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{
Field extensions of

transcendence degree 1

}
C 7−→ k(C )

Classification : According to the genus g(C ).

Special attention to : Elliptic Curves !
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Next ?

Surfaces ! But we no longer have a 1− 1 correspondence between
smooth projective algebraic surfaces and their function fields.

Classification (Kodaira) : According to
κ(X ) = maxdim(φ|nKX |(X )). Or κ(X ) = −∞ if dimH0(nKX ) = 0,
for all n.

I κ = −∞ (Rational, C × P1)

I κ = 0 (Abelian, Bielliptic, Enriques and K3)

I κ = 1 (I’ll tell you soon !)

I κ = 2 (general type)

Major tool to study surfaces : Look at curves inside them !

Our goal today : Look for elliptic curves inside a K3 surfaces.
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Generalizing elliptic curves/ The surfaces we consider

Definition

A K3 surface is a smooth algebraic surface such that :

I KX ≡ 0

I h1(X ,OX ) = 0 (regular).

Definition

An elliptic fibration with base B on a surface Y is a proper
morphism π : Y → B such that :

I π−1(t) is a smooth genus 1 curve for almost all t.

I (relatively minimal) fibers contain no (−1)-curves.

I (jacobian) there is a section for π.
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Why are elliptic fibrations important ?

I Just because : It is easier to work with curves

I For the algebraic geometers : Gives information on the Picard
group (Shioda–Tate formula)

I For the number theorists : Potential density of rational points
(Bogomolov–Tschinkel)

I For both : If more than one fibration, can be used to produce
high rank curves (Base change)
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Elliptic fibrations on algebraic surfaces

Which surfaces admit elliptic fibrations ?

I Some rational surfaces (blow-up of P2 in F ∩ G where F ,G
cubics).

I Enriques surfaces (fibrations in general do not have sections).

I All surfaces of Kodaira dimension κ = 1.
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K3 surfaces and elliptic fibrations

Question 1 : Do K3 surfaces admit elliptic fibrations ?

Answer(s) :

I In general, NO ! (If ρ = 1, then X cannot have an elliptic
fibration).

I But sometimes they do !

Question 2 : When does this happen ?

I Need the quadratic form associated to intersection pairing to
represent zero.

I 2 ≤ ρ ≤ 4 : Sometimes.

I ρ ≥ 5 : Always !

I ρ ≥ 12 : have a section.(can embed the lattice U inside
NS(X )).
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Special Feature : K3’s are the only ones that might admit more
than one (jacobian) elliptic fibration that is not of product type.

Natural problem : Classify all elliptic fibrations on certain K3
surfaces.

Tool/Method : Lattice structure of the Néron-Severi and
Mordell-Weil groups.
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What is known ?

I Oguiso : Kummer surfaces of E1 × E2 two non-isogenous
elliptic curves.

I Kloosterman : 2 : 1-covers of P2 ramified over six lines.

I Nishiyama : cyclic quotients of product of two special elliptic
curves.

I Comparin-Garbagnati : 2 : 1-covers of P2 ramified over
reducible sextic whose components are rational curves.

I Bertin-Lecacheux : Modular K3 associated to Γ1(8).

I BGHLMSW (Women in Numbers Europe) : A singular K3
with transcendental lattice isometric to < 2 > ⊕ < 6 >.
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I Bertin-Lecacheux : Modular K3 associated to Γ1(8).

I BGHLMSW (Women in Numbers Europe) : A singular K3
with transcendental lattice isometric to < 2 > ⊕ < 6 >.
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The K3 surfaces we consider

X is a K3 surface with a non-symplectic involution ι.

Fixed locus of non-symplectic-involutions :

a) Fix(ι) = ∅.
b) Fix(ι) = genus g curve ∪ rational curves.

c) Fix(ι) = two genus 1 curves.

Today : We deal with case b). Our bonus : X/ι rational elliptic
surface !

Idea : Ask what happens to elliptic fibrations on X when they
descend to X/ι ?
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Effect of a non-symplectic involution on the fibers of an
elliptic fibration

The possibilities are :

i) ι(Ft) = Ft′ : Involution on the base of the fibration.

ii) ι(Ft) = Ft : Non-symplectic involution restricted to the fibers
(hyperelliptic involution !)

iii) ι(Ft) = Gs : Takes the fibers of an elliptic fibration to the
fibers of another elliptic fibration.

Today : To avoid case iii), assume ι∗ acts as the identity on
NS(X ).
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What happens with these fibrations in X/ι ?

Today we only analyze cases i) and ii).

Let ϕ : X → X/ι be the quotient map.

i) ι(Ft) = Ft′ . Let Ct = ϕ(Ft). Then Ct gives a genus 1
fibration on X/ι.

ii) ι(Ft) = Ft . In this case ι fixes 4 points in Ft . The curve
Dt = ϕ(Ft) is a rational curve. We get a conic bundle on X/ι.

Task : Classify all conic bundles on X/ι.
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Mordell-Weil groups of fibrations induced by conic bundles

Consider X a K3 surface with a non-symplectic involution ι
“acting” as the identity on NS(X ).

Lemma

Let π : X → P1 be an elliptic fibration induced by a conic bundle.
Then MW(π) ⊆ Z/2Z× Z/2Z. Moreover, ι it fixes a curve which
is not rational then MW(π) ⊆ Z/2Z.
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The classification (joint with A. Garbagnati)

Let k be the number of rational curves fixed by ι,

then 1 ≤ k ≤ 9.

We analyze all possible cases.

k = 9 :
trivial lattice MW (E)

U ⊕ A8 Z/3Z
U ⊕ E8 ⊕ E8 ⊕ A1 {1}
U ⊕ E7 ⊕ D10 Z/2Z
U ⊕ D16 ⊕ A1 Z/2Z
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k = 8 :
trivial lattice MW (E)

U ⊕ A7 Z
U ⊕ E8 ⊕ E7 ⊕ A1 {1}

U ⊕ E8 ⊕ D8 {1}
U ⊕ E7 ⊕ E7 ⊕ A1 ⊕ A1 Z/2Z

U ⊕ E7 ⊕ D8 ⊕ A1 Z/2Z
U ⊕ D16 {1}

U ⊕ D14 ⊕ A1 ⊕ A1 Z/2Z
U ⊕ D12 ⊕ D4 Z/2Z
U ⊕ D10 ⊕ D6 Z/2Z
U ⊕ D8 ⊕ D8 Z/2Z

(2)



k = 7 :
trivial lattice MW (E)

U ⊕ A7 Z2

U ⊕ E8 ⊕ D6 ⊕ A1 {1}
U ⊕ E7 ⊕ D6 ⊕ A1 ⊕ A1 Z/2Z

U ⊕ E7 ⊕ D8 {1}
U ⊕ E7 ⊕ E7 ⊕ A1 {1}
U ⊕ D14 ⊕ A1 {1}

U ⊕ D12 ⊕ A1 ⊕ A1 ⊕ A1 Z/2Z
U ⊕ D10 ⊕ D4 ⊕ A1 Z/2Z
U ⊕ D8 ⊕ D6 ⊕ A1 Z/2Z

(3)



k = 6 :
trivial lattice MW (E)

U ⊕ A6 Z3

U ⊕ E8 ⊕ D4 ⊕ A1 ⊕ A1 {1}
U ⊕ E7 ⊕ D6 ⊕ A1 {1}

U ⊕ E7 ⊕ D4 ⊕ A1 ⊕ A1 ⊕ A1 Z/2Z
U ⊕ D12 ⊕ A2

1 {1}
U ⊕ D10 ⊕ D4 {1}
U ⊕ D10 ⊕ A4

1 Z/2Z
U ⊕ D8 ⊕ D6 {1}

U ⊕ D8 ⊕ D4 ⊕ A1 ⊕ A1 Z/2Z
U ⊕ D6 ⊕ D6 ⊕ A1 ⊕ A1 Z/2Z

(4)



k = 5 :
trivial lattice MW (E)

U ⊕ A5 Z4

U ⊕ E8 ⊕ A5
1 {1}

U ⊕ E7 ⊕ D4 ⊕ A1 ⊕ A1 {1}
U ⊕ E7 ⊕ A6

1 Z/2Z
U ⊕ D10 ⊕ A1 ⊕ A1 ⊕ A1 {1}

U ⊕ D8 ⊕ D4 ⊕ A1 {1}
U ⊕ D8 ⊕ A5

1 Z/2Z
U ⊕ D6 ⊕ D6 ⊕ A1 {1}
U ⊕ D6 ⊕ D4 ⊕ A3

1 Z/2Z

(5)



k = 4 :
trivial lattice MW (E)

U ⊕ A4 Z5

U ⊕ E7 ⊕ A5
1 {1}

U ⊕ D8 ⊕ A4
1 {1}

U ⊕ D6 ⊕ D4 ⊕ A2
1 {1}

U ⊕ D6 ⊕ A6
1 Z/2Z

U ⊕ D6 ⊕ A6
1 Z/2Z

U ⊕ D4 ⊕ D4 ⊕ D4 {1}
U ⊕ D4 ⊕ D4 ⊕ A4

1 Z/2Z

(6)

k = 3 :
trivial lattice MW (E)

U ⊕ A3 Z6

U ⊕ D6 ⊕ A5
1 {1}

U ⊕ D4 ⊕ D4 ⊕ A3
1 {1}

U ⊕ D4 ⊕ A7
1 Z/2Z

(7)



k = 2 :
trivial lattice MW (E)

U ⊕ A2 Z7

U ⊕ D4 ⊕ A6
1 {1}

U ⊕ A10
1 Z/2Z

(8)

k = 1 :
trivial lattice MW (E)

U ⊕ A1 Z8

U ⊕ A9
1 {1}

(9)



Obrigada ! Muchas Gracias !


