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Most of these lectures are based on the book P. Mattila: The Fourier transform
and Hausdorff dimension, Cambridge University Press, 2015.

During the lectures I shall give more proofs or sketches of proofs than are here.
On the other hand, these notes probably contain several things I don’t have time
to discuss dring the lectures.

1. LECTURE 1: HAUSDORFF DIMENSION, FOURIER TRANSFORM AND
APPLICATIONS

The s-dimensional Hausdorff measureHs, s ≥ 0, is defined by

Hs(A) = lim
δ→0
Hs
δ(A),

where, for 0 < δ ≤ ∞,

Hs
δ(A) = inf{

∑
j

d(Ej)
s : A ⊂

⋃
j

Ej, d(Ej) < δ}.

Here d(E) denotes the diameter of the set E.
The Hausdorff dimension of A ⊂ Rn is

dimA = inf{s : Hs(A) = 0} = sup{s : Hs(A) =∞}.

For A ⊂ Rn, letM(A) be the set of Borel measures µ such that 0 < µ(A) < ∞
and µ has compact support sptµ ⊂ A. The following is a useful tool for lower
bounds for the Hausdorff dimension:

Theorem 1.1 (Frostman’s lemma). Let 0 ≤ s ≤ n. For a Borel set A ⊂ Rn,Hs(A) >
0 if and only there is µ ∈M(A) such that

(1.1) µ(B(x, r)) ≤ rs for all x ∈ Rn, r > 0.

In particular,

dimA = sup{s : there is µ ∈M(A) such that (1.1) holds}.

The s-energy, s > 0, of a Borel measure µ is

Is(µ) =

∫∫
|x− y|−s dµx dµy =

∫
ks ∗ µ dµ,

1
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where ks is the Riesz kernel:

ks(x) = |x|−s, x ∈ Rn.

Integration of Frostman’s lemma gives

Theorem 1.2. For a closed set A ⊂ Rn,

dimA = sup{s : there is µ ∈M(A) such that Is(µ) <∞}.

The Fourier transform of µ ∈M(Rn) is

µ̂(ξ) =

∫
e−2πiξ·x dµx, ξ ∈ Rn.

The s-energy of µ ∈M(Rn) can be written in terms of the Fourier transform:

Is(µ) = c(n, s)

∫
|µ̂(x)|2|x|s−n dx.

Thus we have

(1.2) dimA = sup{s < n : ∃µ ∈M(A) such that
∫
|µ̂(x)|2|x|s−n dx <∞}.

Notice that if Is(µ) < ∞, then |µ̂(x)|2 < |x|−s for most x with large norm.
However, this need not hold for all x with large norm. The Fourier dimension of
a set A captures some information on how one can put measures on A with good
Fourier decay:

The Fourier dimension of a set A ⊂ Rn is

dimF A = sup{s ≤ n : ∃µ ∈M(A) such that |µ̂(x)| ≤ |x|−s/2 ∀x ∈ Rn}.
Then

dimF A ≤ dimA.

A is called a Salem set if dimF A = dimA.
Examples of Salem sets are smooth planar curves with non-zero curvature and

trajectories of Brownian motion. But line segments in Rn, n ≥ 2, have zero Fourier
dimension. The Fourier dimension of the classical 1/3 Cantor set is 0, but many
other Cantor sets have positive Fourier dimension and many random Cantor sets
are Salem sets.

Fraser, Orponen and Sahlsten proved in [FOS] the following on the Fourier
dimension of graphs:

Theorem 1.3. For any function f : A → Rn−m, A ⊂ Rm, we have for the graph
Gf = {(x, f(x)) : x ∈ A},

dimF Gf ≤ m.

The Hausdorff dimension of one-dimensional Brownian graphs is almost surely
3/2, so they are not Salem sets. Fraser and Sahlsten proved in [FS] that their
Fourier dimension is almost surely 1.

We shall now discuss applications of the Fourier transform on some geometric
problems on Hausdorff dimension.
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How do the projections

pe(x) = e · x, x ∈ Rn, e ∈ Sn−1,

affect the Hausdorff dimension? Notice that pe is essentially the orthogonal pro-
jection onto the line with direction e. For simplicity, I only consider projection
onto lines although analogous results hold for projections onto m-planes, 0 <
m < n.

The first two items of the following theorem were proved by Marstrand [M] in
1954 and the third by Falconer and O’Neil [FO] in 1999 and by Peres and Schlag
[PS] in 2000, (Lm denotes the Lebesgue measure in Rm):

Theorem 1.4. Let A ⊂ Rn be a Borel set.
(1) If dimA ≤ 1, then

dim pe(A) = dimA for almost all e ∈ Sn−1.

(2) If dimA > 1, then

Ln−1(pe(A)) > 0 for almost all e ∈ Sn−1.

(3) If dimA > 2, then pe(A) has non-empty interior for almost all e ∈ Sn−1.

Let us prove (2) using a proof due to Kaufman [Ka]. Choose by (1.2) a measure
µ ∈ M(A) such that

∫
|x|−1|µ̂(x)|2 dx < ∞. Let µe ∈ M(pe(A)) be the push-

forward of µ under pe: µe(B) = µ(p−1e (B)). Directly from the definition of the
Fourier transform we see that µ̂e(t) = µ̂(te) for t ∈ R, e ∈ Sn−1. Integrating in
polar coordinates we obtain∫

Sn−1

∫ ∞
−∞
|µ̂e(t)|2 dt de = 2

∫
Sn−1

∫ ∞
0

|µ̂(te)|2 dt de = 2

∫
|x|−1|µ̂(x)|2 dx <∞.

Thus for almost all e ∈ Sn−1, µ̂e ∈ L2(R) which means that µe is absolutely con-
tinuous with L2 density and hence L1(pe(A)) > 0.

For the proof of (3) one shows that for almost all e ∈ Sn−1, µ̂e ∈ L1(R) which
implies that µe is absolutely continuous with continuos density.

The following theorem was proved by Orponen and myself in [MO]:

Theorem 1.5. Let A and B be Borel subsets of Rn.
(i) If dimA > 1 and dimB > 1, then

Hn−1 ({e ∈ Sn−1 : Ln−1(pe(A) ∩ pe(B)) > 0}
)
> 0.

(ii) If dimA > 2 and dimB > 2, then

Hn−1 ({e ∈ Sn−1 : Int(pe(A) ∩ pe(B)) 6= ∅}
)
> 0.

(iii) If dimA > 1, dimB ≤ 1 and dimA+ dimB > 2, then for every ε > 0,

Hn−1 ({e ∈ Sn−1 : dim(pe(A) ∩ pe(B)) > dimB − ε}
)
> 0.
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This was applied to exceptional set estimates for dimensions of slices. Further,
Orponen proved in [O4] the following sharp estimate on radial projections. For
x ∈ Rn define

πx : Rn \ {x} → Sn−1, πx(y) =
y − x
|y − x|

.

Theorem 1.6. Let A ⊂ Rn be a Borel set with dimA > n − 1. Then there is a
Borel set B ⊂ Rn with dimB ≤ 2(n − 1) − dimA such that for every x ∈ Rn \
B, Hn−1(πx(A)) > 0.

One can improve Theorem 1.4 by more precise information on the size of the
exceptional sets of directions. Kaufman [Ka] proved in 1968 the first item of the
following theorem, Falconer [F1] in 1982 the second and Peres and Schlag [PS] in
2000 the third:

Theorem 1.7. Let A ⊂ Rn be a Borel set.
(1) If dimA ≤ 1, then

(1.3) dim{e ∈ Sn−1 : dim pe(A) < dimA} ≤ dimA.

(2) If dimA > 1, then

(1.4) dim{e ∈ Sn−1 : Ln−1(pe(A)) = 0} ≤ n− dimA.

(3) If dimA > 2, then

(1.5) dim{e ∈ Sn−1 : Int(pe(A)) 6= ∅} ≤ n+ 1− dimA.

Theorem 1.7 and much more, for instance exceptional set estimates for Benoulli
convolutions, is included in the setting of generalized projections developed by
Peres and Schlag in [PS]. Later these general estimates have been improved
in some special cases, for example for Bernoulli convolutions by Shmerkin and
Solomyak in [SS].

The bounds dimA and n−dimA in (1) and (2) are sharp by the examples which
Kaufman and I [KM] constructed in 1975. It is not known if the bound in (3) is
sharp. Another, seemingly very difficult problem, is estimating the dimension of
the set in (1) when dimA is replaced by some t < dimA. For example, it might be
true, and has been conjectured by D.M. Oberlin [Ob1], that

dim{e ∈ S1 : dim pe(A) < t} ≤ 2t− dimA.

This would be sharp, as the constructions in [KM] show. This estimate is
known only when t = dimA/2 and due to Bourgain, [B3], [B4]. Orponen con-
sidered the case dimA = 1 in [O5] and [O6] but with dim pe(A) replaced by the
packing dimension of pe(A).

There are also exceptional set results related to the dimension of the slicesA∩V
with generic planes V and to the intersectionsA∩(g(B)+z) with generic rotations
g and translations by z. Some recent exceptional estimates for these can be found
in [O1], [MO] and [M3].

Another problem where the Fourier transform has been extremely useful is the
distance set problem. For A ⊂ Rn define the distance set
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D(A) = {|x− y| : x, y ∈ A} ⊂ [0,∞).

The following Falconer’s conjecture seems plausible:

Conjecture 1.8. If n ≥ 2 and A ⊂ Rn is a Borel set with dimA > n/2, then
L1(D(A)) > 0, or even Int(D(A)) 6= ∅.

Falconer [F2] proved in 1985 that dimA > (n+ 1)/2 implies L1(D(A)) > 0, and
we also have then Int(D(A)) 6= ∅ by Sjölin and myself [MS].

The best known result is due to Wolff [W1] for n = 2 and to Erdogan [E] for
n ≥ 3:

Theorem 1.9. If n ≥ 2 and A ⊂ Rn is a Borel set with dimA > n/2 + 1/3, then
L1(D(A)) > 0.

The proof uses restriction and Kakeya methods and results, which will be dis-
cussed in the last lecture. In particular, the case n ≥ 3 relies on Tao’s bilinear
restriction theorem.

Various partial results on distance sets have recently been proved, among oth-
ers, by Iosevich and Liu [IL1], [IL2], Luca and Rogers [LR], Orponen [O3] and
Shmerkin [S1], [S2].

2. LECTURE 2: BESICOVITCH SETS AND KAKEYA PROBLEMS

We say that a Borel set in Rn, n ≥ 2, is a Besicovitch set, or a Kakeya set, if
it has zero Lebesgue measure and it contains a line segment of unit length in
every direction. This means that for every e ∈ Sn−1 there is b ∈ Rn such that
{te + b : 0 < t < 1} ⊂ B. It is not obvious that Besicovitch sets exist but they do
in every Rn, n ≥ 2:

Theorem 2.1. 1919, 1964] For any n ≥ 2 there exists a Borel set B ⊂ Rn such that
Ln(B) = 0 and B contains a whole line in every direction. Moreover, there exist
compact Besicovitch sets in Rn.

It is enough to prove this in the plane, then B × Rn−2 is fine in Rn. The proof
of Besicovitch from 1964 uses projections and duality between points and lines.
More precisely, parametrize the lines, except those parallel to the y-axis, by (a, b) ∈
R2:

l(a, b) = {(x, ax+ b) : x ∈ R}.
Then if C ⊂ R2 is some parameter set and B = ∪(a,b)∈C l(a, b), one checks that

B ∩ {(t, y) : y ∈ R} = {t} × πt(C)
where

πt : R2 → R2, πt(a, b) = ta+ b,

is essentially an orthogonal projection. Suppose that we can find C such that
π(C) = [0, 1], where π(a, b) = a, and L1(πt(C)) = 0 for almost all t. Then L2(B) =
0 by Fubini’s theorem and taking the union of four rotated copies of B gives
the desired set. It is not trivial that such sets C exist but they do. For example, a
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suitably rotated copy of the product of a standard Cantor set with dissection ratio
1/4 with itself is such.

In this lecture we shall mainly be interested in what can be said about the Haus-
dorff dimension of Besicovitch sets.

Conjecture 2.2 (Kakeya conjecture). All Besicovitch sets in Rn have Hausdorff di-
mension n.

Theorem 2.3 (Davies 1971). For every Besicovitch set B ⊂ R2, dimB = 2. In
particular, the Kakeya conjecture is true in the plane.

The proof of this is, up to some technicalities, reversing the above argument for
the proof of Theorem 2.1 and using Marstrand’s projection Theorem 1.4(1).

Córdoba proved in 1977 that dimB ≥ 2 for every Besicovitch set in Rn. Oberlin
proved in [Ob1] that this true even for the Fourier dimension. Recall that dimF ≤
dim.

Theorem 2.4. For every Besicovitch set B ⊂ R2, dimF B ≥ 2.

The Kakeya conjecture is open for n ≥ 3. I shall discuss partial results later
but let us look first at what one could do with above argument using projections,
for example in R3. Now we parametrize the lines, except those parallel to the
(y, z)-plane by (a, b) ∈ R2 × R2:

l(a, b) = {(x, ax+ b) : x ∈ R}.

Then again if C ⊂ R4 is parameter set and B = ∪(a,b)∈C l(a, b) we have for t ∈ R,

B ∩ {(t, y) : y ∈ R2} = {t} × πt(C)

where
πt : R4 → R2, πt(a, b) = ta+ b.

Suppose now that π(C) = [0, 1]2, where π(a, b) = a. Then in particular, dimC ≥
2. The projection theorem we would need should tell us that dimπt(C) = 2 for
almost all t. However, we don’t know of any such projection theorem since we
now only have a one-dimensional family of projections. Notice that the space of
all orthogonal projections from R4 onto 2-planes is 4-dimensional.

There are theorems for small restricted families of projections, for example by
Fässler and Orponen, [FOr] and [O2], E. and M. Järvenpää and Keleti [JJK], and
D.M. and R. Oberlin [Ob3], [OO] but they are too weak for the problem on Besi-
covitch sets.

Let us now look at some relations between unions of lines and line segments.
Keleti made the following conjecture in [Ke]:

Conjecture 2.5. If A is the union of a family of line segments in Rn and B is the
union of the corresponding lines, then dimA = dimB.

This is true in the plane, as proved by Keleti:

Theorem 2.6. Conjecture 2.5 is true in R2.
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If Keleti’s conjecture is true in Rn, n ≥ 3, it gives a lot of new information on
the dimension of Besicovitch sets:

Theorem 2.7 (Keleti [Ke]). (1) If Conjecture 2.5 is true for some n, then, for this n,
every Besicovitch set in Rn has Hausdorff dimension at least n− 1.

(2) If Conjecture 2.5 is true for all n, then every Besicovitch set in Rn has upper
Minkowski dimension n for all n.

The upper Minkowski (or box counting) dimension dimM A of A ⊂ Rn is de-
fined by

dimM A = inf{s ≥ 0 : lim
δ→0

δs−nLn({x : dist(x,A) < δ}) = 0}.

Then dimA ≤ dimM A.
Using projection theorems Falconer and I proved in [FM] that in Theorem 2.6

line segments can be replaced by sets of positive one-dimensional measure. Later
Héra, Keleti and Máthé in [HKM] proved that sets of dimension one are enough.
These methods and results extend to subsets of hyperplanes in Rn, but they do
not extend to lower dimensional planes. In particular they do not apply to Besi-
covitch sets in higher dimensions. Héra, Keleti and Máthé studied the principle
’k-dimensional family of s-dimensional sets should have dimension s + k’ more
systematically with many interesting results.

Now I discuss one of the basic tools for better estimates for the Hausdorff di-
mension of Besicovitch sets.

For a ∈ Rn, e ∈ Sn−1 and δ > 0, define the tube T δe (a) with center a, direction e,
length 1 and radius δ:

T δe (a) = {x ∈ Rn : |(x− a) · e| ≤ 1/2, |x− a− ((x− a) · e)e| ≤ δ}.
Then Ln(T δe (a)) = α(n − 1)δn−1, where α(n − 1) is the Lebesgue measure of the
unit ball in Rn−1.

Definition 2.8. The Kakeya maximal function with width δ of f ∈ L1
loc(Rn) is

Kδf : Sn−1 → [0,∞],

Kδf(e) = sup
a∈Rn

1

Ln(T δe (a))

∫
T δe (a)

|f | dLn.

We have the trivial but sharp proposition:

Proposition 2.9. For all 0 < δ < 1 and f ∈ L1
loc(Rn),

‖Kδf‖L∞(Sn−1) ≤ ‖f‖L∞(Rn),

‖Kδf‖L∞(Sn−1) ≤ α(n− 1)1−nδ1−n‖f‖L1(Rn).

Conjecture 2.10. [Kakeya maximal conjecture]

‖Kδf‖Ln(Sn−1) ≤ C(n, ε)δ−ε‖f‖Ln(Rn)
for all ε > 0, 0 < δ < 1, f ∈ Ln(Rn).

This is true in the plane:
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Theorem 2.11 (Córdoba 1977).

‖Kδf‖L2(S1) ≤ C
√

log(1/δ)‖f‖L2(R2)

for all 0 < δ < 1, f ∈ L2(R2).

The following, rather easy, theorem is a key to the the Hausdorff dimension of
Besicovitch sets:

Theorem 2.12. [B1]
Suppose that 1 < p <∞, β > 0 and n− βp > 0. If

‖Kδf‖Lp(Sn−1) ≤ C(n, p, β)δ−β‖f‖p for 0 < δ < 1, f ∈ Lp(Rn),

then the Hausdorff dimension of every Besicovitch set in Rn is at least n− βp. In
particular, if for some p, 1 < p <∞,

‖Kδf‖Lp(Sn−1) ≤ C(n, p, ε)δ−ε‖f‖Lp(Rn)
holds for all ε > 0, 0 < δ < 1, f ∈ Lp(Rn), then the Hausdorff dimension of
every Besicovitch set in Rn is n. Thus the Kakeya maximal conjecture implies the
Kakeya conjecture.

It often helps to discretize the Lp-estimates for the Kakeya maximal function:

Proposition 2.13. Let 1 < p < ∞, q = p
p−1 , 0 < δ < 1 and 0 < M < ∞. Suppose

that

‖
m∑
k=1

tkχTk‖Lq(Rn) ≤M

whenever T1, . . . , Tm are δ-separated (in directions) δ-tubes and t1, . . . , tm are pos-
itive numbers with

δn−1
m∑
k=1

tqk ≤ 1.

Then
‖Kδf‖Lp(Sn−1) ≤ C(n)M‖f‖Lp(Rn) for all f ∈ Lp(Rn).

A fairly easy argument of Bourgain [B1] based on this gives

Theorem 2.14. For all Lebesgue measurable sets E ⊂ Rn,

σn−1({e ∈ Sn−1 : Kδ(χE)(e) > λ}) ≤ C(n)δ1−nλ−n−1Ln(E)2

for all 0 < δ < 1 and λ > 0.

The above restricted weak type inequality is very close to,

‖Kδf‖Lq(Sn−1) ≤ C(n, p, ε)δ−(n/p−1+ε)‖f‖p
for all ε > 0 with p = (n + 1)/2, q = n + 1. So Theorem 2.14 yields that the
Hausdorff dimension of every Besicovitch set in Rn is at least (n + 1)/2. But this
was proved by Drury already in 1983.

Bourgain’s proof used bushes; many tubes containing some point. Wolff [W1]
replaced this with hairbrushes; many tubes intersecting some tube, to prove
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Theorem 2.15. Let 0 < δ < 1. Then for f ∈ Ln+2
2 (Rn),

(2.1) ‖Kδf‖
L
n+2
2 (Sn−1)

≤ C(n, ε)δ
2−n
2+n
−ε‖f‖

L
n+2
2 (Rn)

for all ε > 0. In particular, the Hausdorff dimension of every Besicovitch set in
Rn is at least (n+ 2)/2.

Wolff’s estimate dimB ≥ 3 is still the best known in R4. Now I discuss briefly
improvements in other dimensions.

Bourgain introduced in [B2] a combinatorial method, further developed by
Katz and Tao [KT1], which is better than the above geometric method in high
dimensions:

Theorem 2.16. Let ε0 = 1/6. Suppose that A and B are finite subsets of λZm for
some m ∈ N and λ > 0, #A ≤ N and #B ≤ N . Suppose also that G ⊂ A×B and

(2.2) #{x+ y ∈ G : (x, y) ∈ G} ≤ N.

Then
#{x− y ∈ G : (x, y) ∈ G} ≤ N2−ε0 .

The proof is quite elementary but tricky. The best value of ε0 is not known,
but it cannot be taken bigger than log 6/ log 3 = 0.39907 . . . . By some Fubini-type
arguments this leads to

Theorem 2.17. For any Besicovitch set B in Rn, dimB ≥ 6n/11 + 5/11.

Once Theorem 2.16 is available this result is easy for the Minkowski dimension
dimM B, somewhat more difficult for the Hausdorff dimension. Later Katz and
Tao [KT2] improved the arguments considerably to prove

Theorem 2.18. For any Besicovitch set B in Rn, dimB ≥ (2−
√
2)(n− 4) + 3.

This theorem improves Wolff’s (n + 2)/2 bound for all n ≥ 5. Quite recently
Katz and Zahl [KZ] were able to establish an epsilon improvement on Wolff’s
bound 5/2 in R3 with very involved and complicated arguments:

Theorem 2.19. For any Besicovitch set B in R3, dimB ≥ 5/2+ ε where ε is a small
constant.

Many other versions of Besicovitch type sets have been studied; curves re-
placed by line segments, even by rectifiable sets by Chang and Csörnyei [CC],
planes in place of lines, etc.

Furstenberg sets are kind of fractal versions of Besicovitch sets: F ⊂ R2 is a
Furstenberg s-set, 0 < s ≤ 1, if for every e ∈ S1 there is a line Le in direction e
such that dimF ∩Le ≥ s. What can be said about the dimension of F ? Wolff [W2],
Section 11.1, showed that dimF ≥ max{2s, s + 1/2} and that there is such an F
with dimF = 3s/2+1/2. The lower bound 2s is easier and its proof resembles the
proof of Theorem 2.12. When s = 1/2 Bourgain [B3] improved the lower bound
1 to dimF ≥ 1 + c for some absolute constant c > 0. Other recent results are due
to Molter and Rela [MR1], [MR3] and [MR2], Oberlin [Ob4], Orponen [O6] and
Venieri [V]. Rela has a survey in [R].
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3. LECTURE 3: RESTRICTION AND KAKEYA

When does f̂ |Sn−1 make sense? If f ∈ L1(Rn) it obviously does, if f ∈ L2(Rn)
it obviously does not.
f̂ |Sn−1 makes sense for f ∈ Lp(Rn) if we have for some q <∞ an inequality

(3.1) ‖f̂‖Lq(Sn−1) ≤ C(n, p, q)‖f‖Lp(Rn)
valid for all f ∈ S(Rn).

The restriction problems ask for which p and q (3.1) holds.
By duality (3.1) is equivalent, with the same constant C(n, p, q), to

(3.2) ‖f̂‖Lp′ (Rn) ≤ C(n, p, q)‖f‖Lq′ (Sn−1).

Here p′ and q′ are conjugate exponents of p and q and f̂ means the Fourier trans-
form of the measure fσn−1 where σn−1 is the surface measure on the sphere Sn−1.

The following theorem was proved by Tomas in 1975 for q > 2(n + 1)/(n − 1)
and by Stein in 1986 for the end-point:

Theorem 3.1. We have for f ∈ L2(Sn−1),

‖f̂‖Lq(Rn) ≤ C(n, q)‖f‖L2(Sn−1)

for q ≥ 2(n+ 1)/(n− 1). The lower bound 2(n+ 1)/(n− 1) is the best possible.

The sharpness of the range of q follows using the so-called Knapp example; f
is the characteristic function of a spherical cap.

Conjecture 3.2 (Restriction conjecture). ‖f̂‖Lq(Rn) ≤ C(n, q)‖f‖Lp(Sn−1) for q > 2n/(n−
1) and q = n+1

n−1p
′.

This is equivalent to

‖f̂‖Lq(Rn) ≤ C(n, q)‖f‖L∞(Sn−1) for q > 2n/(n− 1),

and to
‖f̂‖Lq(Rn) ≤ C(n, q)‖f‖Lq(Sn−1) for q > 2n/(n− 1).

The range q > 2n/(n− 1) would be optimal. Stein-Tomas theorem implies that
these inequalities are true when q ≥ 2(n+ 1)/(n− 1).

Fefferman 1970 and Zygmund 1974 proved in the plane

‖f̂‖Lq(R2) ≤ C(q)‖f‖Lp(S1) for q > 4 and q = 4p′

.
Thus the restriction conjecture is true in the plane.
The following result of Bourgain [B1] (although it is already almost present in

Fefferman’s 1971 paper on ball multipliers) tells us that the restriction conjecture
implies Kakeya maximal and Kakeya conjectures:

Theorem 3.3. Suppose that 2n/(n− 1) < q <∞ and

(3.3) ‖f̂‖Lq(Rn) .n,q ‖f‖Lq(Sn−1) for f ∈ Lq(Sn−1).
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Then with p = q/(q − 2),

‖Kδf‖Lp(Sn−1) .n,q δ
4n/q−2(n−1)‖f‖p

for all 0 < δ < 1, f ∈ Lp(Rn). In particular, the restriction conjecture implies the
Kakeya maximal conjecture.

The proof uses Khintchine’s inequalities and the Knapp example.
Altough the restriction conjecture is open in higher dimension, Tao proved in

[T] the following sharp result on bilinear restriction:

Theorem 3.4 (Tao 2003). Let c > 0 and let Sj ⊂ {x ∈ Sn−1 : xn > c}, j = 1, 2, with
d(S1, S2) ≥ c > 0. Then

‖f̂1f̂2‖Lq(Rn) ≤ C(n, q, c)‖f1‖L2(S1)‖f2‖L2(S2)

for q > (n+ 2)/n and for all fj ∈ L2(Sn−1) with spt fj ⊂ Sj, j = 1, 2.

The lower bound (n+ 2)/n is the best possible due to the Knapp example.
Powerful recent multilinear Kakeya methods and polynomial methods have

lead to improvements on restriction. Here is a summary on some of the main
steps in the progress on restriction conjecture:

Conjecture: ‖f̂‖Lq(Rn) . ‖f‖L∞(Sn−1) for q > 2n/(n− 1), q > 3 for n = 3.
Tomas 1975: q > (2n+ 2)/(n− 1), q > 4 for n = 3.
Stein 1986: q = (2n+ 2)/(n− 1), q = 4 for n = 3.
Bourgain 1991: q > (2n+ 2)/(n− 1)− εn, q > 31/8 = 4− 1/8 for n = 3.
Tao, Vargas and Vega 1998, Tao 2003 by bilinear restriction: q > (2n + 4)/n,
q > 10/3 = 31/8− 13/24 for n = 3.
Bennett, Carbery and Tao 2006, Bourgain and Guth 2011 by multilinear restric-
tion: q > 33/10 = 10/3− 1/30 for n = 3.
(Dvir 2009), Guth 2014 by polynomial method: q > 13/4 = 33/10−3/40 = 3+1/4
for n = 3.
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