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Curves

Smooth projective 1-1 Field extensions of
. —
algebraic curves over k transcendence degree 1

C — k(C)
Classification : According to the genus g(C).

Special attention to : Elliptic Curves!
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Surfaces ! But we no longer have a 1 — 1 correspondence between
smooth projective algebraic surfaces and their function fields.

Classification (Kodaira) : According to
K(X) = maxdim(¢|nk, | (X)). Or k(X) = —occ if dimH®(nKx) =0,
for all n.

» k= —oc (Rational, C x P1)
» x = 0 (Abelian, Bielliptic, Enriques and K3)
» =1 (I'll tell you soon!)

> K =2 (general type)

Major tool to study surfaces : Look at curves inside them !

Our goal today : Look for elliptic curves inside a K3 surfaces.
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K3 surfaces and elliptic fibrations

Question 1 : Do K3 surfaces admit elliptic fibrations ?

Answer(s) :

> In general, NO! (If p = 1, then X cannot have an elliptic
fibration).

» But sometimes they do!

Question 2 : When does this happen ?

» Need the quadratic form associated to intersection pairing to
represent zero.

» 2 < p <4 :Sometimes.

> p>5: Always!

» p > 12 : have a section.(can embed the lattice U inside
NS(X)).
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Special Feature : K3's are the only ones that might admit more
than one (jacobian) elliptic fibration that is not of product type.

Natural problem : Classify all elliptic fibrations on certain K3
surfaces.

Tool/Method : Lattice structure of the Néron-Severi and
Mordell-Weil groups.
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What is known ?

» Oguiso : Kummer surfaces of E; x E, two non-isogenous
elliptic curves.

» Kloosterman : 2 : 1-covers of P? ramified over six lines.

» Nishiyama : cyclic quotients of product of two special elliptic
curves.

» Comparin-Garbagnati : 2 : 1-covers of P? ramified over
reducible sextic whose components are rational curves.
» Bertin-Lecacheux : Modular K3 associated to I'1(8).

» BGHLMSW (Women in Numbers Europe) : A singular K3
with transcendental lattice isometric to <2 > @ < 6 >.



The K3 surfaces we consider



The K3 surfaces we consider

X is a K3 surface with a non-symplectic involution ¢.



The K3 surfaces we consider

X is a K3 surface with a non-symplectic involution ¢.

Fixed locus of non-symplectic-involutions :



The K3 surfaces we consider

X is a K3 surface with a non-symplectic involution ¢.

Fixed locus of non-symplectic-involutions :

a) Fix(1) = 0.



The K3 surfaces we consider

X is a K3 surface with a non-symplectic involution ¢.

Fixed locus of non-symplectic-involutions :

a) Fix(1) = 0.

b) Fix(t) = genus g curve U rational curves.



The K3 surfaces we consider

X is a K3 surface with a non-symplectic involution ¢.
Fixed locus of non-symplectic-involutions :
a) Fix(1) = 0.

b) Fix(t) = genus g curve U rational curves.

c) Fix(¢) = two genus 1 curves.



The K3 surfaces we consider

X is a K3 surface with a non-symplectic involution ¢.

Fixed locus of non-symplectic-involutions :

a) Fix(1) = 0.
b) Fix(t) = genus g curve U rational curves.

c) Fix(¢) = two genus 1 curves.

Today : We deal with case b).



The K3 surfaces we consider

X is a K3 surface with a non-symplectic involution ¢.
Fixed locus of non-symplectic-involutions :
a) Fix(1) = 0.

b) Fix(t) = genus g curve U rational curves.

c) Fix(¢) = two genus 1 curves.

Today : We deal with case b). Our bonus : X/¢ rational elliptic
surface !



The K3 surfaces we consider

X is a K3 surface with a non-symplectic involution ¢.
Fixed locus of non-symplectic-involutions :
a) Fix(1) = 0.

b) Fix(t) = genus g curve U rational curves.

c) Fix(¢) = two genus 1 curves.

Today : We deal with case b). Our bonus : X/¢ rational elliptic
surface !

Idea : Ask what happens to elliptic fibrations on X when they
descend to X/ 7



Effect of a non-symplectic involution on the fibers of an
elliptic fibration



Effect of a non-symplectic involution on the fibers of an
elliptic fibration

The possibilities are :



Effect of a non-symplectic involution on the fibers of an
elliptic fibration

The possibilities are :

i) o(Ft) = Fy :



Effect of a non-symplectic involution on the fibers of an
elliptic fibration

The possibilities are :

i) t(Ft) = Fy : Involution on the base of the fibration.



Effect of a non-symplectic involution on the fibers of an
elliptic fibration

The possibilities are :

i) t(F¢) = Fy : Involution on the base of the fibration.
||) L(Ft):Ft:



Effect of a non-symplectic involution on the fibers of an
elliptic fibration

The possibilities are :

i)t
i)

) = Ft/ Involution on the base of the fibration.

(F,
t(Ft) = F¢ : Non-symplectic involution restricted to the fibers
(hyperelllptlc involution!)



Effect of a non-symplectic involution on the fibers of an
elliptic fibration

The possibilities are :

i) t(Ft) = Fy : Involution on the base of the fibration.

i) t(Ft) = F¢ : Non-symplectic involution restricted to the fibers
(hyperelliptic involution !)

i) u(Ft) = Gs :



Effect of a non-symplectic involution on the fibers of an
elliptic fibration

The possibilities are :

i) t(Ft) = Fy : Involution on the base of the fibration.
i) t(Ft) = F¢ : Non-symplectic involution restricted to the fibers
(hyperelliptic involution !)

i) t(F¢) = Gs : Takes the fibers of an elliptic fibration to the
fibers of another elliptic fibration.



Effect of a non-symplectic involution on the fibers of an
elliptic fibration

The possibilities are :

i) t(Ft) = Fy : Involution on the base of the fibration.
i) t(Ft) = F¢ : Non-symplectic involution restricted to the fibers
(hyperelliptic involution !)

i) t(F¢) = Gs : Takes the fibers of an elliptic fibration to the
fibers of another elliptic fibration.

Today : To avoid case iii), assume * acts as the identity on
NS(X).
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What happens with these fibrations in X /.7

Today we only analyze cases i) and ii).

Let ¢ : X — X/ be the quotient map.

i) t(Ft) = Fy. Let Gt = @(F:). Then C; gives a genus 1
fibration on X/..

i) t(Ft) = F¢. In this case ¢ fixes 4 points in F;:. The curve
D = ¢(F;) is a rational curve. We get a conic bundle on X//¢.

Task : Classify all conic bundles on X/¢.
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Consider X a K3 surface with a non-symplectic involution ¢
“acting” as the identity on NS(X).

LEMMA

Let : X — P! be an elliptic fibration induced by a conic bundle.
Then MW (m) C Z /27 x Z/27. Moreover, v it fixes a curve which
is not rational then MW (x) C Z/27Z.
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trivial lattice MW (&)
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U® Ds ® Ds ® Ax {1}
U® D ® Dy & A3 7.)2Z




trivial lattice MW(E)
U Ay 7>
Us B A {1}
U Dg & A} {1}
Uo De® Dy A7 | {1}
U® De ® AS 727
U® Ds ® A3 Z.]27.
U@ Dy@ Dy@ Dy {1}
UdDydDyd AT | Z/27
trivial lattice MW (€E)
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trivial lattice | MW(E)
Ud A 77
UoDsdAS| {1}
U AP 727
trivial lattice | MW/(E)
Ua A A
U A] {1}




Obrigada ! Muchas Gracias!



