of these that looks ‘daunting’ is (v)a). Note that we have not specified that M acts
on L. We could have done that as follows: if m ∈M and ` ∈ L, define

m` = {∂`,m}`.

Now (v)a) simplifies to the expression

{m0,m1m2} = {m0,m1} (m0m1m
−1
0 ){m0,m2}.

We denote such a 2-crossed module by {L,M,N, ∂2, ∂1}, or similar, only adding in notation for
the actions and the pairing if explicitly needed for the context. A morphism of 2-crossed modules
is, fairly obviously, given by a diagram

L
∂2 //

f2
��

M
∂1 //

f1
��

N

f0
��

L′
∂′2

//M ′
∂′1

// N ′

,

where f0∂1 = ∂′1f1,f1∂2 = ∂′2f2,

f1( nm) = f0(n)f1(m), f2( n`) = f0(n)f2(`),

and
{−,−}(f1 × f1) = f2{−,−},

for all ` ∈ L, m ∈M , n ∈ N .
These compose in an obvious way giving a category which we will denote by 2−CMod.
The following should be clear.

Theorem 4 The Moore complex of a 2-truncated simplicial group is a 2-crossed module. The
assignment is functorial. �

We will denote this functor by C(2) : T2] → 2−CMod. It is an equivalence of categories.

Examples of 2-crossed modules Of course, the construction of 2-crossed modules from
simplicial groups gives a generic family of examples, but we can do better than that and show how
these new crossed gadgets link in with others that we have met earlier.

Example 1. Any crossed module gives a 2-crossed module, since if (M,N, ∂) is a crossed
module, we need only add L = 1, and the resulting sequence

L→M → N

with the ‘obvious actions’ is a 2-crossed module! This is, of course, functorial and CMod can be
considered to be a full subcategory of 2−CMod in this way. It is a reflective subcategory since
there is a reflection functor obtained as follows:

If
L

∂2−→M
∂1−→ N

is a 2-crossed module, then Im∂2 is a normal subgroup of M and we have (with a small abuse of
notation):
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Proposition 19 If L ∂2−→M
∂1−→ N is a 2-crossed module then there is an induced crossed module

structure on
∂1 :

M

Im∂2
→ N.

�

But we can do better than this:
Example 2. Any crossed complex of length 2, that is one of form

. . .→ 1→ 1→ C2
∂2−→ C1

∂1−→ C0,

gives us a 2-crossed complex on taking L = C2, M = C1 and N = C0, with {m,m′} = 1 for all
m,m′ ∈ M . We will check this in a moment, but note that this gives a functor from Crs2] to
2−CMod extending the one we gave in Example 1.

Of course, (i) crossed complexes of length 2 are the same as 2-truncated crossed complexes.

Exploration of trivial Peiffer lifting: Suppose we have a 2-crossed module

L
∂2−→M

∂1−→ N,

with the extra condition that {m0,m1} = 1 for all m0,m1 ∈M . The obvious thing to do is to see
what each of the defining properties of a 2-crossed module give in this case.

(i) There is an action of N on L and M and the ∂s are N -equivariant. (This gives nothing new
in our special case.)

(ii) {−,−} is a lifting of the Peiffer commutator - so if {m0,m1} = 1, the Peiffer identity holds
for (M,N, ∂1), i.e. that is a crossed module;

(iii) if `0, `1 ∈ L, then 1 = {∂2`0, ∂2`1} = [`1, `0], so L is Abelian
and,

(iv) as {−,−} is trivial ∂m` = `, so ∂M has trivial action on L.
Axioms (v) and (vi) vanish.
We leave the reader, if they so wish, to structure this into a formal proof that the 2-crossed

module is precisely a 2-truncated crossed complex.
Our earlier discussion should suggest:

Proposition 20 The category Crs2] of crossed complexes of length 2 is equivalent to the full sub-
category of 2−CMod given by those 2-crossed complexes with trivial Peiffer lifting. �

We leave the proof of this to the reader.

In the next section we will give other examples of 2-crossed modules, those coming from crossed
squares.

4.3 2-crossed modules and crossed squares

We now have several ‘competing’ models for homotopy 3-types. Since we can go from simplicial
groups to both crossed square and 2-crossed modules, there should be some link between the latter
two situations. In his work on homotopy n-types, Loday gave a construction of what he called a
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‘mapping cone’ for a crossed square. Conduché later noticed that this naturally had the structure
of a 2-crossed module. This is looked at in detail in a paper by Conduché, [39].

Suppose that

L
λ //

λ′

��

M

µ

��
N

µ′
// P

is a crossed square, then its mapping cone complex is

L
∂2→M oN

∂1→ P,

where ∂2` = (λ`−1, λ′`) and ∂1(m,n) = µ(m)ν(n).
We first note that the semi-direct product M oN is formed by making N act on M via P , i.e.

nm = ν(n)m,

where the P -action is the given one. The fact that (λ−1, λ′) and µν are homomorphisms is an
interesting and instructive, but easy, exercise:

i) (m,n)(m′, n′) = (mν(n)m′, nn′), so

∂1((m,n)(m′, n′)) = µ(mν(n)m′).ν(nn′)
= µ(m)ν(n)µ(m′)ν(n)−1ν(n)ν(n′)
= (µ(m)ν(n))(µ(m′)ν(n′));

(ii) if `, `′ ∈ L, then, of course,

∂1(``′) = (λ(``′)−1, λ′(``′))
= (λ(`′)−1λ(`)−1, λ′(`)λ′(`′)).

whilst

∂1(`)∂1(`′) = (λ(`)−1, λ′(`))(λ(`′)−1, λ′(`′))

= (λ(`)−1.νλ
′(`−1)λ(`′)−1, λ′(``′)),

Thus the second coordinates are the same, but, as νλ′ = µλ, the first coordinates are also equal.
These elementary calculations are useful as they pave the way for the calculation of the Peiffer

commutator of x = (m,n) and y = (c, a) in the above complex:

〈x, y〉 = ∂xy.xy−1x−1

= µm.νn(c, a).(m,n)(a
−1
c−1, a−1)(n

−1
m−1, n−1)

= (µmνnc, µmνna)(mν(na−1)c−1.ν(na−1n−1)m−1, na−1n−1),

which on multiplying out and simplifying is

(ν(na−1n−1)m.m−1, µm(nan−1).(na−1n−1)).

(Note that any dependence on c vanishes!)
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Conduché defined the Peiffer lifting in this situation by

{x, y} = h(m,nan−1).

It is immediate to check that this works

∂2{x, y} = (λh(m,nan−1), λ′h(m,nan−1))

= (ν(na−1n−1)m.m−1, µm(nan−1).(na−1n−1),

by the axioms of a crossed square.

We will not check all the axioms for a 2-crossed module for this structure, but will note the
proofs for one or two of them as they illustrate the connection between the properties of the h-map
and those of the Peiffer lifting.

2CM(iii) : {∂`0, ∂`1} = [`1, `0]. As ∂` = (λ`−1, λ′`), this needs the calculation of

h(λ`−1
0 , λ′(`0`1`−1

0 )),

but the crossed square axiom :
h(λ`, n) = `.n`−1, and h(m,λ′`) = m`.`−1,

together with the fact that the map λ : L→M is a crossed module, give

h(λ`−1
0 , λ′(`0`1`−1

0 )) = µλ(`−1
0 (`0`1`−1

0 ).`0`−1
1 `−1

0 )
= [`1, `0].

We need {(m,n), (λ`−1, λ′`)}{(λ`−1, λ′`), (m,n)} to equal µ(m)ν(n)`.`−1, but evaluating the initial
expression gives

h(m,n.λ′`.n−1)h(λ`−1, λ′`.n.λ′`−1) = h(m,λ′(n`))h(λ`−1, λ′`.n.λ′`−1)

= µ(m)ν(n)`.ν(n)`−1.`−1.νλ
′(`).ν(n).νλ′`−1

`,

and this does simplify as expected to give the correct results.

We thus have two ways of going from a simplicial group, G, to a 2-crossed module:
(a) directly to get

NG2

∂NG3
→ NG1 → NG0;

(b) indirectly via M(G, 2) and then by the above construction to get

NG2

∂NG3
→ Ker d0 oKer d1 → G1

and they clearly give the same homotopy type. More precisely G1 decomposes as Ker d0 o s0G0

and the Ker d0 factor in the middle term of (b) maps down to that in this decomposition by the
identity map. Thus d0 induces a quotient map from (b) to (a) with kernel isomorphic to

1→ Ker d0
=→ Ker d0,

which is acyclic/contractible.
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4.4 2-crossed complexes

(These were not discussed in the lectures in Buenos Aires due to lack of time.)
Crossed complexes are a useful extension of crossed modules allowing not only the encoding of

an algebraic model for the 2-type, but also information on the ‘chains on the universal cover’, e.g.
if G is a simplicial group, we had C(G), the crossed complex constructed from the Moore complex
of G, given by

C(G)n =
NGn

(NGn ∩Dn)d0(NGn+1 ∩Dn+1)
,

in higher dimensions and having at its ‘bottom end’ the crossed module,

NG1

d0(NG2 ∩D2)
→ NG0.

For a crossed complex, π(X), coming from a CW-complex (as a filtered space, filtered by its
skeleta), these groups in dimensions ≥ 3 coincide with the corresponding groups of the complex of
chains on the universal cover of X. In general, the analogue of that chain complex can be extracted
functorially from a general crossed complex; see [28] or [98]. The tail on a crossed complex allows
extra dimensions, not available just with crossed modules, in which homotopies can be constructed.
The category Crs is very much better structured than is CMod itself and so ‘adding a tail’ would
seem to be a ‘good thing to do’, so with 2-crossed modules, we can try and do something similar,
adding a similar ‘tail’.

We have an obvious normal chain complex of groups that ends

. . .→ C(G)3 →
NG2

d0(NG3 ∩D3)
→ NG1 → NG0.

Here there are more of the structural Peiffer pairings of the Moore complex NG that survive to
the quotient, but it should be clear that, as they take values in the NGn ∩ Dn, in general these
will again be almost all trivial if the receiving dimension, n, is greater than 2. For n ≤ 2, these
pairings are those that we have been using earlier in this chapter. The one exceptional case that
is important here, as in the crossed complex case, is that which gives the action of NG0 on Cn(G)
for n ≥ 3, which, just as before, gives Cn(G) the structure of a π0G-module. Abstracting from this
gives the definition of a 2-crossed complex.

Definition: A 2-crossed complex is a normal complex of groups

. . .→ Cn
∂n−→ Cn−1 −→ . . . −→ C0,

together with a 2-crossed module structure given on C2 → C1 → C0 by a Peiffer lifting function
{−,−} : C1 × C1 → C2, such that, on writing π = Coker(C1 → C0),
(i) each Cn, n ≥ 3 and Ker ∂2 are π-modules and the ∂n for n ≥ 4, together with the codomain
restriction of ∂3, are π-module homomorphisms;
(ii) the π-module structure on Ker ∂2 is the action induced from the C0-action on C2 for which the
action of ∂1C1 is trivial.

A 2-crossed complex morphism is defined in the obvious way, being compatible with all the
actions, the pairings and Peiffer liftings. We will denote by 2− Crs, the corresponding category.
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Proposition 21 The construction above defines a functor C(2) from Simp.Grps to 2− Crs. �

We have noted above that any 2-crossed module,

L
∂2−→M

∂1−→ N,

gives us a short crossed complex by dividing L by the subgroup {M,M}, the image of the Peiffer
lifting. (We do not need this, but {M,M} is easily checked to be a normal subgroup of L.) We
also discussed those 2-crossed complexes that had trivial Peiffer lifting. They were just the length
2 crossed complexes. This allows one to show that crossed complexes form a reflexive subcategory
of 2− Crs and to give a simple description of the reflector:

Proposition 22 There is an embedding

Crs→ 2−Crs,

which has a left adjoint, L say, compatible with the functors defined from Simp.Grps to 2−Crs
and to Crs, i.e. C(G) ∼= LC(2)(G). �

4.5 Catn-groups and crossed n-cubes

Cat2-groups and crossed squares: In the simplest examples of crossed squares, µ and µ′ are
normal subgroup inclusions and L = M ∩ N, with h being the conjugation map. Moreover this
type of example is almost ‘generic’ since, if

M ∩N //

��

M

��
N // G

is a simplicial crossed square constructed from a simplicial group, G, and two simplicial normal
subgroups, M and N , then applying π0, the square gives a crossed square and, up to isomorphism,
all crossed squares arise in this way.

Although when first defined by D. Guin-Walery and J.-L. Loday, [61], the notion of crossed
squares was not linked to that of cat2-groups, it was in this form that Loday gave their generalisation
to an n-fold structure, catn-groups (see [75] and below).

A cat1-group is a triple (G, s, t), where G is a group and s, t are endomorphisms of G satisfying
conditions
(i) st = t and ts = s.
(ii) [Ker s, Ker t] = 1.

A cat1-group is a reformulation of an internal groupoid in Grps. (The interchange law is given
by the [Ker,Ker] condition; left for you to check) As these latter objects are equivalent to crossed
modules, we expect to be able to go between cat1-groups and crossed modules without hindrance,
and we can:

Setting M = Ker s, N = Ims and ∂ = t|M, then the action of N on M by conjugation within
G makes ∂ : M → N into a crossed module. Conversely if ∂ : M → N is a crossed module, then
setting G = M oN and letting s, t be defined by

s(m,n) = (1, n)
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and
t(m,n) = (1, ∂(m)n)

for m ∈ M , n ∈ N, we have that (G, s, t) is a cat1-group. Again this is one of those simple, but
key calculations that are well worth doing yourself.

For a cat2-group, we again have a group, G, but this time with two independent cat1-group
structures on it. Explicitly:

Definition: A cat2-group is a 5-tuple (G, s1, t1, s2, t2), where (G, si, ti), i = 1, 2, are cat1-groups
and

sisj = sjsi, titj = tjti, sitj = tjsi

for i, j = 1, 2, i 6= j.

There is an obvious notion of morphism between cat2-groups and with this we obtain a category,
Cat2(Grps).

Theorem 5 [75] There is an equivalence of categories between the category of cat2-groups and that
of crossed squares.

Proof: The cat1-group (G, s1, t1) will give us a crossed module with M = Ker s1, N = Ims1, and
∂ = t|M, but, as the two cat1-group structures are independent, (G, s2, t2) restricts to give cat1-
group structures on both M and N and makes ∂ a morphism of cat1-groups as is easily checked.
We thus get a morphism of crossed modules

Ker s1 ∩Ker s2
//

��

Ims1 ∩Ker s2

��
Ker s2 ∩ Ims1

// Ims1 ∩ Ims2,

where each morphism is a crossed module for the natural action, i.e., conjugation in G. It remains
to produce an h-map, but this is given by the commutator within G, since, if x ∈ Ker s2 ∩ Ims1

and y ∈ Ims2 ∩Ker s1, then [x, y] ∈ Ker s1 ∩Ker s2. It is easy to check the axioms for a crossed
square. The converse is left as an exercise. �

4.6 Catn-groups and crossed n-cubes

Of the two notions named in the title of this section, the first is easier to define.
Definition: A catn-group is a group G together with 2n endomorphisms si, ti, (1 ≤ i ≤ n) such

that
siti = ti, and tisi = si for all i,

sisj = sjsi, titj = tjti, sitj = tjsi for i 6= j

and, for all i,
[Ker si,Ker ti] = 1.

A catn-group is thus a group with n independent cat1-group structures on it.
As a cat1-group can also be reformulated as an internal groupoid in the category of groups, a

catn-group, not surprisingly, leads to an internal n-fold groupoid in the same setting.
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The definition of crossed n-cube as an n-fold crossed module was initially suggested by Ellis
in his thesis. The only problem is to determine the sense in which one crossed module should act
on another. Since the number of axioms controlling the structure increased from crossed modules
to crossed squares, one might fear that the number and complexity of the axioms would increase
drastically in passing to higher ‘dimensions’. The formulation that resulted from the joint work,
[56], of Ellis and Steiner showed how that could be avoided by encoding the actions and the h-maps
in the same structure.

We write 〈n〉 for the set {1, . . . , n}.
Definition: A crossed n-cube, M, is a family of groups, {MA : A ⊆ 〈n〉}, together with

homomorphisms, µi : MA → MA−{i}, for i ∈ 〈n〉, A ⊆ 〈n〉, and functions, h : MA ×MB → MA∪B,
for A,B ⊆ 〈n〉, such that if ab denotes h(a, b)b for a ∈ MA and b ∈ MB with A ⊆ B, then for
a, a′ ∈MA, b, b

′ ∈MB, c ∈MC and i, j ∈ 〈n〉, the following axioms hold:
(1) µia = a if a /∈ A
(2) µiµja = µjµia
(3) µih(a, b) = h(µia, µib)
(4) h(a, b) = h(µia, b) = h(a, µib) if i ∈ A ∩B
(5) h(a, a′) = [a, a′]
(6) h(a, b) = h(b, a)−1

(7) h(a, b) = 1 if a = 1 or b = 1
(8) h(aa′, b) = ah(a′, b)h(a, b)
(9) h(a, bb′) = h(a, b)bh(a, b′)
(10) ah(h(a−1, b), c)ch(h(c−1, a), b)bh(h(b−1, c), a) = 1
(11) ah(b, c) = h(ab,ac) if A ⊆ B ∩ C.

A morphism of crossed n-cubes
{MA} → {M ′A}

is a family of homomorphisms, {fA : MA →M ′A |A ⊆ 〈n〉}, which commute with the maps, µi, and
the functions, h. This gives us a category, Crsn, equivalent to that of catn-groups.

Remarks: 1. In the correspondence between catn-groups and crossed n-cubes (see Ellis and
Steiner, [56]), the catn-group corresponding to a crossed n-cube, (MA), is constructed as a repeated
semidirect product of the various MA. Within the resulting “big group”, the h-functions interpret
as being commutators. This partially explains the structure of the h-function axioms.

2. For n = 1, these eleven axioms reduce to the usual crossed module axioms. For n = 2, they
give a crossed square:

M〈2〉
µ2 //

µ1

��

M{1}

µ1

��
M{2} µ2

//M∅

,

with the h-map that was previously specified being h : M{1} ×M{2} →M〈2〉. The other h-maps in
the above definition correspond to the various actions as explained in the definition itself.

Theorem 6 [56] There are equivalences of categories

Crsn ' Catn(Grps),

�
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4.7 Loday’s Theorem

In 1982, Loday proved a generalisation of the MacLane-Whitehead result that stated that connected
homotopy 2-types (they called them 3-types) were modelled by crossed modules. The extension
used catn-groups, and, as cat1-groups ‘are’ crossed modules, we should expect catn-groups to model
connected (n+ 1)-types (if the MacLane-Whitehead result is to be the n = 1 case, see page 72).

We have mentioned that ‘simplicial groupoids’ model all homotopy types and had a construction
of both a crossed module M(G, 1) and a crossed square, M(G, 2) from a simplicial group, G. These
are the n = 1 and n = 2 cases of a general construction of a crossed n-cube from G that we will
give in a moment First we note a rather neat result.

We saw early on in these notes, (Lemma 1, page 25), that if ∂ : C → P was a crossed module,
then ∂C / P , i.e. is a normal subgroup of P . A crossed square

L
λ //

λ′

��

M

µ

��
N

µ′
// P

can be thought of as a (horizontal or vertical,) crossed module of crossed modules:

L

��

M

��
−→

N P

(λ, ν) gives such a crossed module with domain (L,N, λ′) and codomain (M,P, µ) and so on.
(Working out the precise meaning of ‘crossed module of crossed modules’ and, in particular, what
it should mean to have an action of one crossed module on another, is a very useful exercise; try
it!) The image of (λ, ν) is a normal sub-crossed module of (M,P, µ), so we can form a quotient

µ : M/λL→ P/νN,

and this is a crossed module. (This is not hard to check. There are lots of different ways of checking
it, but perhaps the best way is just to show how P/νN acts on M/λL, in an obvious way, and then
to check the induced map, µ, has the right properties - just by checking them. This gives one a
feeling for how the various parts of the definition of a crossed square are used here.)

Another result from near the start of these notes, (Lemma 2), is that Ker ∂ is a central subgroup
of C and ∂C acts trivially on it, soKer ∂ has a natural P/∂C-module structure. Is there an analogue
of this for a crossed square? Of course, referring again to our crossed square, above, the kernel of
(λ, ν) would be λ′ : Ker λ → Ker ν (omitting any indication of restriction of λ′ for convenience).
Both Ker λ and Ker ν are Abelian, as they themselves are kernels of crossed modules, so Ker λ
is a M/λL-module and Ker ν is a P/νN -module. (It is left to the diligent reader to work out the
detailed structure here and to explore crossed modules that are modules over other ones.)

We had, for a given simplicial group, G, the crossed square

NG2

d0(NG3)

��

// Ker d1

��
Kerd2

// G1
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which was denoted M(G, 2). (The top horizontal and left vertical maps are induced by d0.) Let us
examine the horizontal quotient and kernel.

First the quotient, this has NG1/d0NG2 as its ‘top’ group and G1/Ker d0
∼= G0, as its bottom

one. Checking all the induced maps shows quite quickly that the quotient crossed module is
M(G, 1), up to isomorphism.

What about the kernel? Well, the bottom horizontal map is an inclusion, so has trivial kernel,
whilst the top is induced by d0, and so the kernel here can be calculated to be Ker d0∩NG2, divided
by d0(NG3), but that is Ker ∂/Im∂ in the Moore complex, so is H2(NG) and thus is π2(G). We
thus have, from previous calculations, that for M(G, 1), there is a crossed 2-fold extension

π1(G)→ NG1

∂NG2
→ NG0 → π0(G)

and for M(G, 2), a similar object, a crossed 2-fold extension of crossed modules:

1 // π2(G)

��

// Ker d1
//

��

NG2/d0(NG3)

��

// Ker d1NG1/d0(NG2) //

��

//

��

1

1 // 1 // Ker d0
// G1

// G0
// 1

‘Obviously’ this should give an element of ‘H3(M(G, 2), (π2(G)→ 1))’, but we have not given any
description of what that cohomology group should be. It can be done, but we will not go in that
direction for the moment. Rather we will use the route via simplicial groups.

We have that simplicial groups yield crossed squares by the M(G, 2) construction, and that
from M(G, 2) we can calculate π0(G), π1(G), and π2(G). If G represents a 3-type of a space (or
the 2-type of a simplicial group), then we would expect these homotopy groups to be the only
non-trivial ones. (Any simplicial group can be truncated to give one with these πi as the only
non-trivial ones.) This suggests that going from 3-types to crossed squares in a nice way should be
just a question of combining the functorial constructions

Spaces
Sing−→ Simplicial Sets

Simplicial Sets
G( )−→ S−Groupoids

S−Groupoids
M( ,2)−→ Crossed squares.

Of course, we would need to see if, for f : X → Y a 3-equivalence (so f induces isomorphisms on
πi for i = 0, 1, 2, 3), what would be the relationship between the corresponding crossed squares.
We would also need to know that each crossed square was in sense ‘equivalent’ to one of the form
M(G, 2) for some G constructed from it, in other words to reverse, in part, the last construction.
(The other constructions have well known inverses at the homotopy level.)

We will use a ‘multinerve’ construction, generalising the nerve that we have already met. We
will denote this by E(n)(M) for M a crossed n-cube.

For n = 1, E(1) is just the nerve of the crossed module, so ifM = (C,P, ∂), we have E(1)(M) =
K(M) as given already on page 39.

For n = 2, i.e. for a crossed square,M, we form the ‘double nerve ’ of the associated cat2-group
of M. From M, we first form the ‘crossed module of cat1-groups’

LoN
(λ,ν)−→ M o P,
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where, for instance, in M o P the source endomorphism is s(m, p) = (1, p) and the target is
t(m, p) = (1, ∂m.p). (We could repeat in the horizontal direction to form (LoN)o (MoP ), which
is the ‘big group’ of the cat2-group associated toM, but, in fact, will not do this except implicitly,
as it is easier to form a simplicial crossed module in this situation. This,

E(1)(L λ′→ N) −→ E(1)(M
µ→ P ),

is obtained by applying the E(1) construction to the vertical crossed modules. The two parts are
linked by a morphism of simplicial groups induced from (λ, ν) and which is compatible with the
action of the right hand simplicial group on the left hand one. (This action is not that obvious
to write down - unless you have already done the previously suggested ‘exercises’. It uses the
h-maps from M × N to L, etc. in an essential way, and is, in some ways, best viewed within
(LoN) o (M o P ) as being derived from conjugation. Details are, for instance, in Porter, [98] or
[94] as well as in the discussion of the equivalence between catn-groups and crossed n-cubes in the
original, [56].)

With this simplicial crossed module, we apply the nerve in the second horizontal direction to
get a bisimplicial group, E(2)(M). (Of course, if we started with a crossed n-cube, we could repeat
the application of the nerve functor n-times, one in each direction to get an n-simplicial group
E(n)(M).)

There are two ways of getting from a bisimplicial set or group to a simplicial one. One is
the diagonal, so if {Gp,q} is a bisimplicial group, diag(G•,•)n = Gn,n with fairly obvious face and
degeneracy maps. The other is the codiagonal (also sometimes called the ‘bar construction’). This
was introduced by Artin and Mazur, [6]. It picks up related terms in the various Gp,q for p+ q = n.
(An example is for any simplicial group, G, on taking the nerve in each dimension. You get a
bisimplicial set whose codiagonal is W (G), with the formula given later in these notes.) The two
constructions give homotopically equivalent simplicial groups. Proofs of this can be found in several
places in the literature, for instance, in the paper by Cegarra and Remedios, [37]. Here we will set
E(n)(M) = diagE(n)(M).

At this stage, for the reader trying to understand what is going on here, it is worth calculating
the Moore complex of these simplicial groups. This is technically quite tricky as it is easy to make
a slip, but it is not hard to see that they are ‘closely related’ to the 2-crossed module /mapping
cone complex:

L→M oN → P

that we met earlier, (page 78), that is due to Loday and Conduché, see [39]. Of course, such detailed
calculations are much harder to generalise to crossed n-cubes and other techniques are used, see
[94] or the alternative version based on the technology of catn-groups due to Bullejos, Cegarra and
Duskin, [34].

In any of these approaches from a crossed n-cube or catn-group, you either extract a n-simplicial
group and then a simplicial group, by diagonal or codiagonal, or going one stage further applying
the nerve functor to the n-simplicial group to get a (n+ 1)-simplicial set, which is then ‘attacked’
using the diagonal or codiagonal functors to get out a simplicial set. This end result is the simplicial
model for the crossed n-cube and has the same homotopy groups asM. Using the simplicial group
approach, one applies the M(−, n)-functor, that we have so far seen only for n = 1 and 2, to get
back a new crossed n-cube. This is not M itself in general, but is ‘quasi-isomorphic’ to it.

A morphism f : M → N of crossed n-cubes will be called a trivial epimorphism if E(n)(f) :
E(n)(M)→ E(n)(N ) is an epimorphism (and thus a fibration of simplicial groups having contractible



4.8. SQUARED COMPLEXES 87

kernel. Starting with the category, Crsn, of crossed n-cubes, inverting the trivial epimorphisms
gives a category, Ho(Crsn), and f will be called a quasi-isomorphism if it gives an isomorphism in
this category. We can now state Loday’s result in the form given in [94]:

Theorem 7 The functor
M(−, n) : Simp.Grps→ Crsn

induces an equivalence of categories

Hon(Simp.Grps) '→ Ho(Crsn).

�

As yet we have not actually given the definition of M(G,n) for n > 2 so here it is:

Definition Given a simplicial group, G, the crossed n-cube, M(G,n), is given by:
(a) for A ⊆ 〈n〉,

M(G,n)A =

⋂
{Ker dnj : j ∈ A}

d0(Ker dn+1
1 ∩

⋂
{Ker dn+1

j+1 : j ∈ A})
;

(b) if i ∈ 〈n〉, the homomorphism µi : M(G,n)A →M(G,n)A\{i} is induced from the inclusion
of
⋂
{Ker dnj : j ∈ A} into

⋂
{Ker dnj : j ∈ A \ {i}};

(c) representing an element in M(G,n)A by x, where x ∈
⋂
{Ker dnj : j ∈ A}, (so the overbar

denotes a coset), and, for A,B ⊆ 〈n〉, x ∈M(G,n)A, y ∈M(G,n)B,

h(x, y) = [x, y] ∈M(G,n)A∪B.

Where this definition ‘comes from’ and why it works is a bit to lengthy to include here, so we
refer the interested reader to [98]. From its many properties, we will mention just the following
one, linking M(G,n) with M(G,n− 1) in a similar way to that we have examined for n = 2.

We will use the following notation: M(G,n)1 will denote the crossed (n− 1)-cube obtained by
restricting to those A ⊆ 〈n〉 with 1 ∈ A and M(G,n)0 that obtained from the terms with A ⊆ 〈n〉
with 1 6∈ A .

Proposition 23 Given a simplicial group G and n ≥ 1, there is an exact sequence of crossed
(n− 1)-cubes:

1→ K →M(G,n)1
µ1→M(G,n)0 →M(G,n− 1)→ 1,

where, if B ⊆ 〈n− 1〉 and B 6= 〈n− 1〉, then KB = {1}, whilst K〈n−1〉 ∼= πn(G). �

4.8 Squared complexes

We have met crossed squares and 2-crossed modules and the different ways they encode the homo-
topy 3-type. We have extended 2-crossed modules to 2-crossed complexes, so it is natural curiosity
to try to extend crossed squares to a ‘cube’ formulation. We will see this is just the start of another
hierarchy which is in some ways simpler than that suggested by the hypercrossed complexes, and
their variants, etc. The first step is the following which was introduced by Ellis, [55].
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Definition: A squared complex consists of a diagram of group homomorphisms

N
µ

  AAAAAAAA

. . . // C4
∂4 // C3

∂3 // L

λ′
>>~~~~~~~~

λ   @@@@@@@@ P

M

µ′

>>~~~~~~~~

together with actions of P on L,N,M and Ci for i ≥ 3, and a function h : M × N −→ L. The
following axioms need to be satisfied.

(i) The square

 L

λ′ ��

λ // N
µ��

M
µ′
// P

 is a crossed square;

(ii) The group Cn is Abelian for n ≥ 3
(iii) The boundary homomorphisms satisfy ∂n∂n+1 = 1 for n ≥ 3, and ∂3(C3) lies in the intersection
Ker λ ∩Ker λ′;
(iv) The action of P on Cn for n ≥ 3 is such that µM and µ′N act trivially. Thus each Cn is a
π0-module with π0 = P/µMµ′N.
(v) The homomorphisms ∂n are π0-module homomorphisms for n ≥ 3.

This last condition does make sense since the axioms for crossed squares imply that Ker µ′ ∩
Kerµ is a π0-module.

A morphism of squared complexes

Φ :
(
C∗,

 L

λ′ ��

λ // N
µ��

M
µ′
// P

) −→ (
C ′∗,

 L′

λ′ ��

λ // N ′
µ��

M ′
µ′
// P ′

)

consists of a morphism of crossed squares (ΦL,ΦN ,ΦM ,ΦP ), together with a family of equivariant
homomorphisms Φn for n ≥ 3 satisfying ΦL∂3 = ∂′3ΦL and Φn−1∂n = ∂′nΦn for n ≥ 4. There is
clearly a category SqComp of squared complexes.

A squared complex is thus a crossed square with a ‘tail’ attached.
Any simplicial group will give us such a gadget by taking the crossed square to be M(sk2G, 2),

that is,
NG2

d0(NG3 ∩D3)

��

// Ker d1

��
Kerd2

// G1

and then, for n ≥ 3,

Cn(G) =
NGn

(NGn ∩Dn)d0(NGn+1 ∩Dn+1)
.
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The above complex contains not only the information for the crossed square M(G, 2) that represents
the 3-type, but also the whole of C(2)(G), the 2-crossed complex of G and thus the crossed complex
and the ‘chains on the universal cover’ of G.

The advantage of working with crossed squares or squared complexes rather than the more
linearly displayed models is that they can more easily encode ‘non-symmetric’ information. We
will show this in low dimensions here but will later indicate how to extend it to higher ones.
For instance, one gets a building process for homotopy types that reflects more the algebra. In
examples, given two profinite crossed modules, µ : M → P and ν : N → P , there is a universal
crossed square defining a ‘tensor product’ of the two crossed modules. We have

M⊗N λ //

λ′

��

M

µ

��
N ν

// P

is a crossed square and hence represents a 3-type. It is universal with regard to crossed squares
having the same right-hand and bottom crossed modules, (see [30, 31] for the original theory and
[98] for its connections with other material).

Equivalently we could represent its 3-type as a 2-crossed module

M⊗N −→M oN
µν−→ P

or

M⊗N −→ (M oN)
∼

−→ P

µM
,

where ∼ corresponds to dividing out by the µM action. However, of these, the profinite crossed
square lays out the information in a clearer format and so can often have some advantages.

4.9 Crossed N-cubes

We have already suggested (page 73) how one might model all homotopy types using hypercrossed
complexes, i.e. by adding more of the potential structure to the Moore complex of a simplicial
group. We also saw how crossed modules (which are, from this viewpoint, 1-truncated hypercrossed
complexes) generalised to crossed complexes, which have a better structured homotopical and
homological algebra. We have seen earlier the transition from 2-crossed modules (= 2-truncated
hypercrossed complexes) to 2-crossed complexes and briefly in the previous section, how crossed
squares generalised to give squared complexes.

We will end this progression by looking at an elegant theoretical treatment of a generalisation
of both crossed complexes and squared complexes. These gadgets are related to the “Moore chain
complexes of order (n+1) of a simplicial group”, as briefly studied by Baues in [13], but have some
of the advantages of crossed squares over 2-crossed modules, namely they can be ‘non-symmetric’,
and hence are easily specified by, say, an ‘inclusion crossed n-cube’ consisting of a simplicial group
and n simplicial normal subgroups. This allows for extra freedom in constructions. Also the axioms
are very much simpler!

The definition of a crossed n-cube involves the set 〈n〉 = {1, 2, . . . , n}. One obvious way to
extend this, eliminating dependence on n, is to try replacing 〈n〉 by N = {1, 2, . . .} and taking the
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subsets A,B,C, in that definition to be finite, a condition previously automatic. This gives the
notion of a crossed N-cube:

Definition: A crossed N-cube, M, is a family of (pro-C) groups,

{MA : A ⊂ N, A finite},

together with homomorphisms, µi : MA → MA−{i}, (i ∈ N, A ⊂fin N), and functions, h : MA ×
MB →MA∪B, (A,B ⊂fin N), such that if ab denotes h(a, b)b for a ∈MA and b ∈MB with A ⊆ B,
then for a, a′ ∈MA, b, b

′ ∈MB, c ∈MC and i, j ∈ N, the following axioms hold:
(1) µia = a if a /∈ A
(2) µiµja = µjµia
(3) µih(a, b) = h(µia, µib)
(4) h(a, b) = h(µia, b) = h(a, µib) if i ∈ A ∩B
(5) h(a, a′) = [a, a′]
(6) h(a, b) = h(b, a)−1

(7) h(a, b) = 1 if a = 1 or b = 1
(8) h(aa′, b) = ah(a′, b)h(a, b)
(9) h(a, bb′) = h(a, b)bh(a, b′)
(10) ah(h(a−1, b), c)ch(h(c−1, a), b)bh(h(b−1, c), a) = 1
(11) ah(b, c) = h(ab,ac) if A ⊆ B ∩ C.
(We have written A ⊂fin N as a shorthand for A ⊂ N with A finite.) Of course, these are

formally identical to those given previously except in as much as there is no bound on the size of
the finite sets A,B,C involved.

Examples: The first example is somewhat obvious, the second slightly surprising.
(i) As, for any n, 〈n〉 ⊂ N, ifM is a crossed n-cube, then we can extend it trivially to an crossed

N-cube by defining MA = MA if A ⊆ 〈n〉, and MA = 1 otherwise. The h-maps MA×MB →MA∪B
are then clearly determined by those of the original crossed n-cube.

(ii) Suppose M = {MA, µi, h} is a crossed N-cube, which is such that MA is trivial unless A is
of form 〈n〉 for some n, (where we interpret ∅ as being 〈0〉, and so M∅ is not required to be trivial).
We will write Cn = M〈n〉 and ∂n : Cn → Cn−1 for the morphism µn : M〈n〉 →M〈n−1〉.

We note that ∂n−1∂n is trivial as it factorises via the trivial group:

M〈n〉 //

��

M〈n−1〉

��
MA

//M〈n−2〉

where A = 〈n〉 − {n− 1}, so MA = 1. We thus have that (Cn, ∂n) is a complex of groups.
There is a pairing

C0 × Cn → Cn

given by h : M∅ ×M〈n〉 →M〈n〉, and thus an action

ab = h(a, b)b,

whilst ∂(ab) = a∂b, since µnh(a, b) = h(µna, µnb), which is h(a, µnb), since n 6∈ ∅!
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The map ∂1 : C1 → C0 is a crossed module by exactly the proof that a crossed 1-cube is a
crossed module.

If a = ∂1b, then for c ∈ Cn, n ≥ 2,

ac = h(∂1b, c)c
= h(b, µ1c)c,

since 1 ∈ 〈1〉 ∩ 〈n〉, but µ1c ∈M〈n〉−{1}, the trivial group so

ac = c.

We will not systematically check all the axioms, but clearly (Cn, ∂) is a crossed complex. (The
detailed checking is best left to the reader.) Conversely any crossed complex gives a crossed N-cube.

These examples show that both crossed n-cubes, for all n, and crossed complexes are examples
of crossed N-cubes. The obvious question, given our previous discussion, is to try to put Ellis’
squared complex in the same framework. There is an obvious method to try out, and it works!
One takes MA = 1 unless A = 〈n〉 for some n ∈ N or if A ⊆ 〈2〉. This does it, but it also indicates
an effective way of encoding higher dimensional analogues of these squared complexes.

To do this, given n ≥ 1, we have a subcategory of the category of crossed N-cubes specified by
the crossed n-cube complexes, that is, by MA = 1 unless A = 〈m〉 for some m ∈ N or if A ⊆ 〈n〉
for the given n.

As we are going to explore these gadgets in a bit of detail, we introduce some notation.
CrsN will denote the category of crossed N-cubes of groups; Crsn.Comp will denote the sub-

category of CrsN determined by the crossed n-cube complexes. Thus, for instance, Crs1.Comp
becomes an alternative notation for the category of crossed complexes.

4.10 From simplicial groups to crossed n-cube complexes

To show how these gadgets relate to ordinary ‘bog-standard’ models of homotopy types, we will
show how to obtain a crossed n-cube complex from a simplicial group G.

To obtain a crossed n-cube complex from a simplicial group G, one analyses the constructions
giving crossed complexes and crossed square complexes. For crossed complexes, one used the
relative homotopy groups of G, so that the base crossed module is

NG1

(NG1 ∩D1)d0(NG2 ∩D2)
→ G0,

but NG1 ∩D1 = 1 since D1 is generated by the s0(g) with g ∈ G0.
For an arbitrary simplicial group, H, the crossed module M(H, 1) was given by

NH1

d0(NH2)
→ H0,

so the earlier crossed module was M(sk1G, 1), as N(sk1G)2 = NG2 ∩D2.
Similarly for the crossed square complex associated to G, we explicitly took the ‘base’ crossed

square to be M(sk2G, 2).
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Proposition 24 Let G be a (pro-C) simplicial group and n ∈ N. Define a family MA, A ⊂ N, A
finite, by
(i) if A = 〈m〉 and m > n, then

MA =
NGm

(NGm ∩Dm)d0(NGm+1 ∩Dm+1)
;

(ii) if A ⊆ 〈n〉,

MA = M(sknG,n)A

=

⋂
{Ker dnj : j ∈ A}

d0(Ker dn+1
1 ∩

⋂
{Ker dn+1

j+1 : j ∈ A} ∩Dn+1)
:

(iii) if A is otherwise, then MA is trivial.
Further define µi : MA →MA−{i} by

(iv) if i ∈ A, then µi is the identity morphism;
(v) if A = 〈m〉, with m > n and i = m, then µm is induced by d0, and is trivial if i 6= m;
(vi) if A ⊆ 〈n〉, then µi is induced by the inclusions of intersections (i.e. as in M(sknG,n));
(vii) otherwise µi is trivial.

Finally define h : MA ×MB →MA∪B by
(viii) if A = ∅ and B = 〈m〉 with m > n then as M∅ = Gn−1 and MB = C(G)m, if a ∈ M∅ and
b ∈MB,

h(a, b) = [sm−n+1
0 (a), b] ∈MB;

similarly if A = 〈m〉 and B = ∅;
(ix) if A,B ⊆ 〈n〉, h is defined as in M(sknG,n);
(x) otherwise h is trivial.

This data defines a crossed N-cube which is, in fact, a crossed n-cube complex.

Proof: Much of this can be safely ‘left to the reader’. It uses results from earlier parts of the notes.
Note, however, that (viii) and (x) effectively say that it is only the sn−1

0 G0 part of Gn−1 that acts
on any M〈m〉 and even then the image of d0 : NG1 → G0 acts trivially. To see this note that any
a ∈ Gn−1 that is in some Ker di is in the image of some µi, hence a = µix say, but then

h(a, b) = h(µix, b)
= h(x, µib)
= 1,

by necessity if the structure is to be crossed N-cube. Thus to check that the h-maps, and, in
particular, those involved with part (viii) of the definition, satisfy the axioms, it suffices to use the
methods mentioned earlier for checking that C(G) was a crossed complex, see [98]. �

We might denote this crossed n-cube complex by C(G,n), as it combines both the technology
of the M(G,n) and the C(G). These models have yet to be explored in any depth, but see [98] and
below for some preliminary results.
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4.11 From n to n− 1: collecting up ideas and evidence

We noted earlier that given M(G,n), the quotient crossed (n − 1)-cube was M(G,n − 1). Is a
similar result true here? Is there an epimorphism from C(G,n) to C(G,n−1)? In fact this is linked
with another problem. We have a nested sequence of full categories of CrsN,

Crs1.Comp ⊂ Crs2.Comp ⊂ . . . ⊂ Crsn.Comp ⊂ . . . ⊂ CrsN.

Does the inclusion of Crsn−1.Comp into Crsn.Comp have a left adjoint, in other words, is Crsn−1.Comp
a reflexive subcategory of Crsn.Comp? We investigate this question here only for n = 2 as this is
at the same time easiest to see and also one of the most useful cases.

In this case, the crossed square complexes can be neatly represented as

C := . . . // C3
µ3 // C〈2〉

µ2 //

µ1

��

C〈1〉

µ1

��
C{2} µ2

// C∅

,

whilst those corresponding to crossed complexes look like

D := . . . // D3
µ3 // D〈2〉

µ2 //

µ1

��

D〈1〉

µ1

��
1 µ2

// D∅

.

A map ϕ in Crs2.Comp from C to D, clearly, must kill off C{2} and hence must also kill off µ2(C{2}),
which is normal in C∅. That is not all. If a ∈ C{2}, b ∈ C{1} or C〈2〉, then

ϕ(h(a, b)) = h(ϕa, ϕb) = 1,

and ϕa = 1, thus ϕ must kill off the action of C{2} on C〈2〉, and all elements of this form, h(a, b)
with a ∈ C{2}, b ∈ C{1} or C〈2〉.

Example: To illustrate what is happening let us examine the case of an inclusion crossed
square. Suppose G is a group and M , N normal subgroups, then

C =

M ∩N //

��

M

��
N // G


is a crossed square. Any 2-truncated crossed complex also gives a crossed square

D =


D2

//

��

D1

��
1 // D0

 ,
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and any map from C to D factors through

M∩N
[M,N ]

//

��

M
[M,N ]

��
1 // G/N

Proposition 25 The inclusion of Crs1.Comp into Crs2.Comp has a left adjoint, denoted L. This
left adjoint is a reflection, fixing the objects of the subcategory. �

The proof should be fairly obvious so we will leave it as an exercise.

From C(G, 2) to C(G, 1): What happens if we apply this L to C(G, 2)? The answer is not
that much of a surprise!

Proposition 26 If G is a simplicial group, then there is a natural isomorphism

L(C(G, 2)) ∼= C(G, 1).

�

(Of course, the ‘crossed 1-cube complex’, C(G, 1), is just the crossed complex C(G) under another
name.)

This does generalise to higher dimensions. We thus have a series of crossed approximations to
homotopy types, each one reflecting nicely down to the previous one, but what do these crossed
gadgets tell us about the spaces being modelled? To explore that we must go back to crossed
modules and their classifying spaces. There is a two way process here, algebraic gadgets tell us
information about spaces, but conversely spaces can inform us about algebra.



Chapter 5

Classifying spaces, and extensions

We will first look in detail at the construction of classifying spaces and their applications for the
non-Abelian cohomology of groups. This will use things we have already met. Later on we will
need to transfer some of this to a sheaf theoretic context to handle ‘gerbes’ and to look at other
forms of non-Abelian cohomology.

5.1 Non-Abelian extensions revisited.

We again start with an extension of groups:

E : 1→ K → E
p→ G→ 1.

From a section, s, we constructed a factor set, f , but this is a bit messy. What do we mean by
that? We are working in the category of groups, but neither s nor f are group morphisms. For s,
there is an obvious thing to do. The function s induces a homomorphism, k1, from C1(G), the free
group on the set, G, to E and

C1(G) //

k1
��

G

=

��
E

p // G

commutes. One might be tempted to do the same for f , but f is partially controlled by s, so we
try something else. When we were discussing identities among relations (page 33), we looked at
the example of taking X = {〈g〉 | g 6= 1, g ∈ G} and a relation rg,g′ := 〈g〉〈g′〉〈gg′〉−1 for each pair
(g, g′) of elements of G. (Here we will write < g1, g2 > for rg1,g2 .)

We can use this presentation P to build a free crossed module

C(P) := C2(G)→ C1(G).

We noted earlier that the identities were going to correspond to tetrahedra, and that, in fact, we
could continue the construction by taking Cn(G) = the free G-module on < g1, . . . , gn >, gi 6= 1,
i.e. the normalised bar resolution. This is very nearly the usual bar resolution coming from the
nerve of G, but we have a crossed module at the base, not just some more modules.

We met this structure earlier when we were looking at syzygies, and later on with crossed n-fold
extensions, but is it of any use to us here?

95
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We know pf(g1, g2) = 1, so f(g1, g2) ∈ K, and C2(G) is a free crossed module ... . Also, K → E
is a normal inclusion, so is a crossed module ... . Thinking along these lines, we try

k2 : C2(G)→ K

defined on generators by f , i.e. i(k2(< g1, g2 >) = f(g1, g2). It is fairly easy to check this works,
that

∂k2(< g1, g2 >) = k1∂(< g1, g2 >),

and that the actions are compatible, i.e.,k : C(P)→ E , where E = (K,E, i).
In other words, it seems that the section and the resulting factor set give us a morphism of

crossed modules, k. We note however that f satisfies a cocycle condition, so what does that look
like here? To answer this we make the boundary ∂3 : C3(G)→ C2(G) precise.

∂3 < g1, g2, g3 >= <g1>< g2, g3 >< g1, g2g3 >< g1g2, g3 >
−1< g1, g2 >

−1

and, of course, the cocycle condition just says that k2∂3 is trivial.
We can use the idea of a crossed complex as being a crossed module with a tail which is a chain

complex, to point out that k gives a morphism of crossed complexes:

C(G) : ... //

��

C3(G) //

��

C2(G) //

k2
��

C1(G) //

k1
��

G

��
E : ... // 1 // K // E // G

where the crossed module E is thought of as a crossed complex with trivial tail.
Back to our general extension,

E : 1→ K → E
p→ G→ 1,

we note that the choice of a section, s, does not allow the use of an action of G on K. Of course,
there is an action of E on K by conjugation and hence s does give us an action of C1(G) on K.
If we translate ‘action of G on a group, K’, to being a functor from the groupoid, G[1], to Grps
sending the single object of G[1] to the object K, then we can consider the 2-category structure
of Grps with 2-cells given by conjugation, (so that if K and L are groups, and f1, f2 : K → L
homomorphisms, a 2-cell α : f1 =⇒ f2 will be given by an element ` ∈ L such that

f2(x) = `f1(x)`−1

for all x ∈ K). With this categorical perspective, s does give a lax functor from G[1] to Grps.
We essentially replace the action G → Aut(K), when s is a splitting, by a lax action (see Blanco,
Bullejos and Faro, [15]);

// C2(G) //

k2
��

C1(G)

k1
��

K //

=

��

E

��
K // Aut(K).
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Using this lax action and k, we can reinterpret the classical reconstruction method of Schreier as
forming the semidirect product K o C1(G), then dividing out by all pairs,

(k2(< g1, g2 >), ∂2(< g1, g2 >)−1).

(We give Brown and Porter’s article, [32], as a reference for a discussion of this construction.)
By itself this reinterpretation does not give us much. It just gives a slightly different viewpoint,

however two points need making. This formulation is nearer the sort of approach we will need to
handle the classification of gerbes and the use of K → Aut(K) to handle the lax action of G reveals
a problem and also a power in this formulation.

Dedecker, [47], noted that any theory of non-Abelian cohomology of groups must take account
of the variation with K. Suppose we have two groups K and L and lax actions of G on them. What
should it mean to say that some homomorphism α : K → L is compatible with the lax actions?

A lax action of G on K can be given by a morphism of crossed modules / complexes ActG,K :
C(G)→ Aut(K), but Aut(K) is not functorial in K so we do not automatically get a morphism of
crossed modules Aut(α) : Aut(K)→ Aut(L). Perhaps the problem is slightly wrongly stated. One
might say α is compatible with the lax G-actions if such a morphism of crossed modules existed
and such that ActG,L = Aut(α)ActG,K . It is then just one final step to try to classify extensions
with a finer notion of equivalence.

Definition: Suppose we have a crossed module Q = (K,Q, q). An extension of K by G of the
type of Q is a diagram:

1 // K //

=

��

E //

ω
��

G // 1

K q
// Q

where ω gives a morphism of crossed modules.

There is an obvious notion of equivalence of two such extensions, where the isomorphism on the
middle terms must commute with the structural maps ω and ω′. The special case when Q = Aut(K)
gives one the standard notion. In general, one gets a set of equivalence classes of such extensions
ExtK→Q(G,K) and this can be related to the cohomology set H2(G,K → Q). This can also be
stated in terms of a category ExtQ(G) of extensions of type Q, then the cohomology set is the set
of components of this category.

This latter object can be defined using any free crossed resolution of G as there is a notion
of homotopy for morphisms of crossed complexes such that this set is [C(G),Q]. Any other free
crossed resolution of G has the same homotopy as C(G) and so will do just as well. Finding a
complete set of syzygies for a presentation of G will do.

Example:

G = (x, y |x2 = y3)

This is the trefoil group. It is a one relator presentation and has no identities so C(P) is already
a crossed resolution. A morphism of crossed modules k : C(P) → Q is specified by elements
qx, qy ∈ Q, and ar ∈ K such that k(ar) = (qx)2(qy)−3. Using this one can give a presentation of
the E that results.
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Remark: In the analogous case of gerbes, as against extensions, a related notion was introduced
by Debremaeker, [43, 44, 45, 46]. This has recently been revisited by Milne [82] and Aldrovandi,
[2], who consider the special case where both K and Q are Abelian and the action of Q is trivial.
This links with various important structures on gerbes and also with Abelian motives and hyperco-
homology. In all these cases, Q is being viewed as the coefficients of the cohomology and the gerbes
/ extensions have interpretations accordingly. Another very closely related approach is given in
Breen, [17, 19]. We explore these ideas later in these notes.

5.2 Classifying spaces

The classifying spaces of crossed modules are never far from the surface in this approach to coho-
mology and related areas. They will play a very important role in the discussion of gerbes, as, for
instance, in Larry Breen’s work, [17, 18, 19] and later on here.

Classifying spaces of (discrete) groups are well known. One method of construction is to form
the nerve, Ner(G) of the group G (considered as a small groupoid, G or G[1], as usual). The
classifying space is obtained by taking the geometric realisation, BG = |Ner(G)|.

To explore this notion and how it relates to crossed modules, we need to take a short excursion
into some simplicially based notions.

A classifying space of a group classifies principal G-bundles (G-torsors) over a space, X, in terms
of homotopy classes of maps from X to BG, using a universal principal G-bundle EG→ BG.

This is very topological! If possible, it is useful to avoid the use of geometric realisations, since
(i) this restricts one to groups and groupoids and makes handling more general ‘algebras’ difficult
and (ii) for algebraic geometry, the topology involved is not the right kind as a sheaf-theoretic,
topos based construction would be more appropriate. Thus the classifying space is often replaced
by the nerve, as in Breen, [19].

How about classifying spaces for crossed modules? Given a crossed module, M = (C,G, θ), say,
we can form the associated 2-group, X (M). This gives a simplicial group by taking the nerve of
the groupoid structure. Then we can form W of that to get a simplicial set Ner(M). To reassure
ourselves that this is a good generalisation of Ner(G), we observe that if C is the trivial group,
then Ner(M) = Ner(G). But this raises the question:

What does this ‘classifying space’ classify?
To answer that we must digress to provide more details on the functors G and W , we mentioned

earlier.

5.3 Simplicially enriched groupoids

We denote the category of simplicial sets by S and that of simplicially enriched groupoids by
S−Grpds. This latter category includes that of simplicial groups, but it must be remembered that
a simplicial object in the category of groupoids will, in general, have a non-trivial simplicial set as
its ‘object of objects’, whilst in S − Grpds, the corresponding simplicial object of objects will be
constant. This corresponds to a groupoid in which each collection of ‘arrows’ between objects is a
simplicial set, not just a set, and composition is a simplicial morphism, hence the term ‘simplicially
enriched’. We will often abbreviate the term ‘simplicially enriched groupoid’ to ‘S-groupoid’, but
the reader should note that in some of the sources on this material the looser term ‘simplicial
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groupoid’ is used to describe these objects usually with a note to the effect that this is not a
completely accurate term to use.

Remark: Later we may need to work with S-categories, i.e. simplicially enriched categories.
Some brief introduction can be found in [69], or in the notes, [97] and the references cited there.

The loop groupoid functor of Dwyer and Kan, [51], is a functor

G : S −→ S −Grpds,

which takes the simplicial set K to the simplicially enriched groupoid GK, where (GK)n is the free
groupoid on the directed graph

Kn+1
s //
t
// K0 ,

where the two functions, s, source, and t, target, are s = (d1)n+1 and t = d0(d2)n with relations
s0x = id for x ∈ Kn. The face and degeneracy maps are given on generators by

sGKi (x) = sKi+1(x),
dGKi (x) = dKi+1(x), for x ∈ Kn+1, 1 < i ≤ n

and
dGK0 (x) = (dK1 (x))(dK0 (x))−1.

This loop groupoid functor has a right adjoint, W , called the classifying space functor. The details
as to its construction will be given shortly. Extending the construction for simplicial groups, given
any S-groupoid, G, its Moore complex NG is given by

NGn =
n⋂
i=1

Ker(di : Gn −→ Gn−1)

with differential ∂ : NGn −→ NGn−1 being the restriction of d0. If n ≥ 1, this is just a disjoint
union of groups, one for each object in the object set, O, of G. If we write G{x} for the simplicial
group of elements that start and end at x ∈ O, then at object x, one has

NG{x}n = (NGn){x}.

In dimension 0, one has NG0 = G0, so the NGn{x}, for different objects x, are linked by the
actions of the 0-simplices, acting by conjugation via repeated degeneracies.

For simplicity in the description below, we will often assume that the S-groupoid is reduced,
that is, its set O, of objects is just a singleton set {∗}, so G is just a simplicial group.

Suppose that NGm is trivial for m > n.
If n = 0, then NG0 is just the group G0 and the simplicial group (or groupoid) represents an

Eilenberg-MacLane space, K(G0, 1).
If n = 1, then ∂ : NG1 −→ NG0 has a natural crossed module structure.
Returning to the discussion of the Moore complex, if n = 2, then

NG2
∂−→ NG1

∂−→ NG0

has a 2-crossed module structure in the sense of Conduché, [38] and above section 4.2. (These
statements are for groups and hence for connected homotopy types. The non-connected case,
handled by working with simplicially enriched groupoids, is an easy extension.)
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In all cases, the simplicial group will have homotopy groups only in the range covered by the
non-trivial part of the Moore complex.

Now relaxing the restriction onG, for each n > 1, letDn denote the subgroupoid ofGn generated
by the degenerate elements. Instead of asking that NGn be trivial, we can ask that NGn ∩Dn be.
The importance of this is that the structural information on the homotopy type represented by G
includes structure such as the Whitehead products and these all lie in the subgroupoids NGn∩Dn.
If these are all trivial then the algebraic structure of the Moore complex is simpler, being that of a
crossed complex, and WG is a simplicial set whose realisation is the classifying space of that crossed
complex, cf. [27]. The simplicial set, WG, is isomorphic to the nerve of the crossed complex.

Notational warning. As was mentioned before, the indexing of levels in constructions with
crossed complexes may cause some confusion. The Dwyer-Kan construction is essentially a ‘loop’
construction, whilst W is a ‘suspension’. They are like ‘shift’ operators for chain complexes. For
example G decreases dimension, as an old one simplex x yields a generator in dimension 0, and
so on. Our usual notation for crossed complexes has C0 as the set of objects, C1 corresponding
to a relative fundamental groupoid, and Cn abstracting its properties from πn(Xn, Xn−1, p), hence
the natural topological indexing has been used. For the S-groupoid G(K), the set of objects is
separated out and G(K)0 is a groupoid on the 1-simplices of K, a dimension shift. Because of this,
in the notation being used here, the crossed complex C(G) associated to an S-groupoid, G, will
have a dimension shift as well: explicitly

C(G)n =
NGn−1

(NGn−1 ∩Dn−1)d0(NGn ∩Dn)
for n ≥ 2,

C(G)1 = NG0, and, of course, C0 is the common set of objects of G. In some papers where only
the algebraic constructions are being treated, this convention is not used and C is given without
this dimension shift relative to the Moore complex. Because of this, care is sometimes needed when
comparing formulae from different sources.

5.4 W and the nerve of a crossed complex

The category of crossed complexes (of groupoids) is equivalent to a reflexive subcategory of the
category S−Grpds and the reflection is defined by the obvious functor : take the Moore complex of
the S-groupoid and divide out by the NGn∩Dn, see [52, 53]. We will denote by C : S−Grpds −→
Crs the resulting composite functor, Moore complex followed by reflection. Of course, we have the
formula, more or less as before,

C(G)n+1 =
NGn

(NGn ∩Dn) d0(NGn+1 ∩Dn+1)
.

The Moore complex functor itself is part of an adjoint (Dold-Kan) equivalence between the category
S − Grpds and the category of hypercrossed complexes, [36], and this restricts to the Ashley-
Conduché version of the Dold-Kan theorem of [7].

In order to justify the description of the nerve, and thus the related classifying space, of a crossed
complex C, we will specify the functors involved, namely the Dold-Kan inverse construction and the
W . This will also give us extra tools for later use. We will first need the Conduché decomposition
lemma.
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Proposition 27 If G is a simplicial group(oid), then Gn decomposes as a multiple semidirect
product:

Gn ∼= NGn o s0NGn−1 o s1NGn−1 o s1s0NGn−2 o s2NGn−1 o . . . sn−1sn−2 . . . s0NG0

�

The order of the terms corresponds to a lexicographic ordering of the indices ∅; 0; 1; 1,0; 2; 2,0;
2,1; 2,1,0; 3; 3,0; . . . and so on, the term corresponding to i1 > . . . > ip being si1 . . . sipNGn−p.

The proof of this result is based on a simple lemma, which is easy to prove.

Lemma 11 If G is a simplicial group(oid), then Gn decomposes as a semidirect product:

Gn ∼= Ker dnn o sn−1
n−1(Gn−1).

�

We next note that in the classical (Abelian) Dold-Kan theorem, (cf. [42]), the equivalence of
categories is constructed using the Moore complex and a functor K constructed via the original
direct sum /Abelian version of Conduché’s decomposition, cf. for instance, [42],.

For each non-negatively graded chain complex D = (Dn, ∂) in Ab, KD is the simplicial Abelian
group with

(KD)n = ⊕a(Dn−](a), sa),

the sum being indexed by all descending sequences, a = {n > ip ≥ ... ≥ i1 ≥ 0}, where sa =
sip ...si1 , and where ](a) = p, the summand Dn corresponding to the empty sequence.

The face and degeneracy operators in KD are given by the rules:
(1) if disa = sb, then di will map (Dn−p, sa) to (D(n−1)−(p−1), sb) by the identity on Dn−p; its
components into other direct summands will be zero;
(2) if disa = sbd0, then di will map (Dn−p, sa) to (Dn−p−1, sb) as the homomorphism ∂n−p : Dn−p →
Dn−p−1; its components into other direct summands will be zero;
(3) if disa = sbdj , j > 0, then di(Dn−p, sa) = 0;
(4) if sisa = sb, then si maps (Dn−p, sa) to (D(n+1)−(p+1), sb) by the identity on Dn−p, its compo-
nents into other direct summands will be zero.

This suggests that we form a functor

K : Crs→ S −Grpds

using a semidirect product, but we have to take care as there will be a dimension shift, our lowest
dimension being C1:
if C is in Crs, set

K(C)n = Cn+1 o s0Cn o s1Cn o s1s0Cn−1 o · · ·o sn−1sn−2 . . . s0C1.

The order of terms is to be that of the proposition given above. The formation of the semidirect
product is as in the proof we hinted at of that proposition, that is the bracketing is inductively
given by

(Cn+1 . . .o sn−2 . . . s0C2) o (sn−1Cn o . . .o sn−1 . . . s0C1);



102 CHAPTER 5. CLASSIFYING SPACES, AND EXTENSIONS

each sα(Cn+1−](α)) is an indexed copy of Cn+1−](α); the action of

sn−1Cn−1 o . . .o sn−1 . . . s0C0 (∼= sn−1K(C)n−1)

on Cn+1 o . . . sn−2 . . . s0C1, is given componentwise by the actions of each Ci and as C is a crossed
complex, these are all via C0. This implies, of course, that the majority of the components of these
actions are trivial.

To see how this looks in low dimensions, it is simple to give the first few terms of the simplicial
group(oid). As we are taking a reduced crossed complex as illustration, the result is a simplicial
group K(C), having

• K(C)0 = C1

• K(C)1 = C2 o s0(C1)

• K(C)2 = (C3 o s0C2) o (s1C2 o s1s0C1)

• K(C)3 = (C4 o s0C3 o s1C3 o s1s0C2) o (s2C3 o s2s0C2 o s2s1C2 o s2s1s0C1).

The face and degeneracy maps are determined by the obvious rules adapting those in the Abelian
case, so that if c ∈ Ck, the corresponding copy of c in sαCk will be denoted sαc and a face or
degeneracy operator will usually act just on the index. The exception to this is if, when renormalised
to the form sβdγ using the simplicial identities, γ is non-empty. If dγ = d0 then dγc becomes
δkc ∈ Ck−1, otherwise dγc will be trivial.

Lemma 12 The above defines a functor

K : Crs→ S −Grpds

such that CK ∼= Id. �

This extends the functor G : CModSimp.Grps, given earlier, to crossed complexes as there Ck = 1
for k > 2.

We next need to make explicit the W construction. The simplicial / algebraic description of
the nerve of a crossed complex, C is then as W (K(C)). We first give this description for a general
simplicially enriched groupoid.

Let H be an S-groupoid, then WH is the simplicial set described by

• (WH)0 = ob(H0), the set of objects of the groupoid of 0-simplices (and hence of the groupoid
at each level);

• (WH)1 = arr(H0), the set of arrows of the groupoid H0:
and for n ≥ 2,

• (WH)n = {(hn−1, . . . , h0) | hi ∈ arr(Hi) and s(hi−1) = t(hi), 0 < i < n}.

Here s and t are generic symbols for the domain and codomain mappings of all the groupoids
involved. The face and degeneracy mappings between (WH)1 and (WH)0 are the source and
target maps and the identity maps of H0, respectively; whilst the face and degeneracy maps at
higher levels are given as follows:

The face and degeneracy maps are given by
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• d0(hn−1, . . . , h0) = (hn−2. . . . , h0);

• for 0 < i < n, di(hn−1, . . . , h0) = (di−1hn−1, di−2hn−2, . . . , d0hn−ihn−i−1, hn−i−2, . . . , h0);
and

• dn(hn−1, . . . , h0) = (dn−1hn−1, dn−2hn−2, . . . , d1h1),
whilst

• s0(hn−1, . . . , h0) = iddom(hn−1), hn−1, . . . , h0);
and,

• for 0 < i ≤ n, si(hn−1, . . . , h0) = (si−1hn−1, . . . , s0hn−i, idcod(hn−i), hn−i−1, . . . , h0).

To help understand the structure of the nerve of a (reduced) crossed complex, C, we will calculate
Ner(C) = W (K(C)) in low dimensions. This will enable comparison with formulae given earlier.
The calculations are just the result of careful application of the formulae for W to H = K(C):

• Ner(C)0 = ∗, as we are considering a reduced crossed complex - in the general case, this is
C0;

• Ner(C)1 = C1, as a set of ‘directed edges’ or arrows - we will avoid using a special notation
for ‘underlying set of a group(oid)’;

• Ner(C)2 = {(h1, h0) | h1 = (c2, s0(c1)), h0 = c′1, c2 ∈ C2, c1, c
′
1 ∈ C1}, and such a 2-simplex

has faces given as in the diagram

c′1

��@@@@@@@@@@@@@@@@

c1

(h1,h0)

??~~~~~~~~~~~~~~~~
δc.2.c1.c′1

//

Note that h1 : c1 −→ δc2.c1 in the internal category corresponding to the crossed module,
(C2, C1, δ), so the formation of this 2-simplex corresponds to a right whiskering of that 2-cell
(in the corresponding 2-groupoid) by the arrow c′1.

• Ner(C)3 = {(h2, h1, h0) |h1 = (c3, s0c
0
2, s1c

1
2, s1s0c1), h1 = (c′2, s0(c′1)), h0 = c′′1} in the evident

notation. Here the faces of the 3-simplex (h2, h1, h0) are as in the diagrams, (in each of which
the label for the 2-simplex itself has been abbreviated):

d3 :

c′1

��@@@@@@@@@@@@@@@@

c1

c12

??~~~~~~~~~~~~~~~~
δc12.c1.c

′
1

//

; d2 :

δc′2.c
′
1.c
′′
1

��@@@@@@@@@@@@@@@@

c1

c02c
1
2

??~~~~~~~~~~~~~~~~
δ(c02c

1
2).c1.δc′2.c

′
1.c
′′
1

//
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d1 :

c′′1

��@@@@@@@@@@@@@@@@

δc12.c1.c
′
1

δc3.c02.
δc12.c1c′2

??~~~~~~~~~~~~~~~~
δ(c02c

1
2).c1.δc′2.c

′
1.c
′′
1

//

; d0 :

c′′1

��@@@@@@@@@@@@@@@@

c′1

c′2

??~~~~~~~~~~~~~~~~
δc′2.c

′
1.c
′′
1

//

The only face where any real thought has to be used is d1. In this the d1 face has to be checked to
be consistent with the others. The calculation goes like this:

δ(δc3.c
0
2.
δc12.c1c′2).(δc1

2.c1.c
′
1).c′′1 = δc0

2.(δc
1
2.c1.δc

′
2.c
−1
1 .(δc1

2)−1).δc1
2.c1.c

′
1.c
′′
1

= δ(c0
2c

1
2).c1.δc

′
2.c
′
1.c
′′
1

This uses (i) δδc3 is trivial, being a boundary of a boundary, and (ii) the second crossed module
rule for expanding δ(δc

1
2.c1c′2) as δc1

2.c1.δc
′
2.c
−1
1 .(δc1

2)−1.

This diagrammatic representation, although useful, is limited. A recursive approach can be
used as well as the simplicial / algebraic one given above. In this, Ner(C) is built up via its skeleta,
specifying Ner(C)n as an element of Cn, together with the empty simplex that it ‘fills’, i.e. the
set of compatible (n− 1)-simplices. This description is used by Ashley, ([7], p.37). More on nerves
of crossed complexes can be found in Nan Tie, [92, 93]. There is also a neat ‘singular complex’
description, Ner(C)n = Crs(π(n),C), where π(n) is the free crossed complex on the n-simplex,
∆[n].

5.5 Simplicial Automorphisms and Regular Representations

The usual enrichment of the category of simplicial sets is given by :
for each n ≥ 0, the set of n-simplices is

S(K,L)n = S(K ×∆[n], L),

together with obvious face and degeneracy maps.
Composition : for f ∈ S(K,L)n, g ∈ S(L,M)n, so f : ∆[n]×K → L, g : ∆[n]× L→M ,

g ◦ f := (∆[n]×K diag×K−→ ∆[n]×∆[n]×K ∆[n]×f−→ ∆[n]× L g→M);

Identity : idK : ∆[0]×K
∼=→ K.

For fixed K, S(K,K) is a simplicial monoid and aut(K) will be the corresponding simplicial
group of invertible elements.

If f : K ×∆[n] −→ L is an n-simplex, then we can form a diagram

K ×∆[n]
(f,p) //

%%JJJJJJJJJ
L×∆[n]

zzttttttttt

∆[n]
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in which the two slanting arrow are the obvious projections, (so (f, p)(k, σ) = (f(k, σ), σ)). Taking
K = L, f ∈ aut(K) if and only if (f, p) is an isomorphism of simplicial sets.

Given a simplicial set K, and an n-simplex x in K, there is a representing map

x : ∆[n] −→ K,

that send the top dimensional generating simplex of ∆[n] to x. The enrichment above is part of an
adjunction

S(K × L,M) ∼= S(L,S(K,M))

in which, given θ : K × L −→M and y ∈ Ln, the corresponding simplicial map

θ̄ : L −→ S(K,M)

sends y to the composite

K ×∆[n]
K×y // K × L θ //M .

In a simplicial group G, the multiplication is a simplicial map #0 : G × G −→ G, and so by the
adjunction, we get a simplicial map

G −→ S(G,G)

and this is a simplicial monoid morphism. This gives the right regular representation of G,

ρ = ρG : G −→ aut(G).

This representation needs careful interpretation. In dimension n, an element g ∈ Gn acts by
multiplication on the right on G, but even in dimension 0, this action is not as simple as one might
think. (NB. Here aut(G) is the simplicial group of ‘simplicial automorphisms of the underlying
simplicial set of G’ as, of course, multiplication by an element does not give a mapping that
respects the group structure.) Simple examples are called for:

Suppose g ∈ G1, then ρ(g) ∈ aut(G)1 ⊂ S(G,G)1 = S(G ×∆[1], G). In other words, ρ(g) is a
homotopy between ρ(d1g) and ρ(d0g). Of course, it is an invertible element of S(G,G)1 and this
will have implications for its properties as a homotopy, and to use a geometric term, we will loosely
refer to it as an isotopy.

In general, 0-simplices give simplicial maps corresponding to multiplication by that element, so
that for g ∈ G0, and x ∈ Gn,

ρ(g)(x) = x#0s
(n)
0 (g).

In dimension 1, we have that elements give isotopies, and in higher dimensions, we have ‘isotopies
of isotopies’, and so on.

5.6 W , W and twisted Cartesian products

Suppose we have simplicial sets Y , a potential ‘fibre’ and B, a potential ‘base’ which will be assumed
to be pointed by a vertex, ∗. Inspired by the sort of construction that works for the construction
of group extensions, we are going to try to construct a fibration sequence

Y −→ E −→ B.
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Clearly the product E = B×Y will give such a sequence, but can we somehow twist this Cartesian
product to get a more general construction? We will try setting En = Bn × Yn and will change
as little as possible in the data specifying faces and degeneracies. In fact we will take all the
degeneracy maps to be exactly those of the Cartesian product, and all but d0 of the face maps
likewise. This leaves just the zeroth face map.

In, say, a covering space considered as a fibration with discrete fibre, the fundamental group(oid)
of the base acts by automorphisms / permutations on the fibre, and the fundamental group(oid) is
generated by the edges, hence by elements of dimension one greater than that of the fibre, so we
try a formula for d0 of form

d0(b, y) = (d0b, t(b)(d0y)),

where t(b) is an automorphism of Y , determined by b in some way, hence giving a function t :
Bn −→ aut(Y )n−1. Note here Y is an arbitrary simplicial set, not the underlying simplicial set of
a simplicial group as was previously the case when we considered aut, but this makes no difference
to the definition.

Of course, with these tentative definitions, we must still have that the simplicial identities hold,
but it is easy to check that these will hold exactly if t satisfies the following equations

dit(b) = t(di−1b) for i > 0,
d0t(b) = t(d1b)#0t(d0b)−1,

sit(b) = t(si+1b) for i ≥ 0,
t(s0b) = ∗.

A function t satisfying these equations will be called a twisting function. and the simplicial set E,
thus constructed will be called a regular twisted Cartesian product. We write E = B ×t Y .

Of course a twisting function is not a simplicial map, but the formulae it satisfies look closely
linked to those of the Dwyer-Kan loop group(oid) construction, given earlier, page 99. In fact:

Proposition 28 A twisting function t : B −→ aut(Y ) determines a unique homomorphism of
simplicial groupoids t : GB → aut(Y ), and conversely. �

Of course, since G is left adjoint to W , we could equally well note that t gave a simplicial morphism
t : B −→W (aut(Y )), and conversely.

Of course, we could restrict attention to a particular class of simplicially enriched groupoids
such as those coming from groups (constant simplicial groups), or nerves of crossed modules, or of
crossed complexes, etc. We will see some aspects of this in the following chapter, but we will be
generalising it as well.

This adjointness gives us a ‘universal’ twisting function for any simplicial group, H. We have
the general natural isomorphism

S(B,WH) ∼= Simp.Grpds(G(B), H),

so, as usual in these situations, it is very tempting to look at the special case where B = WH itself
and hence to get the counit of the adjunction from GW (H) to H corresponding to the identity
simplicial map from WH to itself. By the general properties of adjointness, this map ‘generates’
the natural isomorphism in the general case.

From our point of view, the two natural isomorphic sets are much better viewed as being
Tw(B,H), the set of twisting functions τ : B → H, so the key case will be a ‘universal’ twisting
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function, τH : WH → H and hence a universal twisted Cartesian product WH×τH H. (Notational
point: the context tells us that the fibre H is the underlying simplicial set of the simplicial group,
H, but no special notation will be used for this here.) This universal twisted Cartesian product
is called the classifying bundle for H and is denoted WH. We can unpack its definition from its
construction, but will not give the detailed derivation (which is suggested as a useful exercise).
Clearly

(WH)n = Hn ×W (H)n,

so from our earlier description of W (H), we have

WHn = Hn ×Hn−1 × . . .×H0.

The face maps are given by

di(hn, . . . , h0) = (dihn, . . . , d0hn−i.hn−i−1, hn−i−2, . . . , h0)

for all i, 0 ≤ i ≤ n, whilst

si(hn, . . . , h0) = (sihn, . . . s0hn−i, 1, hn−i−1, . . . , h0).

(It is noteworthy that d0(hn, . . . , h0) = (d0hn.hn−1, hn−2, . . . , h0) so the universal twist τH must
somehow be built in to this. In fact τH is an ‘obvious’ map as one would hope. We have W (H)n =
Hn−1 × . . .×H0 and we need (τH)n : W (H)n → Hn−1, since it is to be a twisting map and so has
degree -1. The obvious formula to try is that τH is the projection map - and it works. The details
are left to you. A glance back at the formula for the general d0 in a twisted Cartesian product will
help.)

An introduction to simplicial bundle theory can be found in Curtis’ classical survey article, [42]
section 6, but will need some related results. For the moment, we limit ourselves to a number of
observations, based on the classical treatment:

1). The simplicial set W (H) is a Kan complex.

2). W (H) is contractible, i.e. is homotopy equivalent to ∆[1].

3). The simplicial map
W (H)→W (H)

is a Kan fibration with fibre the underlying simplicial set of H, (so the long exact sequence of
homotopy groups together with point 2). shows that πn(WH) ∼= πn−1(H)).

4). If p : E → B is a principle H-bundle, that is, E is H×tB for some twisting function t : B → H,
then we have a simplicial map

ft : B →W (H)

given by ft(b) = (t(b), t(d0b), . . . , t(dn−1
0 b)), and we can pull back (W (H)→W (H)) along ft to

get a principal H-bundle over B
E′ //

p′

��

W (H)

��
B

ft
//W (H).
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We can, of course, calculate E′ and p′ precisely:

E′ ∼= {((hn, hn−1, . . . , h0), b) | hn−1 = t(b), . . . h0 = t(dn−1
0 b)}

∼= {(hn, b) | hn ∈ Hn, b ∈ Bn}
= Hn ×Bn.

It should come as no surprise to find that E′ ∼= H ×t B, so is E itself up to isomorphism, and
that p′ is p in disguise.

The assignment of ft to t gives a one-one correspondence between H-equivalence classes of
principal H-bundles with base and the set of homotopy classes of simplicial maps from B to
W (H).



Chapter 6

Non-Abelian Cohomology: Torsors,
and Bitorsors

One of the problems to be faced when presenting the applications of crossed modules, etc., is
that such is the breadth of these applications that they may safely be assumed to be potentially
of interest to mathematicians of very differing backgrounds, algebraists, geometers both algebraic
and differential, theoretical physicists and, of course, algebraic topologists. To make these notes as
useful as possible, some part of the more basic ‘intuitions’ from the background material from some
of these areas has been included at various points. This cannot be ‘all inclusive’ nor ‘universal’ as
different groups of potential readers have different needs. The real problem is that of transfer of
‘technology’ between the areas and of explanation of the differing terminology used for the same
concept in different contexts.

For the background on bundle-like constructions (sheaves, torsors, stacks, gerbes, 2-stacks,
etc.), the geometric intuition of ‘things over X’ or X-parametrised ‘things’ of various forms, does
permeate much of the theory, so we will start with some fairly basic ideas, and so will, no doubt, for
some of the time, be ‘preaching to the converted’, however that ‘bundle’ intuition is so important
for this and later sections that something more than a superficial treatment is required.

(In the original lectures at Buenos Aires, I did assume that that intuition was understood, but
in any case concentrated on the ‘group extension’ case rather than on ‘gerbes’ and their kin. By this
means I avoided the need to rely too heavily on material that could not be treated to the required
depth in the time available. However I cannot escape the need to cover some of that material here!)

Initially crossed modules, etc., will not be that much in evidence, but it is important to see how
they do enter in ‘geometrically’ or their later introduction can seem rather artificial.

We start by looking at descent, i.e. the problem of putting ‘local’ bits of structure into a global
whole.

6.1 Descent: Bundles, and Covering Spaces

(Remember, if you have met ‘descent’ or ‘bundles’, then you should ‘skim’ this section only /
anyway.)

We will look at these structures via some ‘case studies’ to start with.
Case study 1: Topological Interpretations of Descent.
Suppose A and B are topological spaces and α : A→ B a continuous map (sometimes called a

109



110 CHAPTER 6. NON-ABELIAN COHOMOLOGY: TORSORS, AND BITORSORS

‘space over B’ or loosely speaking a ‘bundle over B’, although that can also have a more specialised
meaning later). If U ⊂ B is an open set, then we get a restriction αU : α−1(U) → U . If V ⊂ B
is another open set, we, of course, have αV : α−1(V ) → V and over U ∩ V the two restrictions
‘coincide’, i.e. if we form the pullbacks

? //

��

α−1(U)

��

? //

��

α−1(V )

��
U ∩ V // U U ∩ V // V

the resulting spaces over U ∩ V are ‘the same’. (We have to be a bit careful since we formed them
by pullbacks so they are determined only ‘up to isomorphism’ and we should take care to interpret
‘the same’ as meaning ‘being isomorphic’ as spaces over U ∩ V . This care will be important later.)
Now assume that for each b ∈ B, we choose an open neighbourhood Ub ⊂ B of b. We then have a
family

αb : Ab → Ub b ∈ B,

where we have written Ab for α−1(Ub), and we know information about the behaviour over inter-
sections.

Can we reverse this process? More precisely, can we start with a family {αb : Ab → Ub : b ∈
B} of maps (with Ab now standing for an arbitrary space) and add in, say, information on the
‘compatibility’ over the intersections of the cover {Ub : b ∈ B} so as to rebuild a space over B,
α : A→ B, which will restrict to the given family.

We will need to be more precise about that ‘compatibility’, but will leave it aside until a bit
later. Clearly, indexing the cover by the elements of B is a bit impractical as usually we just need,
or are given, some (open) cover U of B, and then can choose, for each b ∈ B, some set of the cover
containing b. This way we do not repeat sets unless we expressly need to. Thinking like this we
have a cover U and for each U in U , a space over U , αU : AU → U . To encode the condition
on compatibility on intersections, we need some (temporary) notation: If U,U ′ ∈ U , write (AU )U ′
for the restriction of AU over the intersection U ∩ U ′, similarly (αU )U ′ for the restriction of αU to
U ∩U ′. We noted that if the family {αU | U ∈ U} did come from a single α : A→ B, then the αU s
agreed up to isomorphism on the intersections, i.e. we needed homeomorphisms

ξU,U ′ : (AU )U ′
∼=→ (AU ′)U

over U∩U ′. (These are sometimes called the transition functions or gluing cocyles.) This, of course,
means that

(αU ′)U ◦ ξU,U ′ = (αU )U ′ .

Clearly we should require
1. ξU,U = identity,
but also if U ′′ is another set in the cover, we would need
2. ξU ′,U ′′ ◦ ξU,U ′ = ξU,U ′′

over the triple intersection U ∩ U ′ ∩ U ′′.
(This condition 2. is a cocycle condition, similar in many ways to ones we have met earlier in

apparently very different contexts.)
These two conditions are inspired by observation on decomposing an original bundle. They give

us ‘descent data’ but are our ‘descent data’ enough to construct and, in general, to classify such
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spaces over B? The obvious way to attempt construction of an α from the data {αU ; ξU,U ′} is to
‘glue’ the spaces AU together using the ξU,U ′ . ‘Gluing’ is almost always a colimiting process, but as
that can be realised using coproducts (disjoint union) and coequalisers (quotients by an equivalence
relation), we will follow a two step construction

Step 1: Let C = tU∈UAU and γ : C → tU∈UU , the induced map. Thus if we consider a
specific U in U , we will have inclusions of AU into C and U into tU and a diagram

AU
� � //

αU

��

C = tAU
γ

��
U

� � // tU

.

Remember that a useful notation for elements in a disjoint union is a pair, (element, index), where
the index is the index of the set in which the element is. We write (a, U) for an element of C, then
γ(a, U) = (αU (a), U), since a ∈ AU .

Step 2: We relate elements of C to each other by the rule:

(a, U) ∼ (a′, U ′)

if and only if
(i) αU (a) = αU ′(a′),
and
(ii) ξU,U ′(a) = a′.

The two conditions on the homeomorphisms ξ readily imply that this is an equivalence relation
and that the αU together define a map

α : A = C/∼ → B

given by
α[(a, U)] = αU (a).

For this to be the case, we only needed αU (a) = αU ′(a′) to hold. Why did we impose the second
condition. i.e. the cocycle condition? Simply, if we had not, we would risked having an equivalence
relation that crushed C down to B. Each fibre α−1(b) might have been a single point since each
α−1
U (a) would have been in a single equivalence class. We have thus a space over B, α : A → B

(with A having the quotient topology, which ensures that α will be continuous).
If we had started with such a space, decomposed over U , then had constructed a ‘new space’ from

that data, would we have got back where we started? Yes, up to isomorphism (i.e. homeomorphism
over B). To discuss this, it helps to introduce the category Top/B of spaces over B. This has
continuous maps α : A → B (often written (A,α)) as its objects, whilst a map from (A,α) to
α′ : A′ → B will be a continuous map f : A→ A′ making the diagram

A
f //

α
��@@@@@@@ A′

α′~~}}}}}}}

B

commutative. This, however, raises another question.
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If we have such an f and an (open) cover U of B, we restrict f to α−1(U) to get

fU : AU → A′U

which, of course, is in Top/U . If we have data,

{αU : AU → U, {ξU,U ′}}

for (A,α) and similarly for (A′, α′), and morphisms

{fU : AU → A′U},

when can we ‘rebuild’ f : A→ A′? We would expect that we would need a compatibility between
the various fU and the ξU,U ′ and ξ′U,U ′ . The obvious condition would be that whenever we had U ,
U ′ in U , the diagram

(AU )U ′
(fU )U′//

ξU,U′

��

(A′U )U ′

ξ′
U,U′
��

(AU ′)U
(fU′)U // (A′U ′)U

should commute, where we have extended our notation to use (fU )U ′ for the restriction of fU to
α−1(U ∩ U ′). To codify this neatly we can form each category Top/U for U ∈ U , then form the
category D consisting of a family of objects {αU : U ∈ U} of

∏
Top/U together with the extra

structure of the ξU,U ′ . Morphisms in D are families {fU} as above, compatible with the structural
isomorphisms ξU,U ′ .

Remark This category is called the category of descent data relative to the cover U . The reason
for the use of the word ‘descent’ is that in many geometric situations, structure is easily encoded
on some basic ‘patches’. This structure, that is locally defined, ‘descends’ to the space giving it a
similar structure. In many cases the AU have the fairly trivial form U × F for some fibre F . This
fibre often has extra structure and the ξU,U ′ have then to be structure preserving automorphisms
of the space, F . The term ‘bundle’ is often used in general, but some authors restrict its use to
this locally trivial case. The classic case of a locally trivial bundle is a Möbius band as a bundle
over the circle. Locally, on the circle, the band is of form U × [−1, 1], but globally one has a twist.

Case Study 2: Covering Spaces

This a a classic case of a class of ‘spaces over’ another space. It is also of central importance
for the development of possible generalisations to higher ‘dimensions’, (cf. Grothendieck’s Pursuit
of Stacks, [59].) We have a continuous map

α : A→ B

and for any point b ∈ B, there is an open neighbourhood U of b such that α−1(U) is the disjoint
union of open subsets of A, each of which is mapped homeomorphically onto U by α. The map α
is then called a covering projection. On such a U , α−1(U) is tUi over some index set which can be
taken to be α−1(b) = Fb, the fibre over b. Then we may identify α−1(U) with U ×Fb for any b ∈ U .
This Fb is ‘the same’ up to isomorphism for all b ∈ U . If B is connected then for any b, b′ ∈ B, we
can link them by a chain of pairwise intersecting open sets of the above form and hence show that
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Fb ∼= Fb′ . We can thus take each α−1(U) ∼= U × F and F will be a discrete space provided B is
nice enough. The descent data in this situation will be the local covering projections

αU : U × F → U

together with the homeomorphisms

ξU,U ′ : (U ∩ U ′)× F → (U ∩ U ′)× F

over (U ∩U ′). Provided that (U ∩U ′) is connected, this ξU,U ′ will be determined by a permutation
of F .

We often, however, want to allow for non-connected (U ∩ U ′). For instance take B to be the
unit circle S1, F = {−1, 1},

U1 = {x ∈ S1 | x = (x, y), x > −0.1}

U2 = {x ∈ S1 | x = (x, y), x < 0.1}.

The intersection, U1 ∩ U2, is not connected, so we specify ξU1,U2 separately on the two connected
components of U1 ∩ U2. We have

U1 ∩ U2 = {(x, y) ∈ S1 | |x| < 0.1, y > 0} ∪ {(x, y) | |x| < 0.1, y < 0}.

Let ξU1,U2((x, y), t) =
{

((x, y), t) if y > 0
((x, y),−t) if y < 0,

so on the part with negative y, ξ exchanges the two leaves. The resulting glued space is either
viewed as the edge of the Möbius band or as the map,

S1 → S1

eiθ 7→ ei2θ.

Remark: The well known link between covering spaces and actions of the fundamental group
π1(B) on Sets is at the heart of this example.

Case Study 3: Fibre bundles
The examples here are to introduce / recall how torsors / principal fibre bundles are defined
topologically and also to give some explicit instances of how fibre bundles arise in geometry.

(Often in this context, the terminology ‘total space’ is used for the source of the bundle projec-
tion.)

First some naturally occurring examples.
(i) Let Sn denote the usual n-sphere represented as a subspace of Rn+1,

Sn = {x ∈ Rn+1
∣∣ ‖x‖ = 1},

where ‖x‖ =
√
〈x | x〉 for 〈x | y〉, the usual Euclidean inner product on Rn+1. The tangent bundle

of Sn, τSn is the ‘bundle’ with total space,

TSn = {(b, x)
∣∣ 〈b | x〉 = 0} ⊂ Sn × Rn+1.
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We thus have a projection
p : TSn → Sn

given by p(b, x) = b, as a space over Sn.
Similarly the normal bundle, νSn of Sn is given with total space,

NSn = {(b, x)
∣∣ x = kb for some k ∈ R} ⊂ Sn × Rn+1.

The projection map q : NSn → Sn gives, as before, a space over Sn, νSn = (NSn, q, Sn).

Another example extends this to a geometric context of great richness.
(ii) The Stiefel variety of k-frames in Rn, denoted Vk(Rn), is the subspace of (Sn−1)k such that

(v1, . . . , vk) ∈ Vk(Rn) if and only if each 〈vi | vj〉 = δi,j , so that it is 1 if i = j and is zero otherwise.
Note V1(Rn) = Sn−1.

The Grassman variety of k-dimensional subspaces of Rn, denoted Gk(Rn), is the set of k-
dimensional subspaces of Rn. There is an obvious function,

α : Vk(Rn)→ Gk(Rn),

mapping (v1, . . . , vk) to spanR〈v1, . . . , vk〉 ⊆ Rn, that is, the subspace with (v1, . . . , vk) as basis. We
give Gk(Rn) the quotient topology defined by α. (For k = 1, we have G1(Rn) is the real projective
space of dimension n− 1.)

This setting also produces other examples of ‘bundles’. Consider the subspace of Gk(Rn)×Rn

given by those (V, x) with x ∈ V . Using the projection p(V, x) = V gives the bundle

γnk = (γnk , p,Gk(Rn)).

Similarly the orthogonal complement bundle ∗γnk has total space consisting of those (V, x) with
〈V | x〉 = 0, i.e. x is orthogonal to V . All of these ‘bundles’ have vector space structures on their
fibres. They are all locally trivial (so in each case α−1(U) = U × F for suitable open subsets U of
the base), and the resulting ξU,U ′ have form

ξU,U ′(x, t) = (x, ξ′U,U ′(x))(t)

where ξ′U,U ′ : U ∩ U ′ → GlM (R) for suitable M . (As usual, GlM (R) is the (topological) group of
non-singular M ×M matrices over R.) Such vector bundles are prime examples of the situation in
which the fibres have extra structure.

Even more structure can be encoded, for instance, by giving each fibre an inner product struc-
ture with the requirement that the ξ′U,U ′ take values in OM (R), the orthogonal group, hence
that they preserve that extra structure. Abstracting from this we have a group G which acts
by automorphisms on the space, F , and have our descent data isomorphisms ξU,U ′ of the form
ξU,U ′(x, t) = (x, ξ′U,U ′(x))(t) for some continuous ξ′U,U ′ : U ∩ U ′ → G.

As usual, if G is a (topological) group, by a G-space we mean a space X with an action (left
action):

G×X → X,

(g, x)→ g.x.

The action is effective if g.x = x implies g = 1. Let X∗ be the subspace

X∗ = {(x, g.x) : x ∈ X, g ∈ G} ⊆ X ×X,
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(cf. our earlier discussion of action groupoids on page 11).
There is a function (called the translation function)

τ : X∗ → G

such that τ(x, x′)x = x′ for all (x, x′) ∈ X∗. We note

(i) τ(x, x) = 1,

(ii) τ(x′, x′′)τ(x, x′) = τ(x, x′′),

(iii) τ(x′, x) = τ(x, x′)−1

for all x, x′, x′′ ∈ X.
A G-space X is called principal provided X is an effective G-space with continuous translation

function τ : X∗ → G.

Proposition 29 Suppose X is a principal G-space, then the mapping

G×X → X ×X

(g, x)→ (x, g.x)

is a homeomorphism.

Proof: The mapping is continuous by its construction. Its inverse is (τ, pr1), which is also contin-
uous. �

Given any G-space, X, we can form a quotient X/G with a continuous map α : X → X/G.
A bundle (X,α,B) is called a G-bundle if X has a G-action, so that B is homeomorphic to X/G
compatibly with the projections from X. The bundle is a principal G-bundle if X is a principal G-
space. We note that if ξ = (X, p,B) is a principal G-bundle then the fibre p−1(b) is homeomorphic
to G for any point b ∈ B.

Later we will see other more categorical views of principal G-bundles. They will reappear as
‘G-torsors’ in various settings. For the moment we need them to provide the link to the general
notion of fibre bundle.

For F , a (right) G-space with action G × F → F , we can form a quotient, XF , of F × X by
identifying (f, gx) with (fg, x). The composite

F ×X pr2→ X → X/G

factors via XF to give β : XF → X/G, where β(f, x) is the orbit of x, i.e. the image of x in X/G.
The earlier examples of ‘bundles’ were all examples of this construction. The resulting (XF , β, B)
is called a fibre bundle over B (= X/G).

Note: The theory of such fibre bundles was developed by Cartan and later by Ehresmann
and others from the 1930s onwards. They arose out of questions on the topology and geometry
of manifolds. In 1950, Steenrod’s book, [102], gave what was to become the first reasonably full
treatment of the theory. Atiyah, Hirzebruch and then, in book form, Husemoller, [65] in 1966 linked
this theory up with K-theory, which had come from algebraic geometry. The books contain much



116 CHAPTER 6. NON-ABELIAN COHOMOLOGY: TORSORS, AND BITORSORS

of the basic theory including the local coordinate description of fibre bundles which is most relevant
for the understanding of the descent theory aspects of this area (cf. Chapter 5 of Husemoller, [65]).
The restriction of looking at the local properties relative to an open cover makes this treatment
too restrictive for our purposes. It is sufficient, it seems, for many of the applications in algebraic
topology, differential geometry and topology and related areas of mathematical physics, however
as Grothendieck points out (SGA1, [60], p.146), in algebraic geometry localisation of properties,
although still linked to certain types of “base change” (as here with base change along the map

t U → B

for U an open cover of B), needs to consider other families of base change. These are linked with
some problems of commutative algebra that are interesting in their own right and reveal other
aspects of the descent problem, see [16]. For these geometric applications, we need to replace a
purely topological viewpoint by one in which sheaves take a front seat role.

6.2 Descent: Sheaves

(As for the previous section, this should be ‘skimmed’ only, if you have met sheaves before. A good
accessible account and brief introduction to this is Ieke Moerdijk’s Lisbon notes, [85]. These also
are useful for alternative developments of later material and are thoroughly to be recommended.)

Sheaves provide a useful alternative to bundles when handling ‘local-to-global’ constructions.
The intuition is, in many ways, the same as that of bundles. We have a space B and for each b ∈ B,
a ‘fibre’ over b, i.e. a set Fb, and we want to have Fb varying in some continuous way as we vary b
continuously. In other words, naively a sheaf is a continuously varying family of ‘sets’.

That is much too informal to use as a definition as it has employed several terms that have not
been defined. Before seeing how that intuition might be encoded more exactly, we will return to
the ‘spaces over B’. Let α : A → B be a space over B as before, and, once again, let U ⊂ B be
an open set. This time we will not consider α−1(U), but will look at local sections of α over U . A
(local) section of α, over U is a continuous map s : U → A such that, for all x ∈ U , αs(x) = x,
that is, s(x) is always in the fibre over x. We write ΓA(U) for the set of such local sections.

If V ⊂ U is another open set of B and s : U → A is a local section of α over U , then the
restriction, s|V , of s to V is a local section of α over V . We thus get from V ⊂ U , an induced
‘restriction’ map

resUV : ΓA(U)→ ΓA(V ).

Of course, if W ⊂ V is another such

resUV ◦ resVW = resUW .

There is a little teasing problem here. Suppose V is empty. Of course, the empty set is a subset
of all the other open sets, so what should ΓA(∅) be? The empty space is the initial object in the
category of spaces so there is a unique map from it to A and, of course, this is a local section! (You
can either check the condition at all points of the domain or argue that composition of this empty
local section with the projection p yields the unique map from ∅ into B, as required.)

Back to the generalities, there is, again of course, a neat, and well known, categorical description
of this setting.
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Let Open(B) denote the partially ordered set of open sets of B with the usual order coming
from inclusion, and consider it as a category in the usual way. The above construction just gave a
functor

ΓA : Open(B)op → Sets,

a presheaf on B. Any functor F : Open(B)op → Sets is called a presheaf, but not all presheaves
come from ‘spaces over B’ by the local sections construction, as it is fairly clear that ΓA has some
special properties.

We saw that such a presheaf must send to the singleton set, but we also have the gluing
property:

Suppose s1 ∈ ΓA(U1) and s2 ∈ ΓA(U2) are two local sections and

resU1
U1∩U2

(s1) = resU2
U1∩U2

(s2),

so these local sections agree on the intersection of their domains, then define

s : U1 ∪ U2 → A

by

s(x) =
{

s1(x) if x ∈ U1

s2(x) if x ∈ U2.

It is easy to prove that s is continuous and so gives a local section over U1 ∪U2. We need not stop
with just two local sections. If we have any family of local sections, over a family of open sets, that
coincide on pairwise intersections, then they can be glued together, just as above, to give a unique
local section on the union of those open sets, restricting to the given ones with which we started
on their original domains. This gluing property is the defining property of the sheaves amongst the
presheaves on B:

A presheaf F : Open(B)op → Sets is a sheaf if given a family U of open sets of B, say
U = {Ui}i∈I , and elements si ∈ F (Ui) for i ∈ I, such that for i, j ∈ I resUiUi∩Uj (si) = res

Uj
Ui∩Uj (sj),

there is a unique s ∈ F (U), for U =
⋃
Uj , such that resUUi(s) = si for all i.

Query: Does this gluing property imply the normalisation condition that F (∅) is a singleton?
For you to investigate!

For later purposes and comparisons, we will note that a compatible family si of local elements,
as above, gives an element S in the product set

∏
{F (Ui) : i ∈ I}. Not just any elements however.

We also have a product of the parts over the intersections. We write Uij = Ui ∩ Uj and get a
product

∏
{F (Ui,j) : i, j ∈ I}. There are two functions, which we will call a and b for convenience

only, defined from
∏
{F (Ui) : i ∈ I} to

∏
{F (Uij) : i, j ∈ I}. To specify these we say how they

project onto the factors F (Uij). (Technically, we have maps
∏
F (Uij)

pij→ F (Uij), being the {ij}th
projection of the product.) The specifications are

pija(s) = resUiUij (si),

whilst
pijb(s) = res

Uj
Uij

(si).
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We can now give the compatibility condition as s is a compatible family of local elements exactly
is a(s) = b(s):

Eq(a, b) //
∏
F (Uj)

a //

b
//
∏
F (Uij) ,

i.e. s is in the equaliser of a and b. This equaliser is sometimes called the set of descent data for
the presheaf relative to the cover.

From this perspective, we note that the restriction maps give a map

c : F (U)→
∏

F (Ui),

with pic(s) = resUUi(s) and we know ac = bc. We thus get a function from F (U) to Eq(a, b)
assigning c(s) to s. We have F is a sheaf exactly when this is a bijection; it is a separated presheaf
when this map is one-one, see below.

This scenario is quite useful for sheaves, but it really comes into its own when we look at higher
dimensional analogues such as stacks.

We will note quite a lot of facts about sheaves and presheaves, but will not give a detailed
development, since here is not a suitable place to give a lengthy treatment of sheaf theory.

(i) The category Sh(B) of sheaves on a space B is a reflective subcategory of the category
Presh(B) = [Open(B)op, Sets], of presheaves on B.

We first note a half-way house between general presheaves and sheaves.
The presheaf F is separated if there is at most one s ∈ F (U) such that resUUi(s) = si for all

i. (‘Sheafness’ would also require this but in addition asks for the existence of such an s not just
uniqueness if it exists.) In fact:

The functors
Sh(B)→ Sep.Presh(B)→ Presh(B)

have left adjoints.
If F is a presheaf, we will write s(F ) for the corresponding separated presheaf and a(F ) for the

associated sheaf. We can give explicit constructions of s(F ) and a(F ).

• Define an equivalence relation ∼U on F (U), where, if a, b ∈ F (U), then a ∼ b if and only if
resUUi(a) = resUUi(b) for all i, then s(F ) given by s(F )(U) = F (U)/ ∼U is a separated presheaf.
(For you to check the presheaf structure.)

• Suppose F is separated (if not replace it by s(F ) and rename!) Form FU , the set of compatible
families (relative to U) of elements in the F (Ui). If V < U is a finer cover of U , (so for each
V ∈ V, there is a U ∈ U with V ⊆ U), then there is a function resUV : FU → FV where
resUV (s)j = resUiVj (si) if Vj ⊆ Ui. (Check it is well defined.)

Varying U , we get a diagram of sets and form

a(F )(U) = colimUFU .

Explicitly we generate an equivalence relation on the union of the FU s by

sU ∼ sV

if V < U and resUV (sU ) = sV , and then form the quotient.



6.2. DESCENT: SHEAVES 119

(The details are well known and, if you have not met them before should be checked or looked up,
e.g. in a related context, [16], p.268. The sort of constructions used will be useful throughout this
chapter. It is a good idea to try to rewrite this in terms of the equaliser description given earlier,
to see what is happening there.)

(ii) The category Sh(B) is equivalent to the category of étale spaces over B.
A continuous map f : X → Y between topological spaces is étale if, for every x ∈ X, there

is an open neighbourhood U of x in X and an open neighbourhood, V , of f(x) in Y such that f
restricts to a homeomorphism f : U → V .

Given a presheaf, F on B and b ∈ B, let

Fb = colimb∈UF (U).

and germb : F (U) → Fb, the natural map. The set, Fb is the ‘stalk’ of F at b. It is made up of
equivalence classes of ‘germs’ of locally defined elements, i.e. (U, b, x), where b is the point at which
we are looking, U is an open set with b ∈ U and x ∈ F (U). If (U, b, xU ) and (V, b, xV ) are two such
germs, they are equivalent if there is a W ⊂ U ∩ V , again open in B, such that

resUW (xU ) = resVW (xV ),

i.e. xU and xV agree ‘near to b’. Now let E(F ) =
⊔
b∈B Fb be the disjoint union with π : E(F )→ B,

the obvious projection.
The topology on E(F ) is given by basic open sets: if x ∈ F (U), B(x) = {germb(x) | b ∈ U} is

to be open. (The idea is that we make x into a continuous local section of E(F ) over U by this
means.) This makes (E(F ), π) an étale space over B.

We could construct a(F ) in (i) as ΓE(F ), i.e. the sheaf of local sections of E(F ).
(iii) A covering space is an étale space which is locally trivial and it then corresponds to a locally

constant sheaf on B.
For any set S, there is a constant sheaf, defined by the presheaf F (U) = S for all U ∈ Open(B).

The corresponding étale space is B×S with its projection onto B and where S is given the discrete
topology. A sheaf is locally constant if for each b ∈ B, there is an open set Ub containing b such
that the restriction of F to Ub is a constant sheaf (or more strictly speaking, is isomorphic to a
constant sheaf).

We can rephrase this in a neat way that introduces viewpoints that will be useful later on. The
open sets Ub give us an open cover of B, so we could pick a subcover with the same trivialising
property. We thus assume that we have a cover U and form a space

⊔
U by taking the disjoint

union of the open sets in U . (A convenient way of working with
⊔
U is to denote its elements by

pairs (b, U) with b ∈ U and U ∈ U . We then have a copy of each b for each open set from the cover
of which it is an element.) There is an obvious projection map

p :
⊔
U → B,

which is p(b, U) = b, and this is, fairly obviously, an étale map. We pull back F along p to get a
sheaf on

⊔
U and, of course, this pulled back sheaf is constant.

This trick of turning a (topological) open cover into a map is very important. It forms the
basis of the theory of Grothendieck topologies. In that theory, one replaces Open(B) by a category
C, so a presheaf on C is just a functor F : Cop → Sets. The sheaf condition is adapted to this
setting by specifying what (families of) morphisms in C are to be considered ‘coverings’ with an
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axiomatisation of their desired properties. For instance, for an open covering, U of B, if we pick
for each U ∈ U an open covering of it and then combine these open coverings together we get an
open covering of B. That is mirrored by a condition on the covering families in the Grothendieck
topology.

We will not treat Grothendieck topologies in great detail here as, once again, that might take
us too far away from the ‘crossed menagerie’ and related issues of cohomology. It will be necessary,
however, to have a definition of a Grothendieck topos, i.e., the category of sheaves for such a
Grothendieck topology and will attempt to show how it relates to some of the topics we are
considering. For greater detail from a very approachable viewpoint, the approach from Borceux
and Janelidze’s book, [16], is suggested, but we warn the reader that they also avoid very lengthy
discussions of the topic, as their aim is not topos theory per se, but generalised Galois theory.

Definition: A Grothendieck topos is a category E , which is equivalent to a full reflective
subcategory

E // [Cop, Sets]
aoo

of a presheaf category Presh(C) = [Cop, Sets], where the left adjoint, a, preserves finite limits.

The reflective nature of this category means that when considering morphisms from a (pre)sheaf
to a sheaf, it is enough to give them at the presheaf level, since they will automatically be sheafified.

Example: For any C, the presheaf category Presh(C) is itself a full reflective subcategory of
itself! It thus is a Grothendieck topos.

In particular S is a Grothendieck topos (by taking C = ∆). Later we will consider sheaves and
bundles of groups, i.e., group objects in the topos of sheaves on a (base) space B. Equally well, we
could look at group objects in presheaf topoi such as [Cop, Sets], and these are the group valued
presheaves, and thus, in particular, Simp.Grps is just the category of presheaves of groups on ∆.

We can take this ‘analogy’ further. If we have an étale space α : A → B over B, then a
local section is a map s : U → A for U ∈ Open(B), such that αs(x) = x for all x ∈ U . A
presheaf F : Open(B)op → Sets is thought of as having F (U) as being the local sections over U
of ‘something’ over B. That does not quite give an idea wholly expressed within the category of
(pre)sheaves itself, but from U we can get a presheaf, much as above, namely the representable
presheaf

Û = Open(B)(−, U).

This presheaf takes value a singleton on V if V ⊆ U and is empty otherwise. The inclusion of U
into B is the étale map that corresponds to this, so our local section s : U → A is the analogue (in
fact, corresponds exactly to) a map of presheaves

s : Û → ΓA

and if F : Open(B)op → Sets is arbitrary, F (U) = Presh(B)(Û , F ) by the Yoneda lemma, with
each presheaf morphism ϕ from Û to F yielding an element ϕU (idU ) ∈ F (U). (Remember presheaf
morphisms are merely natural transformations between the corresponding functors.)

Returning to the general case of [Cop, Sets], the Yoneda lemma shows the importance of the
representable presheaves. In our key example with C = ∆, these representable presheaves are just
the simplices ∆[n] = ∆(−, [n]). Our observations above point out that if K is a simplicial set,
Kn = K[n] ∼= S(∆[n],K) and this is the analogue of F (U), i.e. the analogue of the set of local
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sections of F . Of course, there is no notion of topological continuity in the classical sense here, and
as in the ‘presheaf topos’ S, all presheaves are sheaves, we have that in some sense ‘all sections are
as if they were continuous’. (The topological language is being pushed to breaking point here, so
the corresponding intuitions would need refining if we were to follow them up properly. One can
do this with the language of Grothendieck topologies, but we will not explore that here. To some
extent this is done in [16] with a different end point in mind. Here our purpose is to explain loosely
why S is a topos, and why that may be useful and, reciprocally, what do the simplicial ideas seen
from that presheaf/sheaf viewpoint suggest about general toposes.)

One further fact worth noting is that if E is a topos and B is an object in E , then the ‘slice
category’, E/B, is also a topos. It thus is Cartesian closed, i.e. not only does it have finite limits,
but the functor − × A : E → E , which sends an object X to X × A for some fixed object A, has
a right adjoint (−)A thought of as being the object of maps from A to whatever. General results
can be found in the various books on topos theory which give very general constructions of these
mapping space objects in settings such as the slice toposes.

(iv) It is sometimes necessary to mention ‘hypercoverings’, instead of ‘coverings’ when looking
at generalisations of sheaves.

In any topos E , there is a precise sense in which E behaves like a generalisation of the category of
sets, but with a logic that replaces the two truth values {0, 1} of ordinary Boolean logic by a more
general object of truth values. In the topos Sh(B) of sheaves on a space B, this truth value object
is the lattice of open sets, Open(B). This may seem a bit weird, but in fact works beautifully. (The
logic is non-Boolean in general, so occasionally you need to take care with classical arguments.)
This allows one to do things like simplicial homotopy theory within E . This replaces the category,
S, of simplicial sets by Simp(E) and if E = Sh(B), then the objects are just simplicial sheaves on
B, i.e. sheaves of simplicial sets on B.

Any open cover U of a space B yields
⊔
U , as before, and one can take repeated pullbacks

to construct a simplicial sheaf on B from that cover. It is fun to view this in another way as it
illustrates some of the ideas working within the topos E and, in particular, within Sh(B).

Firstly, in Sets, there is a terminal object, 1, ‘the one point set’. In a topos E , there is a
terminal object, 1E and, for E = Sh(B), this is the constant sheaf with value the one point set.
Viewed as an étale space, it is just the identity map, B id→ B. (This multitude of viewpoints may
initially seem to lead to confusion, but it does give a beautifully rich context in which to work,
with different intuitions and analogies interacting.)

Within E , we have a product, so if A1, A2 ∈ E , we can form A1×A2. What does this looks like
for E = Sh(B)? The Ai gives étale spaces αi : Ai → B, i = 1, 2 and A1 × A2 corresponds to the
pullback

A1 ×B A2 → B.

In particular, if U is an open covering of B, write U → 1 for U viewed as a sheaf / étale space,⊔
U → B, within Sh(B), then the product

U × U
//
//
Uoo

makes U into a groupoid / equivalence relation within E = Sh(B). The simplicial object defined
by multiple pullbacks is just the nerve of this groupoid, which will be denoted N(U), or more often
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N(U). In low dimensions, this looks like

N(U) : . . .
//... // U × · · · × U

//... // · · ·
d0 //

d2
//// U × U

d0 //
d1
// U

p // 1.

(In terms of étale spaces over B, you just replace × by ×B and 1 by B.) In cases where B is
not a ‘locally nice space’, the simplicial sheaf given by U is too far away from being an internal
Kan complex and so we have to replace the nerve of a cover by a ‘hypercovering’, which is a ‘Kan’
simplicial sheaf K with an ‘augmentation map’ K → 1, which is ‘weak homotopy equivalence’.
(Look up papers on hypercoverings for a much more accurate treatment of them than we have
given here.) Of course, this is very like the situation in group cohomology, where one starts with a
‘resolution’ of G. This is a resolution of B or better of 1 by a simplicial object.

It will be useful later on to give a ‘down-to-earth’ description of the various levels of N(U). The
zeroth level N(U)0 is just the sheaf U = t{U : U ∈ U}, or rather the local sections of this over
B. A point in this étale space can be represented by a pair (b, U) where b ∈ U , i.e. the point b
of B indexed by U . The projection to B, of course, sends (b, U) to b. This notation is one way of
labelling points in a disjoint union, namely the point and an index labelling which of the sets of
the collection is it being consider to be in for that part of the disjoint union. Now a point of the
pullback over B will be a pair of such points with the same b, so is easily represented as (b, U0, U1)
where (b, U0) and (b, U1) are both points in the above sense. This however implies that b ∈ U0 ∩U1

and here and in higher levels this idea works: a point in the multiple pullback occurring at level n
is of the form (b, U0, . . . , Un) where b ∈

⋂n
i=0 Ui.

(v) Changing the base induces a pair of adjoint functors.
It is often necessary to examine what happens when we ‘change the base space’ for our sheaves.

suppose X is a space and Sh(X) the corresponding category of sheaves on X. We might have a
subspace A or X and ask for the relationship between Sh(X) and Sh(A), for instance. Is there an
induced functor? If so when does it have nice properties? and so on. More generally, if f : X → Y
is a continuous map, then we expect to have some ‘induced functors’ between Sh(X) and Sh(Y ).

First take a look at presheaves, and so we need the behaviour of f on open sets. The partially
ordered sets Open(X) and Open(Y ) can be thought of as categories as we already have done, and
since continuity of f is just : if V is open in Y then f−1(V ) is open in X, f corresponds to a
functor

f−1 : Open(Y )→ Open(X).

(You should check functoriality. It is routine.)
As a presheaf F on X is just a functor F : Open(X)op → Sets, we can precompose with (f−1)op

to get a presheaf on Y , i.e. we have a presheaf, f∗(F ). This is this given by f∗(F )(V ) = F (f−1(V )).
If V = {Vi} is an open cover of V , then f−1(V) = {f−1(Vi)} is an open cover of f−1(V ), so it is easy
to check that, if F is a sheaf on X, f∗(F ) is a sheaf on Y . (An interesting exercise is to consider
the inclusion, f of a subspace, A into Y and a sheaf F on A. What is the value of f∗(F )(V ) if
A ∩ V = ∅?) The sheaf f∗(F ) is often called the direct image of F under f , but this is not always
a good name as it is not really an ‘image’.

The construction gives a functor

f∗ : Sh(X)→ Sh(Y ),
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and, clearly, if g : Y → Z as well, then (gf)∗ = g∗f∗, whilst (IdX)∗ = IdSh(X). (Not e we are
saying that f∗ is a functor, but also that assigning f∗ = Sh(f) would give us a ‘sheaf category’
functor. That is more or less true, but as things are, in fact, richer than just this, we will first
look deeper at the situation.) The richness of the situation is that f f induces a functor going in
the other direction, that is from Sh(Y ) to Sh(X). This is easier to see if we change our view of
sheaves back from special presheaves to étale spaces over the base.

Suppose we have a space over Y , p : A → Y , then we can form the pullback X ×Y A. This
is, in fact’ only specified ‘up to isomorphism’ as it is defined by a universal property. (You should
check up on this point if you are unsure, although we will discuss it in some more detail as we go
along.) There is a ‘usual construction’ of it namely as a subspace of the product X ×A:

X ×Y A = {(x, a) | f(x) = p(a)},

but this is not ‘the’ pullback, just a choice of representing object within the class of isomorphic
objects satisfying the specifying universal pullback property - and we also need the structural maps
pX : X ×Y A → X and X ×Y A → A in order to complete the picture. Of course, for instance,
pX(x, a) = x. There is no canonical choice possible and the resulting coherence situation is the
source of much of the higher dimensional structure that we will be meeting later.

We will find it useful to use the universal property more or less explicitly, so it may be good to
recall it here:

We have a square

P
f ′ //

pX
��

A

p

��
X

f
// Y

such that (i) it commutes: pf ′ = fpX , and (ii) given any object B and maps q : B → A such that
pg = qf , then there is a unique morphism α : B → P such that pXα = q and f ′α = g.

We repeat that this property determines P , pX and f ′ up to isomorphism only. Our construction
of P as X ×Y A for the situation in the category of spaces shows that such a P exists but does not
impose any odour of ‘canonisation’ on the object constructed.

We next look at local sections of (P, pX). we have s : U → P such that pXs(x) = x for all
x ∈ U . This means that s determines and is determined by a map from U to A, namely f ′s, such
that f(x) = pf ′s(x) for all x ∈ U . This looks a bit like a local section of A

p→ Y over f(U), but we
do not know if f(U) is open in Y . To make things work, we can take f∗(F )(U) = colim{F (V ) :
V open in Y, f(U) ⊆ V } so we have the elements of f∗(F )(U) are germs of local sections of F ,
whose domain contains f(U). (You should check this works in giving us a sheaf on X, that it is
functorial giving us a functor

f∗ : Sh(Y )→ Sh(X).

See why it works, but looks up the details in a sheaf theory textbook.) Of course, warned by
previous comments, you will want to check that if g : Y → Z, (gf)∗ and f∗g∗ will be naturally
isomorphic, (but usually not ‘equal’). This will be very important later on.

Now suppose f : X → Y and so we have

f∗ : Sh(X)→ Sh(Y ),
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and
f∗ : Sh(Y )→ Sh(X).

These functors must be related somehow! In fact if F ∈ Sh(Y ) and G ∈ Sh(X), then

Sh(X)(f∗(F ), G) ∼= Sh(Y )(F, f∗(G)).

We sketch a bit of this, leaving the details to be looked for. Suppose ϕ : F → f∗(G) in Sh(Y ), then
for an open set V in Y , we have

ϕV : F (V )→ G(f−1(V )).

Now suppose U is open in X and V ⊇ f(U), then f−1(V ) ⊇ U , so we have

F (V )
ϕ→ G(f−1(V ))→ G(U),

and passing to the colimit we get a map from f∗(F )(U) to G(U). The other way around is similar,
so is left for you to worry out for yourselves.

Of course, the above natural isomorphism says f∗ is left adjoint to f∗, and this implies a lot of
nice properties that are often used.

This makes for quite a lot of ‘facts’ about sheaves and their uses, but we need one more
observation before passing to other things. Often geometric information is encoded by a sheaf,
sometimes ‘of rings’, sometimes ‘of modules’ or ‘of chain complexes’. For instance, on a differential
manifold, one has a sheaf of differential functions and also the de Rham sheaf of differential forms.
In algebraic geometry, the usual basic object is a scheme, which is a space together with a sheaf of
commutative rings on it that is ‘locally’ like the prime spectrum of a commutative ring. There are
many other examples. We will also be looking at sheaves of groups and sheaves of crossed modules.

It would have been nice to show how a sheaf theoretic viewpoint provides the link between
covering space theory and Galois theory, but again this would take us too far afield so we refer to
Borceux and Janelidze, [16], and the references therein.

6.3 Descent: Torsors

(Some of the best sources for the material in this section are in the various notes and papers of
Breen, [17, 18] and, in particular, his Astérisque monograph, [19] and his Minneapolis notes, [20].)

The demands of algebraic geometry mean that principal G-bundles for G a (topological) group
are not sufficient to handle all that one would like to do with such things. One generalisation is
to vary G over a base. This may be to replace G by a sheaf of groups or by a group object in
Top/B, i.e. a group bundle. (This is the topological analogue of a group scheme.) The situation
that we considered earlier, then corresponds to a constant sheaf of groups or the group bundle
GB := (B×G→ B) given by projection from the product. It also includes the vector bundles that
we briefly saw earlier. The more general case, however, does not change things much. We have a
parametrised family of groups Gb, b ∈ B, acting on a parametrised family of spaces, Xb, b ∈ B.
The sheaf of groups viewpoint corresponds to an étale space on B and thus to a group bundle on B
with each Gb discrete as a topological group. We will let, in the following, G be a bundle of groups
on a space B. (We may on occasion abuse notation and write G instead of GB for the constant
G-example.)
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Technically we will need to be working in a setting where we can talk of a bundle of locally
defined maps from one bundle to another. This is fine in the sheaf theoretic setting, and will be
assumed to be the case in the general case of a suitable category of bundles within the ambient
category, Top/B. It corresponds to the functor − × A always having a right adjoint (−)A, the
function bundle of locally defined maps from A to whatever. Technically we are assuming that our
category of bundles on B, Bun/B is a Cartesian closed category.

6.3.1 Torsors: definition and elementary properties

Definition: A left G-torsor on B is a space P π→ B over B together with a left group action

G×B P → P

(g, p) 7−→ g.p

such that the induced morphism
G×B P → P ×B P

(g, p) 7−→ (g.p, p)

is an isomorphism. In addition we require that there exists a family of local sections si : Ui → P
for some open cover U = (Ui)i∈I of B.

A right G-torsor is defined similarly with a right G-action.
If P is a left G-torsor, there is an associated right G-torsor, P o, with action p.g = g−1.p.
When we refer to a G-torsor, without mentioning ‘left’ or ‘right’, we will mean a left G-torsor.

The effect of the requirement that local sections exist is to ensure that the bundle P π→ B is
locally trivial, i.e. locally like G→ B. This is a consequence of the following lemma.

Lemma 13 Suppose P π→ B is a G-torsor for which there is a global section

s : B → P

of π, then there is an isomorphism
G

f→ P

of spaces over B.

Proof: Define a function f : G → P by f(g) = (g.s(b)), where g ∈ Gb. As the projection of the
group bundle G is continuous, f is continuous. To get an inverse for f , consider the map

P
π→ B

s→ P.

For any p ∈ P , sπ(p) is in the same fibre as p itself, so we get a continuous map

P
(sπ,id)−→ P ×B P

∼=−→ G×B P

on composing with the inverse of the torsor’s structural isomorphism. Finally projecting on to G
gives a map h : P → G. This is continuous and checking what it does on fibres shows it to be the
required inverse for f . �
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This does not of course transfer a group structure to P , but says that P is like G with ‘an
identity crisis’. It no longer knows what its identity is!

The group bundle, G→ B, considered as a space over B is naturally a G-torsor with multiplica-
tion on the left giving the G-action. Check the conditions. It has a global section, since we required
it to be a group object in Top/B, so there is a continuous map, e, over B from the terminal object
of Top/B to G, which plays the role of the identity. As that terminal object is (isomorphic to) the
identity on B, B → B. This splits G→ B,

B
e //

=
  @@@@@@@ G

~~~~~~~~~

B

This trivial G-torsor will be denoted TG.
Applying this to a general G-torsor, the local section si : Ui → P makes PUi = π−1(Ui), the

restricted torsor over the open set Ui into the trivial GUi-torsor over Ui, so P is locally trivial. It
is important to note again that this means that P looks locally like G, (but if G is not a product
bundle, P will not be locally a product). The way that P differs globally from G is measured by
cohomology. (An important visual example is, once again, the boundary circle of the Möbius band,
i.e. the double cover of the circle, S1, that twists as you go around that base circle. It is locally a
product U × {−1, 1}, but not globally so.)

The next observation is very important for us as it shows how the language of G-torsors starts
to interact with that of groupoids. First an obvious definition.

Definition: If P and Q are two left G-torsors, then a morphism f : P → Q of G-torsors is a
continuous map over B such that f(g.p) = g.f(p) for all g ∈ G, p ∈ P .

Here and elsewhere, it is understood that we only write g.p if g ∈ Gb and p ∈ Pb for the same
b. This avoids our constantly repeating mention of the base space and its points. If working with
sheaves on a site, i.e. a category C, with a Grothendieck topology, the g and p correspond to locally
defined ‘elements’ in some G(C) and P (C) respectively, so the same (abusive) notation suffices.

Lemma 14 Any morphism f : P → Q is an isomorphism.

Proof: We have trivialising covers U for P and V for Q on which local sections are known to
exist. By taking intersections, or any other way, we can get a mutual refinement on which both P
and Q trivialise so we can assume U = V. We thus are looking at a morphism f and local sections
s : U → P , t : U → Q, which (locally) determine isomorphisms to TG over U . We thus have
reduced the problem, at least initially, to showing that f : TG → TG is always an isomorphism, but

f(1G) = g.1G

for some g ∈ GB, i.e. for some global element of G. Moreover g is uniquely determined by f . Now
it is clear that the morphism sending 1G to g−1.1G is inverse to f . (Although it is probably an
obvious comment, we should point out that saying where a single global element goes determines
the morphism, and within TG any (locally defined) element is given by multiplication of the global
section 1G by that element, but now regarded as an element of G itself.)
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Back to our original f : P → Q, on each U , we have fU : PU → QU , its restriction to the parts
of P and Q over U , is an isomorphism, so we construct the inverse locally and then glue it into a
single f−1.

Remark on descent of morphisms: Although we have not yet completed the proof, it is
instructive to go into this in a bit more detail, since it introduces methods and intuitions that here
should be more or less clear, but later, in more ‘lax’ or ‘categorified’ settings will need both good
intuition and the ability to argue in detail with (generalisations of) local sections.

If we use s and t, then with respect to these local sections over U , every local element of PU
has the form gU .sU for some unique locally defined gU : U → G (or in sheaf theoretic notation
gU ∈ G(U)). Similarly in QU , local elements looks like gU .tU , but then

f(gU .sU ) = gU .f(sU ),

so we only need to look at f(sU ). As f(sU ) ∈ QU , it determines some unique local element
hU ∈ G(U) with

f(sU ) = hU .tU ,

and checking for behaviour when composing morphisms, it is then clear that

f−1
U (tU ) = h−1

U .sU

with continuity of f−1 handled by the continuity of inversion, of t and of multiplication.
As the construction of f−1

U is done using maps defined locally over U , f−1
U is in Top/U (or

alternatively, is a map of sheaves on U). We now have to check that this locally defined morphism
‘descends’ from

⊔
U to B.

Of course, it is ‘clear’ that it must do! Each hU is uniquely defined so ... . That is true, but
when we go to higher dimensional situations we will often not have uniqueness, merely uniqueness
up to isomorphism, or equivalence, so we will spell things out in all the ‘gory detail’.

We need to check what happens on intersection U1∩U2 of local patches in our trivialising cover,
U . Write fi = fUi , i = 1, 2, etc. for simplicity. The local sections s1 and s2 (resp. t1 and t2) will
not, in general, agree on U1 ∩ U2, so we have

f1(s1) = h1.t1,

f2(s2) = h2.t2,

but the key local elements h1|U1∩U2 and h2|U1∩U2 need not agree. A bit more notation will probably
help. Let us denote by s12 the restriction of s1 : U1 → P to the intersection U1 ∩ U2 and similarly
s21 = s2|U1∩U2 , extending this convention to other maps when needed.

We then have some g12 ∈ GU1∩U2 for which

s21 = g12.s12, (and s12 = g21.s21, so g12 = g−1
21 ),

but then, over U1 ∩ U2,
f(s21) = g12.f(s12).

We thus have
t21 = h−1

21 g12h12t12.
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Now turning to f−1 defined locally by f−1
i : QUi → PUi , i = 1, 2 with

f−1
i (ti) = h−1

i .si.

Over U1 ∩ U2, f−1
ij (tij) = h−1

ij sij , but we also have f−1
j (tji) = h−1

ji sji and we have to check that on
QUi∩Uj , f

−1
ij = f−1

ji . To do this, it is sufficient to calculate f−1
ji (tij) and to compare it with f−1

ij (tij)
as both are defined on the same generating local section and so extend via their G-equivariant
nature. We have

f−1
ji (tij) = f−1

ji (h−1
ij gjihjitji)

= h−1
ij gjihjif

−1
ji (tji)

= h−1
ij gjihjih

−1
ji .sji

= h−1
ij gjigijsij

= h−1
ij sij

= f−1
ij (tij),

so the two restrictions do agree over the intersection and hence do give a morphisms from Q to P
inverse to f . (This last point is easy to check.) �

If we denote the category of left G-torsors on B by Tors(B,G) (or Tors(G) if B is understood),
then we have

Proposition 30 Tors(B,G) is a groupoid. �

6.3.2 Torsors and Cohomology

In the above discussion, we saw how a choice of local sections si : Ui → P gave rise to a map
gij : Uij → G. (Here we will again abbreviate: Ui ∩ Uj = Uij . This notation will be extended to
give Uijk = Ui ∩ Uj ∩ Uk, etc.)

The maps gij are to satisfy
si = gijsj

on Uij and for all indices i, j. They are uniquely determined by the sections, so over a triple
intersection, Uijk, we have the 1-cocycle equation,

gijgjk = gik.

If we use different local sections, say s′i, assumed to be on the same open cover, there will be local
elements gi : Ui → G such that s′i = gi.si for all i ∈ I. The corresponding cocycles gij and g′ij will
be related by a coboundary relation

g′ij = gigijg
−1
j .

These equations will determine an equivalence relation on the set of 1-cocyles, Z1(U , G), for U ,
as before, the (fixed) open cover. The set of equivalence classes will be denoted H1(U , G). To
remove the dependence on the open cover, one passes to the limit on finer covers to get the Čech
non-Abelian cohomology set, Ȟ1(B,G) = colimUH

1(U , G) which, by its construction classifies
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isomorphism classes of G-torsors on B. The trivial left G-torsor, TG, gives a natural distinguished
element to Ȟ1(B,G).

This looks good. We have started with a torsor and seem to have classified it, up to isomor-
phism, by cocycles. The one deficiency is that we need to know that cocycles give torsors, i.e. a
(re)construction process of P from the cocycle (gij), but without prior knowledge of P itself.

The method we will use will take the basic ingredients of the group bundle G and will twist
them using the gij . First if we have γ ∈ Ȟ1(B,G), by the basic construction of colimits, we can
pick an open cover U and a gU = (gij), whose cohomology class represents γ in the colimit. Next
taking this U = {Ui}, and gij , let

P =
⊔
i

G(Ui)/ ∼ .

As we are once again using a disjoint union, we will give our points an index (g, i) and, of course,

(g, i) ∼ (ggij , j).

We have a projection P → B induced from the bundle projections G(U) → B. (For you to check
that it works.) This is continuous if P is given the quotient topology. Moreover the multiplications

G(U)×G(U)→ G(U)

give a left action
G× P → P

making P into a left G-torsor as hoped for.
To sum up Ȟ1(B,G) is in one-one correspondence with the set of isomorphism classes of G-

torsors on B, i.e. with the set π0Tors(B;G) of connected componenets of the groupoid, Tors(B;G).
(The relationship for isomorphisms is left for you to check.)

6.3.3 Contracted Product and ‘Change of Groups’

In Abelian cohomology, one would expect the cohomology ‘set’ (there a group) to vary nicely with
the coefficient sheaf of groups, G. Something like that occurs here as well and determines some
essential structure on the torsors. Suppose ϕ : G → H is a homomorphism of sheaves of groups,
then one expects there to be induced functors between Tors(G) and Tors(H) in one direction or
the other. Thinking of the better known case of a ring homomorphism, ϕ : R → S, and modules
over R or S, then we could for an S-module, M , form an R-module by restriction along ϕ. The
analogue works for an H-set X as one gets a G-set by defining g.x = ϕ(g).x, but there is no reason
to expect the resulting G-set to be principal, so this does not look so feasible for torsors. There is,
however, another module construction. Suppose that N is a left R-module, and make S into a right
R-module, SR¡ by s.r = sϕ(r), then we can form SR ⊗RN , and the left S-action by multiplication
is nicely behaved. The point is that S is behaving here as a two sided module over itself, and also
as a (S,R)-bimodule. The corresponding idea in torsor theory is that of a bitorsor, explored in
depth by Breen in [17], which we will examine shortly.

Before looking at these in a bit more detail, we will look at the contracted product, which
replaces the tensor product here. Suppose we have a category C and an internal group G in C.
Here we have various examples in mind. If C = Sh(B), G will be a sheaf of groups; if C is the
category of groupoids, G will be an internal group in that category, a (strict) gr-groupoid, and will
correspond to a crossed module, and, if we combine the two ideas, C is a category of sheaves of
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groupoids, so G is a sheaf of gr-groupoids, corresponding to a sheaf of crossed modules, and so on
in various variants.

A left G-object in C is an object X together with a morphism, (left action),

λ : G×X → X,

satisfying obvious rules. Similarly a right G-object Y comes with a morphism, (right action),

ρ : Y ×G→ Y.

The contracted product of Y and X is, intuitively, formed from Y ×X by dividing by an equivalence
relation

(y.g, g−1.x) ≡ (y, x).

The usual notation is Y ∧G X, but this is often inadequate as it assumes X, (resp. Y ), stands for
the object and the G-object, unambiguously, whilst, of course, X really stands for (X,λ) and Y
for (Y, ρ). It is sometimes useful, therefore, to add the action into the notation, but only when
confusion would occur otherwise, so Yρ ∧GλX is the full notation, but variants such as Yρ ∧G X
would be used if it was clear what λ was, etc.

We gave an element based description of Y ∧G X, but how can we adapt this to work within
our general C? There are obvious maps

Y ×G×X
(ρ,X) //

(Y,λ)
// Y ×X ,

and we can form their coequaliser. (As usual, we assume that the category C has all limits and
colimits that we need to make constructions, and to enable definitions to make sense, but we do
not constantly remind the reader of these hidden conditions!) Of course, we met this construction
earlier when considering a left principal G-bundle and a right G-space (fibre), F , forming the fibre
bundle XF = F ∧GX; it was also at the heart of the regular twisted Cartesian product construction
from our discussion of simplicial twisting maps.

Example: Suppose ϕ : G → H is a morphism of group bundles on B, then we can give H a
right G-action by

H ×B G
H×ϕ→ H ×B H → H

where the second map is multiplication. If P is a G-object such as a G-torsor, we have a contracted
product Hϕ ∧G P .

Lemma 15 If P is a G-torsor, then Hϕ ∧G P is an H-torsor.

Proof: Writing Q = Hϕ ∧G P , we check the usual map,

H ×B Q→ Q×B Q,

is an isomorphism. This is merely checking that the ‘obvious’ fibrewise formula is well defined.
This sends a pair ([h, p], [h1, p]) to (hh−1

1 , [h1, p]). That verification is left to the reader.
Local sections of P immediately yield local sections of Q, so Q is an H-torsor. �
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A group homomorphism
ϕ : G→ H

thereby gives us a functor

ϕ∗ : Tors(G)→ Tors(H) ϕ∗(P ) = Hϕ ∧G P.

Of course, there are still some details (for you) to check, namely relating to behaviour on morphisms
of G-torsors. (These are probably ‘clear’, but do need checking.)

Another point from this calculation is that we could work with ‘elements’ as if in a G-set. This
can be thought of either as working, carefully, in each fibre of the torsor or using local sections or
as a heuristic to obtain a formula that is then encoded purely in terms of the structural maps. All
of these viewpoints are valid and all are useful.

Now suppose µ, ν : G→ H are two group homomorphisms, thus giving us two functors,

µ∗, ν∗ : Tors(G)→ Tors(H).

When is there a natural transformation η : µ∗ → ν∗? The answer is neat and very useful.

Lemma 16 (cf. Breen, [19], Lemma 1.5)
A natural transformation η : µ∗ → ν∗ is determined by a choice of a section h of H such that

ν = h−1µh.

Proof: Suppose that P is a G-torsor, then µ∗(P ) = Hµ ∧G P , similarly for ν∗(P ) and ηP :
Hµ ∧G P → Hν ∧G P .

If we look locally
ηP ([µ(g), p]) = h.[ν(g), p]

for some h, since ηP (µ(g), p) is of form [h1, p] for some h1 and as ν∗(P ) is an H-torsors, etc.
(Unfortunately we need to know h does not depend on g, and is defined globally, so this suggests

looking at the special case where global sections do exist, i.e. P = TG, the trivial G-torsor. There
we can assume g = 1G, so

ηTG([1G, p]) = h.[1H , p],

giving us a possible h. We know that ηP is H-equivariant and natural as well as being ‘well-defined’.
We use these properties as follows:

If g ∈ G,

ηTG [µ(g), p] = ηTG [1H , g.p]
= h[1H , g.p]
= h[ν(g), p]
= h.ν(g)[1H , p],

whilst also

ηTG [µ(g), p] = ηTG(µ(g).[1H , p])
= µ(g)ηTG [1H , p]
= µ(g)h[1H , p],
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using that ηTG is H-equivariant. We thus have a globally defined h with

µ(g)h = hν(g)

for all g ∈ G,
or µ = ih ◦ ν or ν = i′h ◦ µ,

where ih is inner automorphism by h and i′h, that by h−1.
Conversely given such an h, we can define η by our earlier formula, extending it by H-

equivariance and naturality. Checking well definition is quite easy, but instructive, and so is left to
you. �

Aside: For any groupoids G, H, the functor category HG has groupoid morphisms as its objects
and the natural transformations can be seen to be ‘conjugations’. (This is a useful calculation to
do if you have not seen it before.) In particular if G = H is a group, the full subcategory aut(G)
of GG given by the automorphisms of G is an internal group objects in the category of groupoids,
so corresponds to a crossed module. What crossed module? What else, Aut(G), that is,

i : G→ Aut(G).

Two automorphisms µ, ν are related by a natural transformation if and only if there is a g such
the µ = ig ◦ ν, where ig is inner automorphism by g. The similarity with our current setting is not
coincidental and can be exploited!

Another fairly obvious result is that, if P is a G-torsor, then

G ∧G P ∼= P,

since locally we have each representative (g, p) is equivalent to (1G, g.p). The details are left as an
almost trivial exercise.

This notation is ‘dangerous’ however, as we pointed out earlier. We are using the right multi-
plication of G on itself to give us the contracted product, but we could also make G act on itself
by conjugation on the right : for g ∈ G, x ∈ G, with G being considered as a bundle,

x.g = g−1xg.

We will write this action as i′, for ‘inner’, so have Gi′ ∧G P as well. This is, in fact, a very useful
object. It is related to automorphisms of P in the following way:

Suppose that α : P → P is a locally defined automorphism of G-torsors, i.e. a local section of
AutG(P ),. Continuing to work locally, pick a section (local element) p. As α is ‘fibrewise’

α(p) = gp.p

for some local elements gp of G, and as α is G-equivariant,

α(g.p) = gα(p) = ggp.p.

Assigning to each pair (g, p) in G× P the automorphism given by

α(g1, p) = g1g.p
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gives a map
λ : G× P → AutG(P ), λ(g, p)(p) = g.p,

and this is an epimorphism by our previous argument. ‘Obviously’

λ(g, p) = λ(gg′, (g′)−1p),

so the map λ passes to the quotient G ∧G P - or does it? We have not actually examined the
definition of λ(g, p) closely enough.

Look at this from another direction. Examine λ(g, g′p) as an automorphism of P . To work out
λ(g, g′p)(p), we have first to convert p:

λ(g, g′p)(p) = λ(g, g′p)((g′)−1g′.p),

as λ(g, g′p) is specified by what it does to its basic P -part. Now

λ(g, g′p)((g′)−1g′.p) = (g′)−1λ(g, g′p)(g′.p)

by G-equivariance, and so equals
(g′)−1gg′.p,

which is λ((g′)−1gg′, p)(p).
Thus our initial impulse was hasty. We do have AutG(P ) as a contracted product, G∧G P , but

not with right multiplication as the action of G on itself, rather it uses right conjugation. We have
proved

Lemma 17 For any G-torsor P , there is an isomorphism

λ : Gi′ ∧G P
∼=→ AutG(P ),

where i′ : G→ Aut(G)o, i′(g)(g′) = g−1g′g, yielding the right conjugation action of G on itself. �

Perhaps something more needs to be said about AutG(P ) here. We are working with sheaves
or bundles and so have an essentially Cartesian closed situation, in other words function objects
exist. For each pair of sheaves, X,Y on B, Hom(X,Y ) is a sheaf. In particular End(X) is a sheaf
and Aut(X) a subsheaf of it. It thus makes basic sense to have that AutG(P ) is a G-torsor. Of
course, it is also a group object, since automorphisms (gauge transformations) of P are invertible.
This group is sometimes written P ad. It is the group (bundle) of G-equivariant fibre preserving
automorphisms of P ; it is also called the gauge group of P . In the isomorphic Gi′ ∧G P version, it
is instructive to explore the group structure, but this is left for you to do. This group operates on
the right of P , by the rule

p.α = α−1(p),

and makes P into a right P ad-torsor. (Exploration of these statements is well worth while and is
left as an exercise. It, of course, presupposes that P ad is seen as a bundle /sheaf of groups, which
itself needs ‘deconstructing’ before you start. The overall intuition should be fairly clear but the
technicalities, detailed verifications etc. do need mastering.)

A cohomological perspective on change of groups. We have that Ȟ1(B,G) is the set
of isomorphism classes of G-torsors on B, i.e. π0Tors(G), the set of connected components of the
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groupoid Tors(G). We have now seen that if ϕ : G→ H is a homomorphism of group bundles and
P is a G-torsor, then Hϕ ∧G P = ϕ∗(P ) is an H-torsor and that this gives a functor ϕ∗ : G→ H.
This will, of course, induce a function on sets of connected components and hence, as one might
expect, an induced function

ϕ : Ȟ1(B,G)→ Ȟ1(B,H).

There is another obvious way of inducing such a function, as the elements of Ȟ1(B,G) are classes
of cocycles (gij) and so composing with ϕ sends [(gij)] to [ϕ(gij)]. It is standard to check that this
does induce a function from H1(U , G) to H1(U , H) and, by its independence from U , it is then
routine to check that it induces a corresponding map on Čech non-Abelian cohomology.

It is easy to see that these two induced maps are the same. (It would be surprising if they were
not!) Pick a set of local sections, {si} for P over a trivialising cover U and we get {[1, si]} is a set
of local sections for Hϕ ∧G P . Changing patches si = gijsj and so

[1, si] = [1, gijsj] = [ϕ(gij).1, sj ] = ϕ(gij)[1, sj ],

so the transition functions for ϕ∗(P ) are exactly as expected. (The rest of the details are left as
an exercise.) The important thing for later use is the identification of the cocycles for ϕ∗(P ). This
will be especially important when discussing G-bitorsors in the next section.

6.3.4 Simplicial Description of Torsors

As usual we look at a sheaf or bundle of groups, G, on a space, B, and suppose P is a G-torsor.
We then know there is anopen cover U of B and trivialising local sections, si : Ui → P over the
various different open sets Ui of U . we have seen that over the intersections Uij , the restrictions of
the two local sections si and sj must be related and this gives us transition cocycles gij : Uij → G
such that

si = gijsj ,

where, over triple intersections, the 1-cocycle condition

gijgjk = gik

must be satisfied.
The information on intersections in U is neatly organised in the simplicial sheaf, N(U), (cf.

page 122 in section 6.2). We also know that from a sheaf of groups we an construct b=various
simplicial sheaves. Is there a way of viewing the cocycles gij from this simplicial perspective?

From a group, G, (no sheaves for the moment), we earlier saw the uses of models for the
classifying space, BG, of G. We could use the nerve of G as a group or rather its nerve as a
single object groupoid G[1]. We could alternatively take the constant simplicial group K(G, 0) (so
K(G, 0)n = G for all n ≥ 0, with all face and degeneracies, being the identity isomorphism of G).
If we then formedW (K(G, 0)), we get Ner(G[1]) back.

These different approaches all yield a simplicial set (and if you really want a space, you just
take its geometric realisation). This simplicial set will be denoted BG, even though that notation
is often restricted to the corresponding space. We have

• BG0 = a singleton set, {∗};

• BG1 = G, as a set, and in general,
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• BGn = G× . . .×G︸ ︷︷ ︸
n

Writing g = (g1, . . . , gn) for an n-simplex of BG, we have

d0g = (g2, . . . , gn),
dig = (g1, . . . , gigi+1, . . . , gn), 0 < i < n

dng = (g1, . . . , gn−1)

with the degeneracy maps, sj given by insertion of 1G in the jth place, shifting later entries one
place to the right. (Warning: multiple use of the label sj here may cause some confusion, but each
use is the natural one in that context!)

We have already seen this several times (but repetition is useful). The key diagram is usually
that indicating a 2-simplex (g1, g2) namely

∗
g2

��???????

∗

g1
??�������
g1g2

// ∗

(Note : we again have to make a decision as to order of composition and this does matter more
than one might think. If a context requires g2g1 rather than g1g2 along the third side, we can
use the opposite group Go. The homotopy properties of BG and BGo being the same, it is just a
question of how the geometric context is encoded - but that is crucial for calculations!)

Back to G being a sheaf of groups, and we get BG will be a sheaf of simplicial sets. We now
have two simplicial sheaves N(U) and BG. Curiosity alone should suggest we compare these via a
simplicial morphism and for ourpurposes, it should be a simplicial sheaf map f : N(U)→ BG.

Looking back at N(U) and its construction (page 122), the zero simplices are formed by the
open sets and as BG0 is trivial, f0 is not much of interest! At the next levelf1 : N(U)1 → BG1

so consists - yes, of course, - of local sections over the intersections Uij , hence gij in G(Uij) or
Gij . Over triple intersections Uijk, f2 will give a 2-simple, as above, so gijgjk = gik, given by
f2 : Uijk → G×G, f2 = (gij , gjk).

We thus have our 1-cocyle condition is automatic from the simplicial structure.
What about change of the choice of local sections of P , i.e. si : Ui → P . If we change these,

we get elements gi ∈ Gi such that s′ = gisi and the new g′ij are related to the old by a sort of
conjugacy rule:

g′ij = gigijg
−1
j ,

which can be visualised as a square
g′ij //

gi
��

gj

��gij //

This is reminiscent of a homotopy, and, in fact, defines one from our f (relative to the {si})
to f ′ (relative to the {s′i}). In other words, we are identifying isomorphism classes of G-torsors
that trivialise over U with [N(U), BG]. We will return to this later when we discuss passing to
refinements of U to get a homotopy description of all G-torsors, so we will not give the details here.
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There is , given our recent description of ‘change of groups’, an obvious question. Suppose
ϕ : G → H is a homomorphism of sheaves of groups. It is easy to see that ϕ induces a map of
simplicial sheaves Bϕ : BG→ BH, so we get, for given U , an induced map

[N(U), Bϕ] : [N(U), BG]→ [N(U), BH].

If we start off with a G-torsor, P and use our change of groups methods above, what is the link
between ϕ∗(P ) and the image of the isomorphisms class of P as represented by some map from
N(U) to BG. Of course, we have just seen that if {gij} represents P then {ϕ(gij)} represents ϕ∗(P )
- but this is exactly the image under [N(U), Bϕ]. There is thus yet another good way of interpreting
the change of groups functor from Tors(G) to Tors(H), namely as a simplicial induced map from
BG to BH. (Later we will see that Tors(G) is the stack completion of BG or equivalently of G[1]
and this yields a variant of this simplicial viewpoint.)

6.3.5 Torsors and exact sequences

One classical method of analysing the cohomology and in so doing of providing interpretations of
cohomology classes, is to vary the coefficients within an exact sequence. For instance, if

1→ L
u→M

v→ N → 1

is an exact sequence of sheaves of groups, then one might try to relate torsors over L, M and N .
The usual techniques would then be to see what is the likelihood of having something like a long
exact sequence of the cohomology ‘sets’ or groups. Where should it start?

We will to start with look at the Abelian case, but will try not to use commutativity so as to
get as general a result as possible. Sheaf cohomology with coefficients in sheaves of Abelian groups,
etc. is considered as measuring the non-eactness of the global sections functor. Given a sheaf L
of Abelian groups on B, ΓB(L) is one of several notations used for the Abelian group of global
sections of L. Another is L(B), of course. If the exact sequence above had been of Abelian sheaves,
we would have had a long exact sequence

0→ L(B)→M(B)→ N(B)→ Ȟ1(B,L)→ Ȟ1(B,M)→ Ȟ1(B,N)→ Ȟ2(B,L)→ . . .

and so on. It is to be noted that the induced map v∗ : M(B)→ N(B) need not be onto, so Ȟ1(B,L)
picks up the obstruction to ‘lifting’ a global section of N to one of M . This is particularly interesting
to us here since we have linked Ȟ1(B,L) with L-torsors in the general situation - and, of course,
that interpretationis also valid in the Abelian case.

To see how Ȟ1(B,L) arises naturally in this situation, suppose given a global section h of N . As
our exact sequence above was of sheaves, we have to examine what that means. This can be viewed
from several angles. An exact sequence of sheaves may not be exact as a sequence of presheaves.
The functor that forgets that sheaves are sheaves has a left adjoint namely ‘sheafification’, so
will itself be ‘left exact’, e.g. will preserve monomorphisms. (If you do not know of this type
of result, try to prove it yourself.) It need not preserve epimorphisms. Sheafification itself will
preserve epimorphisms, but not all epimorphisms need be the sheafification of an epimorphism
at the presheaf level. An epimorphism of sheaves will give an epimorphism on stalks. (We are
thinking here of sheaves on a space, B rather than more general topos centred results.) This means
epimorphisms are locally defined. Suppose we have a point b ∈ B, then if x is in the stalk of N
above b, it means that x is representable as a pair (xU , U), where b ∈ U , U is an open set and
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xU ∈ N(U), the group of local sections of N over U . (Recall, from page 119, section 6.2, that the
stalk of a sheaf N at a point b is a colimit of the N(U) for b ∈ U .) The morphism v being an
epimorphism, there is an element y in the stalk of M at b, say [y = [(yV , V )], such that over some
open set W ⊆ U ∩ V , v(yW ) = xW .

6.4 Bitorsors

The fact that the left G-torsor is also a right P ad-torsor suggests the notion of a bitorsor, the
analogue of a left R-, right S-module for our non-Abelian setting. (Our basic reference for this will
be Breen’s Grothendieck Festschrift paper, [17] and his beautiful ‘Notes on 1- and 2-gerbes’, [20],
based on his Minneapolis lectures.)

6.4.1 Bitorsors: definition and elementary properties

Definition: Let G, H be two bundles of groups on B. A (G,H)-bitorsor on B is a space P over B
together with fibre preserving left and right actions of G and H, respectively, on P , which commute
with each other,

(g.p).h = g.(p.h),

and which define both a left G-torsor and a right H-torsor structure on P . If G = H, we say
G-bitorsor rather than (G,G)-bitorsor.

A family of local sections si of a (G,H)-bitorsor defines a local identification of P as the trivial
left G-torsor and the trivial right H-torsor. It therefore determines a family of local isomorphisms
ui : HUi → GUi , given by the rule sih = ui(h)si, for h ∈ HUi . It is important to note that this does
not mean that G and H are globally isomorphic.

Examples: a) The trivial (left) G-torsor TG is also a right G-torsor (using right multiplication)
and has a G-bitorsor structure.

b) Any left G-torsor P is a (G,P ad)-bitorsor, as above. Any G-torsor P is a (G,H)-bitorsor if
and only if H ∼= P ad.

c) Let

1→ G
i→ H

j→ K → 1

be an exact sequence of bundles of groups on B. Form GK = G ×B K, which is again a bundle
of groups, then H is a GK-bitorsor over K. This needs a bit of working through. For a start K
is a bundle of groups so has a (hidden) structural projection K → B. Think of this as a cover as
we have done previously, then GK is the induced bundle of groups on K (as a space), so we have
transferred attention from Top/B to Top/K or from Sh(B) to Sh(K). There are actions of GK
on H,

h ? (g, k) = hi(g).

(but note that requires us to use H
j→ K, as the structural projection of H over K, again, going

to bundles on K,
(g, k).h = i(g).h,

but is only defined if j(h) = k, as we are ‘over K,’ in this equation).
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This is somewhat simplified if we have B = 1, when it is simply an exact sequence of groups,
GK is G×K as a group over K, via projection, and so on.

There is an obvious notion of morphism of bitorsors and thus various categories, Bitors(G,H),
Bitors(G) := Bitors(G,G), ... . It should come as no surprise that if P is a (G,H)-bitorsor and
Q is a (H,K)-bitorsor, both on B, then P ∧H Q is a (G,K)-bitorsor. Moreover P gives a (H,G)-
bitorsor P o, (o for ‘opposite’) by reversing the two actions. We thus have that a (G,H)-bitorsor
will induce a functor

Tors(H)→ Tors(G)

and that, for a given bundle of groups G, the category of G-bitorsors has a monoidal structure
given by P ∧G Q and with TG as unit object. The opposite construction acts like an inverse,

P ∧G P o ∼= TG ∼= P o ∧G P.
Lemma 18 The category Bitors(G) with contracted product is a group-like monoidal category,
with the bitorsor TG as unit and P o, an inverse for P .

Proof: This is left as an exercise, but here is a suggestion for the above isomorphisms: use local
sections to send any [p, p′] in P o ∧G P to an element of G, now show independence of that element
on the choice of local section. It is also necessary to check through the group-like monoidal category
axioms. �

A group-like monoidal category is often called a gr-category. We have already (essentially
introduced on page 38) seen that strict gr-categories are ‘the same as’ crossed modules, so once
again that crossed structure is lurking around just beneath the surface.

A very useful result akin to Lemma 17 above, gives a similar interpretation of IsomG(P,Q),
where P is a (G,H)-bitorsor and Q a left G-torsor. As P is thus also a left G-torsor and Tors(G)
is a groupoid, IsomG(P,Q) is just the sheaf of G-equivariant torsor maps from P to Q, all of which
are invertible. The lemma identifies this as a contracted product.

Lemma 19 Let P be a (G,H)-bitorsor and Q a left G-torsor, then there is an isomorphism

IsomG(P,Q)
∼=→ P o ∧G Q.

Proof: We start by noting a morphism in the other direction. Suppose we take a local element in
P o ∧G Q given by (p, q) ∈ P o ×Q, defined over an open set U . We have

(p, q) ≡ (p.g−1, g.q),

but as p ∈ P o, p.g−1 = q.p with the original left G-action on P . We assign to (p, q) the isomorphism,
α(p,q), from P to Q defined over U , which sends p to q. Of course, α(p,q) is to be extended to a
G-equivariant map, α(p,q)(g.p) = g.q, but we effectively knew that fact already since

α(p,q) = α(p.g−1,g.q),

so it sends p.g−1 to g.q. Of course, if β : PU → QU is a local morphism defined over some U ,
then we can assume PU has a local section p and that β(p) = q for some local section q of Q. (If
not, refine U by an open cover on which P trivialises and work on the open sets of that finer open
cover.) However then we can assign [p, q] in P o ∧G Q to the morphism β. The rest of the details
should now be easy to check. �
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6.4.2 Bitorsor form of Morita theory (First version):

Within the theory of modules and more generally of Abelian categories, there is a very important
set of results known as Morita theory, describing equivalences between categories of modules. The
idea is that if R and S are rings, then we can use a homomorphism as above to induce a right R, left
S module structure on S itself and this is what induces, via tensor product, a functor from Mod(S)
to Mod(R). We have seen the corresponding idea with torsors above. Now look at the image, under
that functor, of SSS , that is SSR, i.e. the bimodule itself. Not all functors between Mod(R) and
Mod(S) are induced by morphisms at the ring level in this way however, but provided we look at
equivalences between categories, this bimodule idea allows us to describe the equivalences precisely
- and this does go across to the torsor context.

The first essential is to recall the definition of an equivalence of categories. A functor F :
C → D between two categories is an equivalence if there is a functor G : D → C and two natural
isomorphisms η : GF ⇒ IdC and η′ : FG⇒ IdD. We say G is (quasi-)inverse to F .

Proposition 31 A (G,H)-bitorsor Q on B induces an equivalence

Tors(H)
ΦQ→ Tors(G)

M 7−→ Q ∧H M

between the corresponding categories of left torsors on B. In addition if P is a (H,K)-bitorsor on
B then there is a natural isomorphism of functors

ΦQ∧HP
∼= ΦQ ◦ ΦP ,

and, in particular, the equivalence ΦQo is quasi-inverse to ΦQ.

Proof: The last part follows from the statement on composites, which should be clear by con-
struction and, of course, TH ∧H Q ∼= Q, as we saw earlier. This proof is thus just a compilation of
earlier ideas - and so will be left to the reader! �

In fact it is now easy to give a weak version of the torsor Morita theorem.

Proposition 32 If
Φ : Tors(H)→ Tors(G)

is an equivalence of categories, then there is a (G,H)-bitorsor, Q, which itself induces such an
equivalence.

Proof: We will limit ourselves to pointing out that we can take Q = Φ(TH). This inherits its right
H-action from the right action of H on TH . (You should check that it is a right H-torsor for this
action.) �

It is, in fact, the case that Φ is equivalent to the equivalence induced by Q, but this is more
relevant in a later context, so will be revisited then.
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6.4.3 Twisted objects:

Continuing our study of torsors and bitorsors, as such, we should mention the analogue of fibre
bundles in this context.

Let P be a left G-torsor on B and E a space over B on which G acts on the right. We can
again use the contracted product construction to form EP := E ∧G P over B. In this context we
call EP the P -twisted form of E.

Choice of a local section s of P over an open set U determines an isomorphism ϕP : EP|U
∼= EU ,

so EP is locally isomorphic to E. (Beware, especially if you are used to the case where E is a
product space over B, so E = F ×B, say. In that case EP is locally trivial in a very strong sense,
but this need not be so in general).

Suppose E1 is now a space over B and there is an open cover U of B over which E1 is locally
isomorphic to E, then the sheaf or bundle IsomB(E1, E) is a left torsor on B for the action of the
bundle of groups G := AutB(E). This gives us a G-torsor and a space E on which G acts on the
right.

These two constructions, are inverse to each other.
In particular, if we are given G and have a second bundle of groups, H, on B, which is locally

isomorphic to G, then P := IsomB(H,G) is a AutB(G)-torsor. It is worth pausing to think out the
components of this fact. The object IsomB(H,G) exists, as before, because of the Cartesian closed
assumption about our categories of bundles over B, (e.g. if we are interpreting bundles as sheaves,
IsomB(H,G) is a subsheaf of the function sheaf, Sh(B)(H,G), but although it would always have
an action of AutB(G), we need the ‘H is locally isomorphic to G’ condition to ensure the existence
of local sections and hence to ensure it is a AutB(G)-torsor).

Look now at G ∧Aut(G) P and the map

G ∧Aut(G) P → H

(g, u) 7→ u−1(g).

(We make AutB(G) act on the right of G, via the obvious left action.) This map is an isomorphism
and so H is the P -twisted form of G for this right AutB(G)-action.

On the other hand, if G is a bundle of groups on B and P is a left G-torsor, H := G∧Aut(G)P is
bundle of groups on B locally isomorphic to G and this identifies P with the left AutB(G)-torsor,
IsomB(H,G).

This provides a torsor’s-eye-view of our examples on fibre bundles given in section 6.1, (Case
study, page 113). We will sketch in a few more details:

A vector bundle, V , of rank n on B is locally isomorphic to Rn
B := Rn × B. The group

of automorphisms of this is the trivial bundle of groups, G`(n,R)B := G`(n,R) × B. The left
G`(n,R)B-torsor on B associated to V is Isom(V,Rn

B) and this is just the frame bundle, PV , of V .
The vector bundle V is a bundle of groups, so the above discussion applies showing it to be the PV -
twist of Rn

B. Conversely for any G`(n,R)B-torsor P on B, the twisted object V = Rn
B ∧G`(n,R)B P

is the rank n vector bundle associated to P and its frame bundle PV is canonically isomorphic to
P . (If you have not explored vector bundles and differential manifolds, a brief excursion into that
area may be well worth, while as it reinforces the geometric origins and intuitions behind this area
of cohomology.)
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6.4.4 Cohomology and Bitorsors

Earlier, (page 128), we saw how local sections, s, of a torsor, P , over an open cover, U , led to
‘transitions maps’, or ‘cocycles’ gij : Uij → G, on the intersections. Changing local sections to
s′i : Ui → P , s′i = gisi, we have the corresponding cocycles g′ij are related via the coboundary
relation

g′ij = gigijg
−1
j ,

to the earlier ones. This led to the set of equivalence classes, H1(U , G) and eventually to the
cohomology set Ȟ1(B,G), which classified isomorphism classes of G-torsors on B.

What would be the additional structure available if P was a (G,H)-bitorsor? The family of
local sections si : Ui → P then would also determine a family of local isomorphisms ui : HUi → GUi ,
where

ui(h)si = si.h.

Remark: This formula needs a bit of thought. That ui is a bijection is clear, as it follows from
the fact that P is a G-torsor, but that it is a homomorphism needs a bit more care. The defining
equation is specifically using the local section si so, for instance, on a more general element g.si
we have to extend the formula using G-equivariance, (remember the two actions are independent),
so (g.si).h = g.ui(h).si. In particular, if h1 and h2 are two local section of H over Ui, then
si.(h1h2) = ui(h1).si.h2 = ui(h1)ui(h2).si, so ui(h1h2) does equal ui(h1)ui(h2).

Over an intersection Uij of the cover, si = gijsj , so

ui = igijuj

with as usual, i the inner automorphism homomorphism from G to AutB(G), sending g to ig. The
(ui, gij) therefore satisfy the cocycle conditions

gik = gijgjk

and
ui = igijuj .

Changing the local sections to s′i = gisi in the usual way determines coboundary relations

g′ij = gigijg
−1
j

and
u′i = igiui.

Isomorphism classes of (G,H)-bitorsors on B with given local trivialisation over U , thus are clas-
sified by the set of equivalence classes of such cocycle pairs (gij , ui) modulo coboundaries. In the
most important case of G-bitorsors, the ui are locally defined automorphisms of the GUi and so are
local sections of Aut(G).

We thus have from a G-bitorsor, P , a fairly simple way to get a piece of descent data {(gij , ui)},
with the right sort of credentials to hope for a ‘reconstruction’ process. We needed P to trivialise
over the open cover U = {Ui} and then to chose local sections si : Ui → P . This gave {gij : Uij → G}
and {ui : Ui → Aut(G)}, so let us start off with these and see how much of P ’s structure we can
retrieve.
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Putting aside the uis for the moment, we have a G-valued cocycle, {gij}, and we already have
seen how to build a G-torsor from that information. Recall we take

P =
⊔
i

G(Ui)/ ∼,

where (g, i) ∼ (ggij , j). (The basic relation is really that (1Ui , i) ∼ (gij , j) with the left translation
G(Uij)-action giving the more general form.) We thus have a lot of the structure already available.
We are left to obtain a right G-action, which has to be ‘independent’ of the left action, i.e. to
commute with it as in the first definition of this section. (To avoid confusion between the two
actions, we will pass to the (G,H)-bitorsor case so ui : Ui → Isom(H,G), and will denote local
elements that act on the right by hi, whilst any acting on the left by gi.)

In our ‘reconstructed’ P , there is clearly a natural choice for a local section over Ui, namely the
equivalence class of the identity element 1Ui ∈ G(Ui), or, more exactly of (1Ui , i). Then we could
define

[g, i].h := [g.ui(h), i].

It is clear that this is a right action, since ui is a homomorphism and that it does not interfere
with the left G(Ui)-action, which is g′[g, i] = [g′g, i]. Of course, we have to check compatibility
with the equivalence relation, and that is exactly what is needed for checking that it works on
adjacent patches / open sets of the cover. The key case is to work with a local section h of G over
an open set, U , and examine what h does on patches Ui, Uj and their intersection. (Of course, this
presupposes that we are intersecting Ui etc. with U , i.e. that we are effectively working with an
open cover of U itself.)

We know how the Ui are related over the different patches, namely

ui = igijuj ,

which on our local element h gives

ui(h) = gijuj(h)g−1
ij .

As h is defined on U , the restrictions to the various Ui form a compatible family, (i.e. we do not
need to worry about transitions for h in formulae), so

[g, i].h = [gui(h), i] = [g.ui(h)gij , j],

on the one hand, and also
[g.gij , j].h = [ggijuj(h), j].

The earlier identity shows that
ui(h)gij = gijuj(h),

so these are the same local element of P over Uij .

The ui were introduced as the way to link local right and left actions,

ui(h).si = si.h.

They also have an interpretation if we seek to study when a given left G-torsor, P , has an additional
G-bitorsor, or more generally, a (G,H)-bitorsor structure. The cocycle rules linking the ui with the
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gij involve the group homomorphism i : G→ Aut(G). The gij part of the cocycle family only uses
the left G-torsor structure on P . It is perhaps only because of ‘natural curiosity’, but it does seem
natural to look at the Aut(G)-torsor i∗(P ). Our earlier calculations show that suitable cocycles for
this are given by {i(gij)} = {igij}, but the ui now look very like a coboundary! In fact that key
equation, ui = igijuj , can obviously be rewritten as

igij = uiu
−1
j ,

or
igij = ui.1.u−1

j ,

so the class of {igij} is ‘cohomologically null’, i.e. equivalent to 1 modulo coboundaries. In other
words, i∗(P ) ∼= TAut(G).

Conversely, if we have P and hence its cocycle representation, and a 0-cocycle trivialising i∗(P ),
so {igij} is a coboundary,

{igij} = αiα
−1
j ,

then taking ui = αi, we have a cocycle pair, (gij , ui), giving P a G-bitorsor structure.
We clearly should look at this from the viewpoint of contracted products as they have a clearer

geometric interpretation. The Aut(G)-torsor i∗(P ), has a description as Aut(G)i ∧G P , thus, by
quotienting Aut(G)× P by the equivalence relation

(α.g.p) ∼ (α ◦ i(g), p).

The fact that i∗(P ) is locally trivial was given by the local sections induced by those si : Ui → P
for P , namely

[(1, si)] : Ui → Aut(G)i ∧G P.

(Note this formulation is different from that in Breen, [17], as he uses the opposite group Auto(G)
and i′, but we can avoid that extra complication for our purposes here, since we really only need
α = 1 in the above.)

We can compare these local sections on overlaps Uij ,

(1, si) ∼ (1, gijsj) ∼ (igij , sj) ∼ (uiu−1
j ),

but now our local sections [(1, si)] are equivalent to others ti = [(u−1
i , si)], which agree on overlaps

ti = [(u−1
i , si)] = [(u−1

i uiu
−1
j , si)] = tj

over Uij . These ti thus form a global section for i∗(P ), which is hence the trivial torsor, up to
isomorphism.

Reversing the argument, a global section of i∗(P ), together with the structural cocycle {gij}
for P gives a G-bitorsor structure on P . (We will return to this in more generality a bit later.)

6.4.5 Bitorsors, a simplicial view.

Pausing in our development, let us return to the simplicial viewpoint that we adopted earlier. The
cover U gives a sheaf/bundle

p : E = tU → B
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and by repeated pullbacks, we get a simplicial sheaf/bundle

N(U)→ B.

The cocycle {(ui, gij)} consists of a family {ui} giving a morphism,

g0 : N(U)0 = tU → Aut(G),

together with a second family
g1 : N(U)1 → GoAut(G).

This second piece of data is not quite as obvious as it might seem. The earlier model of the crossed
view of group extensions used the crossed module Aut(G) = (G,Aut(G), i) directly. Here we are
using the cat1-group / gr-groupoid / 2-group analogue, which can also be thought of simplicially
as in our discussion of algebraic 2-types, page 69. Recall the face maps

di : GoAut(G)→ Aut(G), i = 0, 1,

are given by

d1(g, α) = α,

d0(g, α) = ig ◦ α

and the degeneracy is
s0(α) = (1G, α).

The maps g0, g1 are to be hoped to be a part of a simplicial map from the simplicial sheaf N(U)
to the sheaf of simplicial groups, K(Aut(G)), and to check that this is indeed the case, we need to
recall that ‘bundle-wise’ the elements of tU = N(U)0 can usefully be thought of as pairs (x, U),
where U ∈ U and x ∈ U . Of course, the projection maps p sends (x, U) to x itself. The 1-simplices
of N(U) therefore are given by triples (x, U0, U1) with x ∈ U0 ∩ U1, so the corresponding face and
degeneracy maps are

d1(x, U0, U1) = (x, U0),
d0(x, U0, U1) = (x, U1),

s0(x, U) = (x, U, U).

We can thus see what this g must satisfy. We write g1 = (g, α) as before, and will try to identify
what g and α must be. We have, then,

• d1g1 = g0d1 means α = u|U0
=: u0;

• d0g1 = g0d0 means igu0 = u|U1
= u1;

• sog0 = g1s0 is a normalisation condition, which will make more sense when the first two
conditions have been explored in more detail.

The obvious way to build g1, i.e., g itself, is thus to take

g(x, U0, U1) = (g10(x), u0(x)),



6.4. BITORSORS 145

and to require that gii is 1G restricted to Uii = Ui ∩ Ui for the normalisation.
To continue our simplicial description, we should look at triple intersections, i.e. N(U)2, and

the corresponding K(Aut(G))2. The points of N(U)2 are, of course, represented by symbols such
as (x, U0, U1, U2), whilst those of K(Aut(G))2 above the point x, are of form (g2, g1, α)(x). The
face maps of N(U) are the obvious ones, d2(x, U0, U1, U2) = (x, U0, U1), and so on, whilst

d2(g2, g1, α) = (g1, α),
d1(g2, g1, α) = (g2g1, α)
d0(g2, g1, α) = (g2, ig1α).

with the si inserting an identity in the appropriate place. (Of course, all these gi, etc. are ‘local
elements’, so are really local sections, and our formulae would have, over a given x, the valuesg2(x),
etc., as above.)

We want g to be a simplicial morphism, so on 2-simplices we expect, for (x, U0, U1, U2),

d2g2 = g1d2,

etc., i.e. if g2(x, U0, U1, U2) = (g2, g1, α)(x), the d2-face (g1, α)(x) = (g10(x), u0(x)), so g1,= g10,
α = u0, and then the d0 face gives g2 = g21. Finally the d1-face gives

g2g1 = g20,

so this gives us the cocycle condition
g21g10 = g20

over U012.
The other simplicial morphism rules give compatibility with degeneracies, but using simplicial

identities these then give that g01 = g−1
10 , i.e. again a normalisation condition.

We thus have

(i) the bundle of crossed modules Aut(G) given by (G,Aut(G), i);

(ii) the corresponding bundle of simplicial groups, K(Aut(G));

(iii) the bundle / sheaf of simplicial sets, N(U);
and

(iv) our local cocycle description of our bitorsor, P ,

giving, it would seem, a simplicial map

g : N(U)→ K(Aut(G)).

Conversely such a simplicial map gives a cocycle (for you to check).
(Here we are abusing notation slightly, since the domain of g is a bundle of simplicial sets,

whilst the right hand side is the underlying simplicial set bundle of the simplicial group bundle,
not that simplicial group bundle itself, however we have not shown that in the notation.)

Continuing with this quite detailed look at the ‘cocycles for bitorsors’ context, we clearly have
next to look at the ‘change of local sections’ from this simplicial viewpoint.
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Suppose we change to local sections, s′i = gisi, so, as before, get

g′ij = gigijg
−1
j

and
u′i = igiui.

If we are describing cocycles as simplicial maps, then fairly naturally, we might hope that the
equivalence relation coming from coboundaries, as here, was something like homotopy of simplicial
maps. We can see immediately that this looks to be not that stupid an idea, by looking at the base
of the corresponding simplicial objects.

//////// G
(2) oAut(G)

//
//
// GoAut(G) //// Aut(G)

//////// N(U)2

g2

OO
g′2

OO

//
//
// N(U)1

g1

OO

g′1

OO

//// N(U)0

g0

OO

g′0

OO

then we would expect that a homotopy between g and g′ would pick out, for each (x, U0) in
N(U)0, an element (g, α) ∈ G o Aut(G) with g = d1(g, α) = g0, d0(g, α) = g′0, i.e., α = u0 and
g′0 = u′0 = ig0 ◦ u0, exactly as needed. To see if this works in higher dimensions, we need to glance
at simplicial homotopies. We will take a fairly näıve view of them to start with.

Given f, g : K → L, two morphisms of simplicial sets, a simplicial homotopy from f to g is, of
course, a map

h : K ×∆[1]→ L

such that if e0 : ∆[0]→ ∆[1] is the 0-end of ∆[1], (so is actually represented by the d1 face - beware
of confusion) and e1 : ∆[0]→ ∆[1], gives the 1-end, then

f = h ◦ (K × e0),

g = h ◦ (K × e1).

(More on such cylinder based homotopies in abstract settings can be found in Kamps and Porter,
[69].)

This is the neat geometric way of picturing simplicial homotopies. There is an alternative
‘combinatorial’ way that is also very useful (see [69], p.184-186, for a discussion - but not for the
formulae which were left as an exercise!) This gives h being specified by a family of maps,

hni : Kn → Ln+1,

indexed by n = 0, 1, . . . , and i with 0 ≤ i ≤ n, and satisfying some face and degeneracy relations
that we will give later on. For the moment we will only need to use these in low dimensions, so
imagine the lowest dimension h0

0 : K0 → L1. For each vertex, k0, we get an edge / 1-simplex in L1

joining f0(k0) and g0(k0). Now if k1 ∈ K1, we expect a square in K ×∆[1] looking like

(k1,1) //

(k1,0)
//

τ0
τ1

??�������
(d1k1,ι)

OO

(d0k1,ι)

OO
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with ι ∈ ∆[1]1, the unique non-degenerate 1-simplex, corresponding to id : [1]→ [1]. The homotopy
h has to thus give two 2-simplices of L. These will be h1

0(k1) := h(τ0) and h1
1(k1) := h(τ1)

respectively. We first note that d1τ0 = d1τ1, so

d1h
1
0 = d1h

1
1.

Likewise the geometric picture tells us that d2h
1
1 = f1 and d0h

1
0 = g1 and finally that d0h

1
0 = h0

0d0,
whilst d2h

1
1 = h0

0d1.
In our special case of that general square, k1 = (x, U0, U1) with d0k1 = (x, U1), d1k1 = (x, U0),

thus our earlier choices should mean the horizontal edges are mapped to

h((x, U0, U1), 0) = (g10(x), u0(x)),
h((x, U0, U1), 1) = (g′10(x), u′0(x)),

and the vertical ones,

h((x, U1), ι) = (g1(x), u1(x)),
h((x, U0), ι) = (g0(x), u0(x)).

They match up as required.
We need to work out h1

0 and h1
1. These will map (x, U0, U1) to 2-simplices of K(Aut(G)), i.e.

to triples (γ2, γ1, α), with γi ∈ G and α ∈ Aut(G). First we look at h1
0(x, U0, U1) and the faces we

know of it.
Let h1

0(x, U0, U1) = (γ2, γ1, α), then the two descriptions of d2h
1
0 give

(g10(x), u0(x)) = (γ1, α),

whilst for d0h
1
0, we have

(g1(x), u1(x)) = (γ2, iγ1 ◦ α).

We thus have γ1 = g10(x), α = u0(x) and γ2 = g1(x) and we can check back that ig10u0 = u1 from
earlier calculations. We have h1

1 completely specified as

h1
1(x, U0, U1) = (g1(x), g10(x), u0(x)).

This gives d1h1
1(x, U0, U1) = (g1(x)g10(x), u0(x)), which we will need shortly.

We next turn to h1
0(x, U0, U1) and reset the meaning of γi and α, so this is (γ2, γ1, α). We do a

similar calculation and this gives

h1
0(x, U0, U1) = (g′10(x), g0(x), u0(x)).

This ‘feels’ right, but we have to check it matches h1
0 on the diagonal:

d1h
1
0(x, U0, U1) = (g′10(x)g0(x), u0(x)),

but g′10(x) = g1(x)g10(x)g0(x)−1, so this equals (g1(x)g10(x), u0(x)), as hoped.
We have laboriously checked through the calculations of (h1

0, h
1
1) to show how well behaved

things really are. It is reasonably easy to extend the calculation to all dimensions. What needs to
be retained is that h was completely specified by the coboundary and cocycle data and, conversely,
if we were given any homotopy h between g and g′, then g and g′ will be equivalent. This suggests
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that the simplicial mapping sheaf or bundle SShB(N(U),K(Aut(G))), is what is really encoding
the data in a neat way. (If you are hazy about simplicial mapping spaces, recall that if K and L
are simplicial sets S(K,L) is the simplicial set of simplicial maps and (higher) homotopies, so

S(K,L)n = S(K ×∆[n], L).

Using the constant simplicial sheaves, ∆[n]B, to replace the use of the ∆[n] gives a similar simplicial
enrichment for the category of simplicial sheaves/bundles on B, but this can be localised to make
SShB(K,L), a simplicial sheaf as well.)

Earlier we omitted the detailed description of homotopies as families of maps. To complete our
picture here, that description will now be useful. We first give it for simplicial sets, so in the very
classical setting.

Let K and L be simplicial sets, and f, g : K → L two simplicial maps, then a homotopy

h : K × I → L

between f and g can be specified by a family of functions

h, = hni : Kn → Ln+1,

satisfying various relations. To understand how these arise, we use some simple notation extending
that which we used above.

The non-degenerate (n+1)-simplices of ∆[n]×I are of form (sjιn, sĵι1), where ιn ∈ ∆[n]n is the
unique non-degenerate n-dimensional simplex corresponding to id[n] : [n] → [n] in the description
of ∆[n] as ∆(−, [n]), ι1 being similarly specified for n = 1 and where sĵ is the multiple degeneracy
corresponding to ĵ = (0, . . . , ĵ, . . . , n), i.e. sn . . . s0, but without sj . (Any (n + 1) simplex of ∆[1]
is given by an increasing map [n + 1] → [1], so can be represented as a string (0, . . . , 0, 1, . . . , 1),
say with j zeroes. This will be sĵι1, since the first j degeneracies ‘add in’ 0s, whilst those after the
j + 1st, that is, after the break, will add in 1s. The simplicial identities give sisj = sjsi−1 if i > j,
so sĵ has a second useful description as (slast)n−j(s0)j .)

For an n-simplex k ∈ K, we denote (sjk, sĵι1) by τj , or more exactly τj(k) if confusion might
arise. We then encode our h : K × I → L by hnj (k) = h(τj(k)). The homotopy h is, of course, a
simplicial map so, for any 0 ≤ i ≤ n+ 1, we have dih = hdi. These relations translate to give the
following rules:

d0h0 = g, dn+1hn = f,
dihj = hj−1di for i < j,

dj+1hj+1 = dj+1hj ,
dihj = hjdi−1 for i > j + 1,

and the corresponding degeneracy rules are

sihj = hj+1, i ≤ j,

sihj = hjsi−1, i > j.

Of course, these hjs etc. are further indexed by a dimension hnj , so, for instance, dihnj = hn−1
j−1 di is

the full form of the second line of these.
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Aside: It is often the case, when considering simplicial objects in a category, A, that one can
form a ‘tensor’ X ⊗ I using a coproduct in each dimension, then one defines a homotopy to be a
morphism

h : X ⊗ I → Y.

The construction of this ‘tensor’ is : given any simplicial set K, and a simplicial object X in A,
(where A has the coproducts we will be using below),

(X ⊗K)n =
⊔
k∈Kn

Xn(k) with each Xn(k) = Xn,

i.e. a Kn-indexed copower of Xn. Using an element based notation, the usual way of denoting the
copy of x ∈ Xn, in the k-indexed copy of Xn would be x ⊗ k and then face and degeneracy maps
are given, in X ⊗ K, by di(x ⊗ k) = dix ⊗ dik, etc., i.e. ‘component-wise’. In this setting again
h : X ⊗∆[1] → Y can be decomposed to give a family {hnj : Xn → Yn+1}. The same description
works if instead of a tensor, we have a cotensor. The setting is that of S-enriched categories
having enough (finite) limits. Suppose now C is S-enriched, so for objects X,Y ∈ C, we can form
a simplicial set C(X,Y ) of ‘morphisms’ from X to Y . A homotopy between f, g ∈ C(X,Y )0 will,
of course, be a -simplex h ∈ C(X,Y )1 with d1h = f , d0h = g. If C is cotensored then, for any
simplicial set K, there is a cotensor C(K,Y ) for each Y in C, such that

S(K, C(X,Y )) ∼= C(X, C(K,Y )).

Of particular use is the case K = ∆[1], as a 1-simplex h ∈ C(X,Y ) can be represented by an element
in S(∆[1], C(X,Y )) and thus by an element of C(X, C(∆[1], Y )). In other words, a homotopy is a
morphism

h : X → C(∆[1], Y ),

so C(∆[1], Y ) behaves like a path-space object or cocylinder on Y . The construction of C(K,Y ))
uses limits and can be ‘deconstructed’ to give a family based description of homotopies, just as
before. The nice thing about that description is, however, that it makes sense whatever category
A is as it is merely governed by some small list of identities between composite maps. (For any
A, Simp.A is S-enriched, so can be taken to be the C above; see Kamps and Porter, [69] for a
discussion of some of these ideas, in particular on cylinders and cocylinders as a basis for ‘doing’
homotopy theory in some seemingly unlikely places!)

Remark: We are heading for a fairly simplicial description of cohomology. A very useful
reference at this point is Jack Duskin’s memoir, [49], although that emphasises the Abelian theory
only, and also his outline of a higher dimensional descent theory, [50]. From this simplicially based
theory, it is then a short journey to give a ‘crossed’ description of the bitorsor based, (and then
gerbe based), non-Abelian cohomology.

Pause: At this point, it is a good idea to take stock of what we have shown. We have used
local sections {si} to get cocycles {(gij , ui)} and have constructed the beginnings of a simplicial
morphism g from N(U) to K(Aut(G)). So far we have explicitly given gn for n ≤ 2 only, and so
should check higher dimensions as well. (Intuitively it would be strange if something came adrift in
higher dimensions, since Aut(G) ‘is a 2-type’, but we should make certain!) We also have to check
our interpretation of homotopies in higher dimensions.
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Let us see what gn : N(U)→ K(Aut(G)) would have to satisfy. Let

gn(x, U0, . . . , Un) = (gn, . . . , g1, α),

then

dngn(x, U0, . . . , Un) = (gn−1, . . . , g1, α),
d0gn(x, U0, . . . , Un) = (gn, . . . , g2, ig1 ◦ α),
dign(x, U0, . . . , Un) = (gn, . . . , gi+1gi, . . . , g1, α),

for 0 < i < n, so we can thus read off gn from a knowledge of its faces! In other words, our intuition
was right and g0, g1 and g2 determined gn in all dimensions.

A very similar calculation shows that h : N(U)× I → K(Aut(G)) corresponds to the 1-cocycle
{gi} and nothing more.

We thus have established a one-one correspondence between the set of isomorphism classes of
G-bitorsors that trivialise over U and the set [N(U),K(Aut(G))] of homotopy classes of simplicial
sheaf maps from N(U) to the underlying simplicial sheaf of the simplicial group K(Aut(G)).

We should continue our pause here and make some comments about the overall situation. This
set can be interpreted as a type of zeroth non-Abelian hyper-cohomology of B relative to the cover
U . It is H0(N(U),Aut(G)). But what is hyper-cohomology? We will have a brief look at its
classical Abelian form below, but note that the coefficients, here, are in a sheaf of crossed modules.
We saw earlier a related situation (in section 5.1) where we replaces the crossed module Aut(G)
by a general one Q = (K,Q, q), when discussing non-Abelian extensions of G by K ‘of the type
of Q’. We there obtained a cohomology set, there called H2(G,Q), identifiable as [C(G),Q], and
the correspondence was obtained by identifying the cocycles as maps of crossed complexes and, as
C(G) is ‘free’, it sufficed to give them on the generating elements, in other words on the analogue
of N(U).

The reason given for introducing the notion of extension of type Q was to obtain functoriality in
the coefficients. (Recall that if ϕ : G→ H is a homomorphism of groups then it is not clear when
there is a morphism of crossed modules from Aut(G) to Aut(H) which is ϕ on the ‘top group’.)
This also gave a good possibility of a finer classification of all extensions of G b H, some will be of
the type of a particular Q, others not.

In our bitorsor situation, the functoriality is once again important, but the second aspect gains
an additional geometric significance. A very important part of classical fibre bundle theory relates
to the possibility of ‘reducing the group’. For instance, suppose we have a n-dimensional real
manifold, X, then its tangent bundle is a fibre bundle with each fibre a vector space of dimension
n and with the transition functions taking their values in Gl(n,R), i.e., a n-dimensional vector
bundle. (Its associated Gl(n,R)X -torsor is, as we saw, the frame bundle.) If X is at all ‘nice’, we
can put a Riemannian metric on it (i.e. additional structure of considerable geometric importance),
and this corresponds to showing that our transition functions can be replaced by ones taking values
in O(n,R), the corresponding group of orthogonal matrices, as these are the ones that preserve the
metric/inner product. Note that the tangent bundle naturally has an action by Aut(F ), that is the
corresponding automorphism group of the fibre, F . (With our bitorsors, the corresponding acting
object is a strict automorphism gr-groupoid, and we have used the corresponding crossed module,
Aut(G).)



6.4. BITORSORS 151

Other examples would correspond to other subgroups of general linear groups. Foliated struc-
tures, systems of partial differential equations, etc. correspond to sub-bundles of bundles of jets
on X. These structures may be on X itself or on some given fibre bundle E → X over X. In each
case, giving a G-structure on E, for a group, G, which is a subgroup of the natural group of auto-
morphisms, corresponds to ‘reducing’ the Aut(F )-torsor to a G-torsor. Another type of structure
corresponds to ‘lifting’ the transition functions from some given H to a G, where ϕ : G → H is a
nice epimorphism. For instance, the special orthogonal group SO(n,R) for n ≥ 2, has a universal
covering group, Spin(n)→ SO(n,R), and extra structure of use for some applications, corresponds
to lifting the uij : Uij → SO(n,R) to take values in Spin(n). Of course, this is not always possible.
Obstructions may exist to doing it, depending in part on the topological structure of X.

All these examples were of Lie groups, i.e. groups in the category of differential manifolds, but
a similar intuition was central to discussions in the 1960s and 1970s of the relationship between
smooth and piecewise linear structures on topological manifolds, in which various simplicial groups
of automorphisms were related and the obstructions to lifting transition functions of certain natural
simplicial bundles were the key to the problem. Again analogous situations exist in algebraic
geometry involving group schemes and their ‘subgroups’. Here, as a group scheme over a fixed base
Spec(K) is in many ways a bundle of groups, the more general theory of group bundles and change
of group bundles, rather than merely change of groups, as such, is what is important here.

It would almost be fair to say that, from a historical perspective, this is one modern interpre-
tation of Klein’s original intuition of what geometry is, i.e. the study of the automorphisms that
preserve some ‘structure’. What seems now to be emerging is the relationship between higher level
‘automorphism gadgets’ such as Aut(G) and classical invariants such as cohomology and conse-
quently, some appreciation of higher level ‘structure’. Many of the ingredients of the theory are
still missing or are merely ‘embryonic’ in the crossed module / 2-group case as yet, but the plan of
action is becoming clearer.

Returning to the detail, we therefore consider a sheaf or bundle of crossed modules, M =
(C,P, ∂) and look at data of the form

g : N(U)→ K(M),

so g0(x, Ui) = pi(x) with pi : Ui → P , a local section of P over Ui and g1(x, Ui, Uj) = (cji(x), pi(x)),
where cji : Uji → C is a local section of C over the intersection Uji. These local sections satisfy

∂(cji)pi = pj and ckjcji = cki

over the intersections. Corresponding to a change in local sections will be a coboundary rule of the
form:

c′ij = cicijc
−1
j ,

and
p′i = ∂(ci)pi,

i.e. a homotopy between g and g′. The equivalence classes will be in H0(N(U),M) and both in
this general case and in the particular case of M = Aut(G), it is natural to pass to the limit over
coverings (or if working in a more general Grothendieck topos, over hypercoverings) to get the
zeroth Čech hyper-cohomology set with values in M, denoted Ȟ0(B,M).

We have H0(N(U),M) = [N(U),K(M)], and it is reasonably safe to think of Ȟ0(B,M) in these
terms, but, in fact, one really needs to introduce the category D(E) = Ho(Simp(E)), obtained by
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taking the category of simplicial objects in the topos, E , in our simplest case, that of simplicial
sheaves on B, and inverting the ‘quasi-isomorphisms’, i.e. those simplicial maps that induce isomor-
phisms on all homotopy groups. There are several detailed treatments of this type of construction
in the literature - not all completely equivalent - so we will not give another one here!

We could, and later on will, go further. We could replace the crossed module M by a crossed
complex, or, in general, could use a simplicial group H instead of K(M) We will definitely keep
this in mind, but just because it could be done, does not mean it needs doing now. The problem
is that we, as yet, have only an embryonic understanding of the algebraic and geometric properties
of the situation with M a crossed module or bundle / sheaf of such things. Past experience shows
that the generalisation and abstraction will be worth doing, but we may not yet have the auxiliary
concepts and intuitions to interpret what that theory will tell us, nor what are the significant new
questions to ask and problems to solve. As yet, there are few signposts in that new land!

6.5 M-bitorsors?

(The basic references are Breen’s paper [18], (but our conventions are different and so some of the
results also look different), and also the papers of Jurčo, in particular, [68].)

What are the objects corresponding to a g : N(U) → K(M)? We saw that this consisted of
some local sections

pi : Ui → P

and others
cij : Uij → C

satisfying some evident relations, one of which was the cocycle condition

ckjcji = cki.

These cji will give us a left C-torsor, E, say. We can examine the induced P -torsor, ∂∗(E), and
- surprise, surprise - the pi part of the cocycle pair, {(cij , pi)}, provides a trivialising coboundary,
since

pi = ∂(cij)pj

yields
∂(cij) = pip

−1
j = pi.1.p−1

j .

Conversely suppose we have a C-torsor, E, and we know that ∂∗(E) is trivial, then we can find pis
satisfying the above equations and making E into an M-bitorsor. If we look back to our motivating
case with M = Aut(G), then we can adapt the argument given there (page 143) to get an explicit
global section of ∂∗(E) = P∂ ∧C E, namely, for local sections ei of E, define t = {ti} = {[p−1

i , ei]}
to get a compatible family and hence a global section, t, of ∂∗(E). This process can be reversed,
so from t and a choice of ei, one can obtain pi. We will see a neat way of doing this shortly.

What happens if we choose different local sections e′i of E? These e′i will give some cis such
that e′i = ciei, and also p′i = ∂(ci)pi, but then

[(p′i)
−1, e′i] = [p−1

i ∂(ci)−1, ciei] = [p−1
i , ei],

so the global section does not change.
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We saw earlier that contracted product gave the category of G-bitorsors the structure of a
group-like monoidal category with inverses, a gr-groupoid. (If P and Q are in Bitors(G), then
P ∧GQ gave the ‘product’, whilst P 0 was ‘inverse’ to P . Of course, the trivial bitorsor, TG, was the
identity object.) There is an obvious category of M-bitorsors, which we will denote by M−Bitors,
(so Aut(G)−Bitors = Bitors(G)), does this in general have any similar structure?

Before we attempt to answer that, we should give formal definitions of M-bitorsors, etc, as a
base reference:

Definition: Let M = (C,P, ∂) be a bundle or sheaf of crossed modules over a space B, (or
more generally a crossed module in a topos E). By a M-bitorsor, we mean a left C-torsor together
with a global section t of ∂∗(E).

A morphism of M-bitorsors, f : (E, t)→ (E′, t′), is a C-torsor morphism, f : E → E′, such that

∂∗(E)
∂∗(f) // ∂∗(E′)

B

t

bbEEEEEEEE t′

<<xxxxxxxx

commutes.

At this point, we need to revisit an old intuition that we have used several times before, but
without which ‘life’ will seem unduly complicated! That intuition is that a principal G-set is a copy
of G with an ‘identity crisis’. In more detail, in situations such as that of universal covering spaces,
E over a space B, the fibre is a copy of π1(B), but without a definite element being chosen as the
identity. The natural path lifting property of covering spaces gives that any loop γ at a chosen
base-point b0 in B will lift uniquely to a path in the covering space, once a start point e0 above
b0 has been chosen. If you choose a different start point e′0, you, of course, get a different lifted
path. The end point of the lifted path will give the image of e0 under the action of the path class
[γ] ∈ π1(B). Thus once e0 is chosen p−1(b0) = Eb0 can be mapped bijectively to π1(B). (Remember
we did say E was a universal covering space.) Under this bijection, the identity element of π1(B)
corresponds to e0, but our alternative choice, e′0, will give a bijection with e′0 itself corresponding
to 1π1(B). There is no canonical choice of start point in Eb0 , so no definitive identification of Eb0
with π1(B).

For a G-bitorsor, with a local section ei : Ui → E, we have essentially the same situation. The
left and right G-actions are globally independent and yet are locally linked by the ui : GUi → GUi .
To use these it is necessary to use the ei to temporarily pick a ‘start point’ in each fibre of E. Thus

ui(g).ei = ei.g

interprets as both the definition of ui given the right action and conversely, given the ui, as a
defining equation of a right action. This does need to be spelt out again: given any local element
x of E over Ui, it has the form x = g′ei for some local element g′ of G. Suppose we now operate
with g on the right of x, then we get

x.g = g′ei.g = g′ui(g)ei.

(This is very analogous to defining a linear transformation between vector spaces by transforming
the elements of a chosen basis and then ‘extending linearly’. Here we extend G-equivariantly for
the left action, having transformed the ‘basic’ element ei to ei.g.)
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The key transition equation for the uis was

u′i = igi ◦ ui

emphasises this viewpoint. We changed ei to e′i using gi, so e′i = giei, but then, for right action by
g,

e′ig = u′i(g)e′i = u′i(g)giei,

whilst also
e′ig = gieig = giui(g).ei,

giving the transition equation in the form giui(g) = u′i(g)gi.
We now need to translate this into a tool that can be used for M-bitorsors. The plan of action

is to show that any M-bitorsor, E, has a natural C-bitorsor structure and for this we have to use
t : B → ∂∗(E) to obtain a right C-action on E. In Lemma 13, (page 125), we saw how to go from
a global section of a torsor to an identification of it as an ‘identity-less’ copy of the group bundle.
We thus have that t allows us to identify ∂∗(E) with TP , i.e. with P itself (as left P -torsor). We
can unpack the recipe in Lemma 13, (but beware the change of notation, P is here the basic group
of our crossed module M, but was the torsor in that earlier discussion). Any local element of ∂∗(E)
over some Ui is of form [p, e], with p a local section of P over Ui and e a local section of E, again over
Ui. We can get from t an expression [p, e] = p′.t for some p′ defined over Ui. Using the structural
map of ∂∗(E) as a P -torsor, we get

∂∗(E)
(tπ,id)→ ∂∗(E)× ∂∗(E)

∼=→ P ×B ∂∗(E)
proj→ P,

which, from [p, e] gives the p′. (Recalling that, given ei, the unadjusted choice of local sections is
[1, ei], then this process picks out the corresponding pi, so that t = [p−1

i , ei].) Thus from t, we get
a map from ∂∗(E) to P .

In this ‘game’, it pays to go back-and-fore between the different descriptions and to revisit the
special case, M = Aut(G), for guidance, and hopefully, inspiration. Our key equation defining the
ui was ui(g)ei = ei.g. In our general case of M = (C,P, ∂), the rôle of the ui is taken by the local
elements pi, which act on C (since, recall, that is part of the crossed module structure) and the
corresponding equation would be

pic.ei = ei.c,

but ei.c is not defined, a least not yet! Take this as a definition (and remember our earlier discussion
of right actions, and what here would be the C-equivariant extension), then see if it works!

First let us underline what the equation actually says. An arbitrary local element of EUi
has form e = ci.ei and the expression for e.c will be ci.

pic.ei as the right action has to be left
C-equivariant, now if c1, c2 ∈ CUi , then

(ei.c1).c2 = pic1.ei.c2 = pic1.
pic2.ei = pi(c1c2).ei = ei.(c1.c2),

so it does define an action, at least locally. Next we have to check on intersections. Supposing that
pi on Ui and pj on Uj satisfy pj = ∂(cji)pi, where ej = cjiei, then over Uij ,

ej .c. = cjiei.c = cji
pic.ei = cji

pic−1
ji .ej
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and also
ej .c = pjc.ej = ∂(cji)pic.ej ,

and the Peiffer rule for crossed modules gives
∂cc′ = cc′c−1,

so the two local actions patch together neatly. We thus have an action of C on the right of E. Is
it giving us a right C-torsor structure on C. This amounts to asking if locally the equation x = yc
can be solved uniquely for c in (some) terms of x and y over Ui, but x = c′.y for a unique c′, since
E is a left C-torsor. The obvious element to try for c is p−1

i c′ - try it! It works. We have proved

Lemma 20 If (E, t) is a M-torsor, then E is a C-bitensor. �

From another perspective, this is quite clearly due to the natural map from M to Aut(C), given by
the identity on C and the action map

C
= //

��

C

��
P α

// Aut(C)

We would expect a M-bitorsor to be mapped to a Aut(C)-bitorsor via this morphism of crossed
modules, so from this viewpoint the lemma may not seem surprising.

A few pages ago, we set out to extend the contracted product to M-bitorsors. Now that we
have this lemma, we can, at least, work with a contracted product of the associated C-bitorsors.
In other words, if (E1, t1), (E2, t2) are M-bitorsors, then we might tentatively explore a definition
of (E1, t1) ∧M (E2, t2) as being (E1 ∧C E2, t) with t still to be described. Here is a suitable, almost
heuristic, approach that tells us we are going in the right direction.

We have ∂∗(E) = P∂ ∧C E1, where P∂ is the trivial (left) P -torsor with, in addition, a right
C-action given by : if x ∈ P∂ , x = p.t, where t is a global section (fixed for the duration of the
calculation), then, for c ∈ C, x.c = p.∂(c).t. Now if ∂∗(E) is assumed to have a global section, it
is easy to show that it is, itself, isomorphic to P∂ . Next look at (E1, t1), and (E2, t2) and let us
examine ∂∗(E1 ∧C E2). This is P∂ ∧C E1 ∧C E2 = (P∂ ∧C E1) ∧C E2

∼= P∂ ∧C E2 by the above
calculation, using t1 to trivialise (P∂ ∧C E1), and finally this is trivial using t2.

This argument, although valid, merely shows that t exists. It could be taken apart further to
get an explicit formula, but we will, instead, approach that through cocycles. We pick local sections
of E1 and E2 over the same open cover U . These we will denote by e1

i : Ui → E1, e2
i : Ui → E2.

Given t1 and t1, we get local elements of P , p1
i and p2

i , so that

t1 = [(p1
i )
−1, e1

i ],

and similarly for t2. These p1
i s are those for the local cocycle description of E1 as (c1

ij , p
1
i ), so are

the parts of the contracting homotopy on ∂∗(E1), etc.
Now look at E1 ∧C E2. The obvious local sections of this would be ei = [e1

i , e
2
i ], and using these

we want to work out the corresponding cocycle pair. We need to work out the relationship of ei
with ej = [e1

j , e
2
j ]. We have e1

i = c1
ije

1
j , e

2
i = c2

ije
2
j , so

(e1
i , e

2
i ) = (c1

ije
1
j , c

2
ije

2
j ) ≡ c1

ij(e
1
j , c

2
ije

2
j )

= c1
ij(

p1j c2
ij .e

1
j , e

2
j ) = c1

ij
p1j c2

ij(e
1
j , e

2
j ),
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and we have ei = c1
ij
p1j c2

ij .ej . This C-coefficient may look familiar (or not), but before we identify
it, we should look for the pis. The obvious ones to try are pi = p1

i p
2
i , i.e. the product within P of

the two values. We have a cij = c1
ij .
p1j c2

ij , so can see if this works for the equation pi = ∂(cij)pj :

pi = p1
i p

2
i = ∂(c1

ij)p
1
j .∂(c2

ij)p
2
j

= ∂(c1
ij)p

1
j .∂(c2

ij)(p
1
j )
−1p1

jp
2
j = ∂(cij)pj .

The simplicial interpretation of the cocycles gave a map from N(U) to K(M), and in dimension 1,
K(M) is C o P . The multiplication in this semidirect product is

(c1, p1).(c2, p2) = (c1
p1c2, p1p2).

In other words, if (E1, t1) corresponds to a simplicial map g1 : N(U) → K(M) and similarly g2

corresponding (E2, t2), then (E1, t1) ∧M (E2, t2) is associated to the product g1.g2,

N(U)→ K(M)×K(M)→ K(M),

using the multiplication map of the simplicial group K(M) corresponding to the crossed module,
M.

Note that we have not checked certain necessary facts about the (cij , pj), namely that cijcjk = cik
and they transform correctly under change of local sections. The details of these are ‘left to the
reader’. They use the crossed module axioms several times. We have proved the following:

Proposition 33 Under the identification of π0(M−Bitors) and Ȟ0(B,M), the group structure on
the first given by the contracted product coincides with that given on the second under the group
structure of K(M), the associated simplicial group bundle of the bundle of crossed modules, M. �

Change of crossed module bundle for bitorsors. We now have a very thorough knowledge
of G-bitorsors and the more general M-bitorsors, via the link with simplicial maps from N(U) to
K(M), but, of course, that link makes change of ‘coefficients’ more or less obvious.

First it should be noted, once again that the identification of Ȟ0(B,Aut(G)) as a second non-
Abelian cohomology group of B with coefficients in G, runs foul of non-functoriality in G, but that
this is not due to some subtle deep property of non-Abelian cohomology, rather it is due to the
banal failure of Aut(G) to be functorial in G, in other words, to a low level group theoretic fact,
low level but in fact fundamental. It is here group theoretic but generally automorphism groups
do not vary functorially - and that opens the way to crossed modules.

If ϕ : G → H is a morphism of group bundles, then there may, or may not, be a morphism
ϕ′ : Aut(G)→ Aut(H) such that

G
ϕ //

i
��

H

i
��

Aut(G)
ϕ′
// Aut(H)

is a morphism of crossed modules.
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There is an induced morphism on Ȟ0(B,Aut(G)) if such a ϕ′ does exist, and, of course, in more
generality, if we have that ϕ : M → N is a morphism of crossed modules, then there is an induced
homomorphism of groups

ϕ∗ : Ȟ0(B,M)→ Ȟ0(B,N).

(It could happen that two crossed modules of the form Aut(G) could be linked by a zig-zag of
other crossed modules so that the morphisms in the reverse direction were weak equivalences /
quasi-isomorphisms in our earlier sense, and then there would be an induced map between the two
Ȟ0(B,Aut(G)) groups.)

Exploring the above at a gr-groupoid level, i.e. on M−Bitors with contracted product, rather
than at connected component / cohomology level, we get an induced gr-functor between M−Bitors
and N−Bitors, since it uses the functor K from crossed modules to simplicial groups. Explicitly
ϕ : M → N induces K(ϕ) : K(M) → K(N). a morphism of simplicial groups, but then our
identification of the contracted product structure on M−Bitors as being induced from the simplicial
group structure of K(M) immediately implies that K(ϕ) induces a functor from M−Bitors to
N−Bitors compatibly with the gr-groupoid structures.

Representations of crossed modules. In the classical group based case, the naturally
occurring vector bundles such as the tangent and normal bundles had the general linear group of
some dimension as the basic G over which one worked. Extra structure corresponded to restricting
to a subgroup or lifting to some ‘covering group’. We recalled earlier, e.g. page 114, that the fibres
of the bundles were vector spaces with an action of the chosen group, i.e. a matrix representation
of that group. What is, or should be, the representation theory ‘of crossed modules’? There are
several tentative answers.

A representation of a (discrete) group G and thus an action of G on some object, can be
thought of in different ways. For instance, as a group homomorphism G → H, where H is some
group of permutations or matrices in which we can use methods from outside group theory, perhaps
combinatorics, perhaps linear algebra, to analyse more deeply the properties of the elements of G.
We could also consider this as a functor from G[1], the corresponding groupoid with one object, to
Sets for the permutation representations, or to some category of vector spaces or modules in the
linear case.

The generalisations are to ‘categorify’ this second description by taking X (M), the 2-groupoid
with one object (i.e. the 2-group) of M, and looking for a nice category of ‘2-vector spaces’ or
‘2-modules’. (The permutation version has not been well explored yet.) Some doubt exists as to
what is the ‘best’ category of ‘2-vector spaces’ to use, in fact the discussion is really about what
that term should mean. We mention two possibilities here, but there may be others. The first is
due independently to Forrester-Barker, [57] and to Baez and Crans, [8] The second is based on an
idea of Kapranov and Voedvodsky, [72], using more monoidal category theory than we have been
assuming.

Here we will adopt the simpler version, more as an illustration then as a claim that this is the
‘correct’ version. The motivation for the definition used by Forrester-Barker and by Baez and Crans
is that as crossed modules are category objects in groups for a linear representation theory of such
things, it is natural to try category objects in the category of vector spaces, but such objects are
equivalent to the short complexes of vector spaces we considered above. The idea is also that some
of the potential applications of the structures that we have been studying use chain complexes
as coefficients. (We will see this more clearly in the following discussion of hyper-cohomology.)
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Keeping things simple, we look at chain complexes of vector spaces (or more generally of modules)
of length 1. (Warning: for us here ‘length 1’ means one morphism, C1 → C0, not ‘one group’ so
our objects are linear transformation between vector spaces and our morphisms are commutative
squares.) These are highly Abelian versions of crossed modules, so we will use similar notation
such as C, D, etc., for them.)

We recall that chain complexes have a natural ‘internal hom’ construction, well known from
classical homological algebra. (We will see this again in our discussion of hyper-cohomology so
will treat it in more detail there.) The chain complex Ch(C,D) has graded maps of degree n in
dimension n, so for instance has chain homotopies in dimension 1. Putting D = C and looking at
the invertible maps gives an automorphism group, Aut(C), which is also a chain complex of groups,
i.e. we get a crossed module. If we have a general (discrete) crossed module M, we can consider a
morphism M → Aut(C) as a representation of M, and can talk of M acting on C by ‘linear maps’.
We will not explore this further here, but note that we are very near the idea of representing a
simplicial group as a simplicial group of simplicial automorphisms, somewhat as in section 5.5. At
present the available discussions of 2-group representations of this form include the thesis, [57], and
papers, [8]. A more extensive use of monoidal category theory would allow us to consider a variant
that considers 2-vector spaces to mean a 2-categorical version of the monoidal category of vector
spaces. We will not explore that here.

6.6 Hyper-cohomology

Classical Hyper-cohomology. We have several times mentioned this subject and so should
provide some slight introduction to the basic ideas. We will go right back to basics, even though
we have already used many of the ideas previously, usually without comment. Most of this first
part may be well known to you.

The basic idea is that of a graded group and variants such as graded vector spaces, or graded
modules, or sheaves of these on some space, X or in some topos E . A graded vector space, for
instance, can be thought of as a vector space V, over whatever field is being considered, together
with a direct sum decomposition V =

⊕
i∈Z Vi for subspaces, Vi. Of course, it could equally well be

defined as a family {Vi}i∈Z of vector spaces, since we could then form their direct sum and obtain
the first version. (The definitions are, pedantically, not completely equivalent as one can have a
constant family with all Vi equal, but that is really a smokescreen and causes no problem.) Both
versions are useful. For example, if K is a simplicial set, we can define a graded vector space using
the second version by taking Vn to be the vector space with basis indexed by the elements of Kn

if n ≥ 0 and to be the trivial vector space if n < 0. From our treatment of simplicial sets, it would
be artificial to define V =

⊕
i∈Z Vi. For another example, the other description fits better. The

polynomial ring, R[x], is a graded vector space with Vn having basis {xn}, i.e. Vn is the subspace
of degree n monomials over R. The whole space R[x] is here by far the more natural object.

For graded groups, etc., just substitute ‘group’ etc. for ‘vector space’ and correspondingly,‘direct
product’ for ‘direct sum’.

A morphism f : V → W of graded vector spaces is homogeneous if f(Vp) ⊆ Wp+q for all
p and some common q, called the degree of f . The set of such morphisms of given degree is
Hom(V,W)q =

∏
pHom(Vp,Wp+q).

An endomorphism d : V→ V of degree -1 is called a differential or boundary (depending largely
on the context) if d ◦ d = 0.
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This is really the usual chain complex description with dn : Vn → Vn−1 with dn−1dn = 0. A
graded vector space together with a differential is variously called a differential graded vector space
(dgvs), or a chain complex. Some authors reserve that latter term for a positively graded differential
vector space, or module, or .... . The elements of Vn are called n-chains, those of Ker dn, n-cycles,
and those of Imdn+1, n-boundaries.

A graded vector space V is positively graded if Vi = 0 for all i < 0. It is, on the other hand,
negatively graded if Vi = 0 for i > 0. The classical convention is to write V −n instead of Vn for all
n in the negatively graded case. This, of course, has the effect that if (V, d) is a differential graded
vector space which is negatively graded, then d has apparent degree + 1, dn : V n → V n+1. In the
usual terminology that will give a cochain complex. For some purposes, it is usual to adapt the
terminology somewhat, for instance to use chain complex as a synonym for dgvs without mention
of positive or negative, but then also to use cochain complex for what is essentially the same type
of object, but with ‘upper index’ notation, so V = (V n, dn) with dn : V n → V n+1. Terms such
as ‘bounded above’, ‘bounded below’ or simply ‘bounded’ are also current where they correspond
respectively to Vn = 0 for large positive n, or large negative n or both. We will make little use, if
any, of these in the context of these notes, but it is a good thing to be aware of the existence of the
various conventions and to check before assuming that a given source uses exactly the same one as
that which you are used to!

For simplicity of exposition, we will concentrate our attention on general dgvs, which we will
call chain complexes and will attempt to be reasonably consistent - although that is virtually
impossible! We will extend that terminology to dg-modules and dg-groups if and when needed.

• A chain map f : V → W of chain complexes is a graded map of degree 0, {fn : Vn → Wn}
compatible with the differentials, so, for all n,

dWn fn = fn−1d
V
n ,

and, of course, we will drop the V and W superfixes whenever possible.

• A chain homotopy between two chain maps f, g : V → W is a graded map of degree 1,
s : V→W such that

fn − gn = dn+1sn + sn−1dn.

• The homology of a chain complex (V, d) is the graded object

Hn(V) =
Ker dn
Imdn+1

.

If we are using upper indices, for whatever reason, the more usual term will be ‘cohomology’,

Hn(V ∗) =
Ker(dn : V n → V n+1)
Im(dn−1 : V n−1 → V n)

.

This most often occurs in the situation where C is a chain complex and A is a vector space
/ module or similar, then we form Hom(C, A), by applying the functor Hom(−, A) to C. Of
course, dn : Cn → Cn−1 induces a differential

Hom(Cn−1, A)→ Hom(Cn, A)
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and the elements of Hom(Cn, A) are called cochains, with cocycles, and coboundaries as the
corresponding elements of kernels and images. The notation Hom(C, A)n is used for the
object Hom(C−n, A), so this ‘dual’ has negative grading if C has positive grading, and is
given upper indexing. The homology of Hom(C, A) is then called the cohomology of C with
coefficients in A. (We will try to follow usual terminology as given in standard homological
algebra texts, e.g. the classic [77].)

• More generally, if C and D are chain complexes (of modules), then we can form the graded
Abelian group Hom(C,D) with Hom(C,D)n being the Abelian group of graded maps of degree
n from C to D. This means, of course,

Hom(C,D)n =
∞∏

p=−∞
Hom(Cp, Dp+n),

as before.

We make this into a chain complex by specifying, for f ∈ Hom(C,D)n, its ‘boundary’ ∂f by,
if c ∈ Cp,

(∂f)pc = ∂D(fpc) + (−1)n+1fp−1(∂Cc).

(In the event that you have not seen this before, check that (i) ∂∂ = 0, (ii) if f is of degree 0,
then it is a chain map if and only if ∂f = 0 and (iii) a chain homotopy, s between two chain
maps, f, g ∈ Hom(C,D)0 is precisely an s ∈ Hom(C,D)1 with ∂s = f − g.)

The homology of Hom(C,D) is called the hyper-cohomology of C with coefficients in D. The
case where D0 = A and Dn = 0 if n 6= 0 is the cohomology we saw earlier. In general
H0(Hom(C,D)), i.e. chain maps modulo coboundaries, is just the group of chain homotopy
classes of chain maps by (ii) and (iii) above. As is usual in homological (and homotopical)
algebra, we usually need good condtions on C and D to get really good invariants from this
construction - typically C needs to be ‘projective’ or D ‘injective’, or C needs to be ‘fibrant’ or
D ‘cofibrant’. Our use of this will be somewhat hidden by the situations we will be considering.

Čech hyper-cohomology The main type of application for us will be the ‘hyper’-version of Čech
cohomology. In this, or at least in its simplest form, we have a space, X, and we form the colimit
over the open covers, U , of X of the hyper-cohomology groups Hn(C(U),D). In more detail:

The classical Čech cohomology of X with coefficients in a sheaf of R-modules, A, is defined via
open covers U of X. If U is an open cover of X, then we form the chain complex C(U) by taking
N(U), the nerve of U , and letting C(U)n be the sheaf of free R-modules generated by N(U)n with
∂ =

∑n
k=0(−1)kdk being the differential. This can either be thought of as a complex of (sheaves

of) R-modules or in the straight forward module version. We take coefficients in another sheaf of
R-modules, A, and form Hn(C(U), A).

If V is a finer cover than U , there is a chain map from C(V) to C(U). Recall if V < U , for
each V ∈ V, there is a U ∈ U with V ⊆ U , and (x, V0, . . . , Vn) ∈ N(V)n, we can map it to a
corresponding (x, U0, . . . , Un) ∈ N(U)n with each Vi ⊆ Ui. This is not well defined as several Us
might do for a particular V , so the construction of the chain map involves a choice, however it
induces firstly a chain map from C(V) to C(U), which is determined up to (coherent) homotopy
and thus a well defined map on cohomology, H∗(C(U), A)→ H∗(C(V), A).

The Čech cohomology, Ȟ∗(X,A) = colimUH
∗(C(U), A), was the first, historically, of the sheaf

type cohomologies. Others apply to a topos rather than merely a space. The obvious hyper-variant
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of this replaces A by a sheaf of chain complexes (of whatever variety you like, provided they are
‘Abelian’), so Hn(C(U),D) = Hn(Hom(C(U),D)) and then Ȟ∗(X,D) = colimUH

∗(C(U),D).
We should ‘deconstruct’ this a bit to see why it is relevant to us.
To simplify our lives no end, we will assume D is a presheaf of chain complexes of R-modules

which is positive, (Dn = 0 if n < 0). By the formation of colimits of modules, etc., we can find for
any element of Ȟ∗(X,D), an open cover U of X and a representing element in H∗(C(U),D). We can
thus, further, find a representing n-cocycle from C(U) to D, i.e. an element in

∏
pHom(C(U)p, Dn+p).

To simplify still further, we looks at low values of n:

• for n = 0, we have some f = {fp : C(U)p → Dp}, which satisfies ∂f = 0, so f forms a
chain map. In our most interesting cases D is usually very short, e.g. Dn = 0 if n > 1, so
D = (D1 → D0) with zeroes elsewhere in other dimensions. Then the only fps that contribute
to f are f0 and f1. Over an open set Ui of the cover, f0 will be a local section, f0,i of D0,
since 0-simplices of N(U) have form (x, Ui) over x ∈ Ui. Similiarly 1-simplices are, of course,
represented by (x, Ui, Uj) with x ∈ Uij , so f1 corresponds to local sections f1,ij : Uij → D1.
The boundary in C(U) of (x, Ui, Uj) is (x, Uj)− (x, Ui), so

dDf1,ij = f0,j(x)− f0,i(x),

or
f0,j(x) = dDf1,ij + f0,i(x).

If we look at the non-Abelian analogue of this, it gives

f0,j(x) = dDf1,ij .f0,i(x),

which ‘is’ the equation pj = ∂(cij)pi. (You could explore the cases where D is slightly longer,
or what about a non-Abelian version?)

• for n = 1, we expect to find a formula corresponding to the coboundaries that we met on
‘changing the local sections’ for M-bitorsors. If h, (yes, ‘h’ as in ‘homotopy’) is a degree
1 map in Hom(C(U),D) and D has length 1 as above, the only case that contributes is
h0 : C(U)0 → D1 and hence h0,i : Ui → D1. You are left to check that this does give (the
Abelian version of) the coboundary / chain homotopy formula.

Non-Abelian Čech hyper-cohomology. The idea should be fairly obvious in its general
form. We replace our overall structural viewpoint of chain complexes or sheaves of such, by our
favorite non-Abelian analogue. For instance, we could take D to be a sheaf of simplicial groups,
or crossed complexes, or n-truncated simplicial groups or . . . . These would really include sheaves
of 2-crossed modules and clearly we might try sheaves of 2-crossed complexes, and so on. Some of
these classes of coefficient are very likely to turn out to be useful in the future if recent developments
in algebraic and differential geometry are any indication. We cannot consider all of them here. The
first is the easiest to deal with and to some extent includes the others. It is not structurally the
neatest, but ... .

If D is a sheaf of simplicial groups, then we might be tempted to replace C(U) by the free
simplicial group sheaf on N(U). It is very important to note that this is not the same as G(N(U))
and we should pause to consider this point.

Let K be a simplicial set and G a simplicial group. The set of simplicial maps from K to
the underlying simplicial set of G is isomorphic to Simp.Grps(FK,G) by the standard adjunction
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between the free group functor, F , and the forgetful functor, U from Grps to Sets. Complications
seem to arise if one tries to work with S(K,UG) and Simp.Grps(FK,G), as initially it need to
be noted that S(K,UG) = S(K × ∆[n], UG) and one has to think of the relationship between
F (K × ∆[n]) and F (K) ⊗ ∆[n], the latter in the sense of our earlier discussion of tensoring in
simplicially enriched categories. (This problem is, in fact, not really there, as although F does not
preserve products, the product K×∆[n] is actually being thought of, and constructed, as a colimit
and F , as a left adjoint behaves, nicely with respect to such.) We will not explore that further here
and will, in fact, stick with S(N(U),D) rather than use F . (Note that by a result of Milnor, FK
and GSK are isomorphic for a reduced simplicial set K, where S is the reduced suspension; see [42]
and the paper, [84], which can be found in Adams, [1].) The relationship between S(K,UG) and
other related construction such as S(K,WG) ∼= S−Grpds(K, G) is given by the induced fibration
sequence

S(K,UG)→ S(K,WG)→ S(K,WG)

coming from the fibration
UG→WG→WG.

If we work within our favourite topos E , or with bundles over B, this still holds true. It is also the
case that WG is (naturally) contractible.

Returning to hyper-cohomology, let D be a sheaf of simplicial groups and form Simp.E(N(U), U(D)).
We put forward the homotopy groups of this simplicial group as being one analogue of H∗(C(U),D)
in this context. (If D is Abelian, it will be KD for some sheaf of chain complexes D, and the Dold-
Kan theorem, plus the freeness of C(U), give a correspondence between the elements in the two
cases. Since we have Simp.E(N(U), U(D)) is a simplicial Abelian group in that case, its homotopy
is its homology and the detailed correspondence passes down to homology without any pain. We
thus do have a generalisation of the Abelian situation with our formula.)

We have πn(U ,D) := πn(Simp.E(N(U), U(D)) is thus a candidate for a ‘non-Abelian’ Čech
cohomology relative to U with coefficients in D. (If n > 1, it is an Abelian group, which makes it
suspiciously well behaved - in fact too well behaved! We really need not these πn, but rather the
various algebraic models for the various k-types of the homotopy type Simp.E(N(U), U(D)), i.e. we
could do with examining M(Simp.E(N(U), U(D)), k), the crossed k-cube of that simplicial group.
(For those of you who hanker for the simple life, it should be pointed out that when discussing
extensions we already had that there was a groupoid of extensions Ext(G,K), and although we
could extract information from that groupoid to get cohomology groups, the natural invariant is
really that groupoid, not the cohomology group as such. We can extract information from such
an invariant, just as we can extract homotopy information from a homotopy type. To keep the
information tractable we often truncate, or kill off, some of the structure to make the extraction
process more amenable to calculation.)

We are, however, running before we can walk here! The case we have met earlier is for n = 0, i.e.
[N(U),D] and we could pass to the colimit over covers to get Ȟ0(B,D). This is without restriction
on the sheaf of simplicial groups, D. Our earlier example was with D = K(M) for M = (C,P, ∂), a
sheaf of crossed modules. (Breen in [17] calls this the zeroth cohomology of the crossed module, M,
but as it varies covariantly in M perhaps his later terminology, [20], as the zeroth Čech non-Abelian
cohomology of B with coefficients in M, is more appropriate.)

What about Ȟ1(B,M)? This will be colimUH1(N(U ,M), which is colimUπ1(Simp.E(N(U),K(M)).
From the long exact fibration sequence, this will be isomorphic to colimU [N(U),WK(M)] and so
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should classify some sort of simplicial K(M)-bundles on B. It does, but we need to wait until the
next chapter for the details.

The set [N(U),WK(M)] has elements which are homotopy classes of maps from N(U) to
WK(M) and by the properties of the loop groupoid construction, G of section 5.3, page 99, each
such is adjoint to a morphism of sheaves of S-groupoids from G(N(U)) to K(M). The category
of crossed modules is equivalent to via K and M(−, 2) to a full reflective subcategory / variety of
S−Grpds, and this extends to sheaves, so the elements of [N(U),WK(M)] correspond to homotopy
classes of crossed module morphisms from M(GN(U), 2) to M. In particular, for nice spaces, B, one
would expect there to be ‘nice’ covers U , such that N(U) corresponded, via geometric realisation,
to B itself, then taking M = M(GN(U), 2) itself, one would have a sort of universal element in
Ȟ1(B,M), corresponding in this level, to a universal simplicial sheaf over B, extending in part
the construction and properties of the universal covering space. This argument is one form of the
‘evidence’ for believing Grothendieck’s intuition in ‘En Poursuite des Champs /Pursuing Stacks’,
[59]. There seems no good reason why, for any nice class of simplicial groups, forming a variety, V,
and perhaps having some stability with respect to homotopy types, there should not be a ‘universal
V-stack’ over B. The above corresponds to the case of crossed modules, but crossed complexes and
many of the other types of crossed objects that we have met earlier would seem to be relevant here.
The main hole in our understanding of this is not really how to do it, rather it is how to interpret
the theory once it is there. This form of crossed homotopical algebra would extend Galois theory
to higher ‘levels’, but what do the invariants tell us algebraically?

That provides some overview of this general case, but in our earlier situation, with extensions
of groups, we used a crossed resolution of a group, G, not a simplicial one. We have also mentioned
once or twice that the category, Crs, of crossed complexes is monoidal closed. This would suggest
(i) that given a topos E , and, in particular, given a space B and E = Sh(B), the category of crossed
complexes in E , denoted CrsE , would be monoidal closed, (ii) there would be a free crossed complex
on a cover / hypercover in E , ie., if we have a simplicial object K in E , we would get a crossed
complex objects π(K) and if K → 1 is a ‘weak equivalence’ then there would be a local contracting
homotopy on π(K), i.e. π(K) → 1 would be a ‘weak equivalence’ of crossed complex bundles
(recall 1 is the terminal object of E , so in the case of E = Sh(B) is the singleton sheaf), then (iii)
if CrsE denotes the internal ‘hom’ of crossed complex bundles, we would be looking at the model
CrsE(π(K),D) for a crossed complex, D, in E and would want the homotopy colimit of these over
(hyper-)covers, K, so as to get a well-structured model. Of course, if E = Sh(B) and we have ‘nice’
(hyper-)covers K, then we would expect the homotopy type of this to stabilise, up to homotopy, so
CrsE(π(K),D) would be the same, up to homotopy, as that homotopy colimit. This plan almost
certainly works, but in detail has not been followed through as yet. The first part looks very feasible
given the construction of Crs(C,D) for (set based) crossed complexes, C and D. ( A source for this
is Brown and Higgins, [25] and it is discussed with some detail in Kamps and Porter, [69], p.222-
227.) We will not give the details here. The other parts also look to work as the set based originals
are given by explicit constructions, all of which generalise to Sh(B). If that does all work then one
has a Crs-based ‘hyper-cohomology’ crossed complex ˇCrs(B,D) = hocolimKCrs(π(K),D), whose
homotopy groups represent the analogue of hyper-cohomology.

If you are wary of not having a group or groupoid as an ‘answer’ for what is this ‘hypercoho-
mology’, think of various analogous situations. For instance, for total derived functor theory, in
homological and homotopical algebra, from a functor you get a complex, but it is the homotopy
type of that complex which is used, not just its homotopy groups. In algebraic K-theory, it is usual
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to refer to the algebraic K-theory of a ring as being the (homotopy type of) a simplicial set or
space. The algebraic K-groups are then the homotopy invariants of that simplicial set. In other
words, in ‘categorifying’, one naturally ends up with an object whose homotopy type encapsulates
the invariants that you are mostly used to, but that object is the thing to work with, not just the
invariants themselves.



Chapter 7

Topological Quantum Field Theories

7.1 What is a topological quantum field theory?

In Topological Quantum Field Theory one studies d-dimensional orientable smooth or piecewise
linear manifolds and the (d + 1)-dimensional (orientable) cobordisms between them, pictured, for
d = 1 as:
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X = S1 t S1 Y = S1 t S1 t S1

but write Y = S1 ⊗ S1 ⊗ S1
M : X −→ Y

After some technical difficulties, one shows these form a category d−Cobord. This has a monoidal
category structure given by disjoint union, t, but which will be written as a tensor, ⊗. (In the
above picture, in the case d = 1, M = M1⊗M2, where M1 : X → Y1 = S1⊗S1, M2 : ∅ → Y2 = S1

and Y = Y1 ⊗ Y2.)

Definition: A TQFT is a monoidal functor Z : d − Cobord → V ect⊗ or more generally to
R−Mod⊗, so Z preserves ⊗ and Z(∅) = C.

An interesting simple case is d = 1. Clearly any 1-manifold is a disjoint union X = (S1)⊗n for
some n ≥ 0, so Z(X) = Z(S1)⊗n, and much of the structure of Z will be about this vector space
Z(S1), which we will denote by A. This has a natural algebra structure given by:
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and dually a coalgebra structure. It has a pairing
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Checking we get that A has a Frobenius algebra structure, see [74].
How can we construct such TQFTs? What happens if d = 2? What algebra structures are

revealed?

7.2 How can we construct TQFTs? ... from a finite group

One method of generation is based on simplicial lattices or triangulations. First we work with
triangulations of the oriented manifolds and cobordisms (The version here and in the next few
sections is based in a construction of Dave Yetter, [104, 105], see also the papers, [95, 96]. The
original idea is discussed quite fully in the first of the two papers by Yetter. It is a version of a
construction due to Dijkgraaf and Witten, [48].)

Fix a finite group, G, and let X be a space with triangulation T .
Definition: A G-colouring of T is a map

λ : T1 → G

such that given σ ∈ T2, λ(e1)ε1λ(e2)ε2λ(e3)ε3 = 1, whenever ∂σ = eε11 e
ε2
2 e

ε3
3 .

Picture: To simplify, assume the orientation is given and the vertices of T are ordered, so if
we write σ = (a, b, c) then a < b < c and the order is compatible with the orientation
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with λ(e1)λ(e2)λ(e3)−1 = 1.
The intuition is: looking at G-valued functions on edges, integrating around a triangle is to

give you nothing. The G-valued functions concerned are typically those associated with transition
functions of a bundle, usually of G-sets, i.e., a G-torsor or principal G-bundle. That intuition then
corresponds to problems where a G-bundle on M is specified by charts and the elements g, h, k,
etc. are transition automorphisms of the fibre. The construction methods for the TQFT then use
manipulations of the pictures as the triangulation is changed by subdivision, etc.

Another closely related view of this is to consider continuous functions f : M → BG to the
classifying space of G. If we triangulate M , we can assume that f is a cellular map using a suitable
cellular model of BG and at the cost of replacing f by a homotopic map and perhaps subdividing
the triangulation. From this perspective the previous model is a combinatorial description of such
a continuous ‘characteristic’ map, f . The edges of the triangulation pick up group elements since
the end points of each edge get mapped to the base point of BG, and π1BG ∼= G, whilst the faces
give a realisation of the cocycle condition. Likewise we can use a labelled decomposition of the
objects as regular CW-complexes.

7.3 From triangulations to coverings and ‘bundles’

Earlier we mentioned that the intuition behind the finite group case was linked to the transition
functions of a G-torsor or G-principal bundle. There one has an open cover over which the bundle
is assumed to trivialise. By this we mean that we have a cover U = {Uα : α ∈ A}, say, of a space X
and a ‘bundle’ p : Y → X such that if we restrict to a Uα, p−1(Uα)→ Uα is just the projection of
a product Uα × F → Uα for some ‘fibre’ F . In other word the bundle is locally trivial. The usual
way this is handled is something like the following. (We will repeat some material from earlier in
the notes, but from a different perspective.)

If the space X is a polyhedron then we can easily obtain a link between nerves and triangulations
so as to connect up this ‘observational’ idea with the ‘imposition’ of a triangulation. We can define
the star of a vertex v by

st(v) =
⋃
{Int|s|

∣∣ v is a vertex of s},

the union of the interiors of those simplices that have v as a vertex. These vertex stars give an
open covering of |K| and the following classical result tells us that the nerve of this covering is K
itself (up to isomorphism):

Proposition 34 (cf. Spanier [101], p. 114)
Let X be a polyhedron and let U = {st(v)

∣∣ v ∈ V (K)} be the open cover of X by vertex stars.
The vertex map φ from K to N(U) defined by

φ(v) = 〈st(v)〉

is a simplicial isomorphism
φ : K ∼= N(U).

�

As an example, suppose a triangle, as simplicial complex, has vertices

V (K) = {v0, v1, v2}



168 CHAPTER 7. TOPOLOGICAL QUANTUM FIELD THEORIES

and simplices {v0}, {v1}, {v2}, {v0, v1}, {v0, v2}, {v1, v2}. (This is the triangle not the 2-simplex,
so there is no 2-dimensional face.) This obviously provides a triangulation of the circle, S1, and
this can be done in such a way that the vertex star covering of S1 that results is precisely that
considered in example 1.

The above result, and the example, illustrate that for polyhedra (and thus for triangulated
manifolds), an approach via open coverings is at least as strong as that via triangulations. Trian-
gulations give open coverings that themselves give back the triangulation. If we on the other hand
start with an open covering, can we always find a triangulation that is finer than it in the sense that
any open star of a vertex is completely within some open set of the covering. The following classical
result (for instance in Spanier, [101], p.125) tells us that we can and hence that for polyhedra the
two approaches, triangulations and open coverings are, in fact, of equal strength:

Theorem 8 Let U be any open covering of a (compact) polyhedron X. Then X has triangulations
finer than U . �

7.4 How can we construct TQFTs? ... from a finite crossed mod-
ule

In Yetter’s construction of a TQFT, he replaced the finite group G by a finite crossed module
M = (C,P, ∂). It should be fairly clear, given the route we have taken so far, how we can treat this
from our perspective. We look at M-colourings as being an assignment of elements of P to edges of
a triangulation, elements of C to the 2-simplexes with a boundary condition, and any tetrahedra
giving some cocycle condition. In pictures:
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ber 32 in Lecture Notes in Maths, Springer-Verlag, Berlin.
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