Elliptic fibrations and K3 surfaces

Cecília Salgado

Universidade Federal do Rio de Janeiro

Colóquio Latinoamericano de Álgebra 26.07.2016

Plan

Plan

- Introduction
- Problem
- Method
- Classification

Introduction

Introduction

Curves

Introduction

Curves

$\left\{\begin{array}{c}\text { Smooth projective } \\ \text { algebraic curves over } k\end{array}\right\} \stackrel{1-1}{\longleftrightarrow}\left\{\begin{array}{c}\text { Field extensions of } \\ \text { transcendence degree } 1\end{array}\right\}$
C

Introduction

Curves

$\left\{\begin{array}{c}\text { Smooth projective } \\ \text { algebraic curves over } k\end{array}\right\} \stackrel{1-1}{\longleftrightarrow}\left\{\begin{array}{c}\text { Field extensions of } \\ \text { transcendence degree } 1\end{array}\right\}$

$$
C \quad \longmapsto \quad k(C)
$$

Classification : According to the genus $g(C)$.

Introduction

Curves

$\left\{\begin{array}{c}\text { Smooth projective } \\ \text { algebraic curves over } k\end{array}\right\} \stackrel{1-1}{\longleftrightarrow}\left\{\begin{array}{c}\text { Field extensions of } \\ \text { transcendence degree } 1\end{array}\right\}$

$$
C \quad \longmapsto \quad k(C)
$$

Classification : According to the genus $g(C)$.
Special attention to : Elliptic Curves!

Next?

Next?

Surfaces!

Next?

Surfaces! But we no longer have a 1 - 1 correspondence between smooth projective algebraic surfaces and their function fields.

Next?

Surfaces! But we no longer have a $1-1$ correspondence between smooth projective algebraic surfaces and their function fields.

Classification (Kodaira) : According to $\kappa(X)=\operatorname{maxdim} \overline{\left(\phi_{\left|n K_{X}\right|}(X)\right)}$. Or $\kappa(X)=-\infty$ if $\operatorname{dim} H^{0}\left(n K_{X}\right)=0$, for all n.

Next?

Surfaces! But we no longer have a $1-1$ correspondence between smooth projective algebraic surfaces and their function fields.

Classification (Kodaira) : According to $\kappa(X)=\operatorname{maxdim} \overline{\left(\phi_{\left|n K_{X}\right|}(X)\right)}$. Or $\kappa(X)=-\infty$ if $\operatorname{dim} H^{0}\left(n K_{X}\right)=0$, for all n.

- $\kappa=-\infty$

Next?

Surfaces! But we no longer have a $1-1$ correspondence between smooth projective algebraic surfaces and their function fields.

Classification (Kodaira) : According to $\kappa(X)=\operatorname{maxdim} \overline{\left(\phi_{\left|n K_{X}\right|}(X)\right)}$. Or $\kappa(X)=-\infty$ if $\operatorname{dim} H^{0}\left(n K_{X}\right)=0$, for all n.

- $\kappa=-\infty\left(\right.$ Rational, $\left.C \times \mathbb{P}^{1}\right)$

Next?

Surfaces! But we no longer have a $1-1$ correspondence between smooth projective algebraic surfaces and their function fields.

Classification (Kodaira) : According to $\kappa(X)=\operatorname{maxdim} \overline{\left(\phi_{\left|n K_{X}\right|}(X)\right)}$. Or $\kappa(X)=-\infty$ if $\operatorname{dim} H^{0}\left(n K_{X}\right)=0$, for all n.

- $\kappa=-\infty\left(\right.$ Rational, $\left.C \times \mathbb{P}^{1}\right)$
- $\kappa=0$

Next?

Surfaces! But we no longer have a $1-1$ correspondence between smooth projective algebraic surfaces and their function fields.

Classification (Kodaira) : According to $\kappa(X)=\operatorname{maxdim} \overline{\left(\phi_{\left|n K_{X}\right|}(X)\right)}$. Or $\kappa(X)=-\infty$ if $\operatorname{dim} H^{0}\left(n K_{X}\right)=0$, for all n.

- $\kappa=-\infty$ (Rational, $C \times \mathbb{P}^{1}$)
- $\kappa=0$ (Abelian, Bielliptic, Enriques and K3)

Next?

Surfaces! But we no longer have a $1-1$ correspondence between smooth projective algebraic surfaces and their function fields.

Classification (Kodaira) : According to $\kappa(X)=\operatorname{maxdim} \overline{\left(\phi_{\left|n K_{X}\right|}(X)\right)}$. Or $\kappa(X)=-\infty$ if $\operatorname{dim} H^{0}\left(n K_{X}\right)=0$, for all n.

- $\kappa=-\infty\left(\right.$ Rational, $\left.C \times \mathbb{P}^{1}\right)$
- $\kappa=0$ (Abelian, Bielliptic, Enriques and K3)
- $\kappa=1$

Next?

Surfaces! But we no longer have a $1-1$ correspondence between smooth projective algebraic surfaces and their function fields.

Classification (Kodaira) : According to $\kappa(X)=\operatorname{maxdim} \overline{\left(\phi_{\left|n K_{X}\right|}(X)\right)}$. Or $\kappa(X)=-\infty$ if $\operatorname{dim} H^{0}\left(n K_{X}\right)=0$, for all n.

- $\kappa=-\infty\left(\right.$ Rational, $\left.C \times \mathbb{P}^{1}\right)$
- $\kappa=0$ (Abelian, Bielliptic, Enriques and K3)
- $\kappa=1$ (I'll tell you soon!)

Next?

Surfaces! But we no longer have a $1-1$ correspondence between smooth projective algebraic surfaces and their function fields.

Classification (Kodaira) : According to $\kappa(X)=\operatorname{maxdim} \overline{\left(\phi_{\left|n K_{X}\right|}(X)\right)}$. Or $\kappa(X)=-\infty$ if $\operatorname{dim} H^{0}\left(n K_{X}\right)=0$, for all n.

- $\kappa=-\infty\left(\right.$ Rational, $\left.C \times \mathbb{P}^{1}\right)$
- $\kappa=0$ (Abelian, Bielliptic, Enriques and K3)
- $\kappa=1$ (I'll tell you soon!)
- $\kappa=2$

Next?

Surfaces! But we no longer have a $1-1$ correspondence between smooth projective algebraic surfaces and their function fields.

Classification (Kodaira) : According to $\kappa(X)=\operatorname{maxdim} \overline{\left(\phi_{\left|n K_{X}\right|}(X)\right)}$. Or $\kappa(X)=-\infty$ if $\operatorname{dim} H^{0}\left(n K_{X}\right)=0$, for all n.

- $\kappa=-\infty\left(\right.$ Rational, $\left.C \times \mathbb{P}^{1}\right)$
- $\kappa=0$ (Abelian, Bielliptic, Enriques and K3)
- $\kappa=1$ (I'll tell you soon!)
- $\kappa=2$ (general type)

Next?

Surfaces! But we no longer have a $1-1$ correspondence between smooth projective algebraic surfaces and their function fields.

Classification (Kodaira) : According to $\kappa(X)=\operatorname{maxdim} \overline{\left(\phi_{\left|n K_{X}\right|}(X)\right)}$. Or $\kappa(X)=-\infty$ if $\operatorname{dim} H^{0}\left(n K_{X}\right)=0$, for all n.

- $\kappa=-\infty\left(\right.$ Rational, $\left.C \times \mathbb{P}^{1}\right)$
- $\kappa=0$ (Abelian, Bielliptic, Enriques and K3)
- $\kappa=1$ (I'll tell you soon!)
- $\kappa=2$ (general type)

Major tool to study surfaces: Look at curves inside them !

Next?

Surfaces! But we no longer have a $1-1$ correspondence between smooth projective algebraic surfaces and their function fields.

Classification (Kodaira) : According to $\kappa(X)=\operatorname{maxdim} \overline{\left(\phi_{\left|n K_{X}\right|}(X)\right)}$. Or $\kappa(X)=-\infty$ if $\operatorname{dim} H^{0}\left(n K_{X}\right)=0$, for all n.

- $\kappa=-\infty\left(\right.$ Rational, $\left.C \times \mathbb{P}^{1}\right)$
- $\kappa=0$ (Abelian, Bielliptic, Enriques and K3)
- $\kappa=1$ (I'll tell you soon!)
- $\kappa=2$ (general type)

Major tool to study surfaces : Look at curves inside them !
Our goal today : Look for elliptic curves inside a K3 surfaces.

Generalizing elliptic curves/ The surfaces we consider

Generalizing elliptic curves/ The surfaces we consider

DEFInition
A K3 surface is a smooth algebraic surface such that :

- $K_{X} \equiv 0$
- $h^{1}\left(X, \mathcal{O}_{X}\right)=0$ (regular).

Generalizing elliptic curves/ The surfaces we consider

Definition

A K3 surface is a smooth algebraic surface such that :

- $K_{X} \equiv 0$
- $h^{1}\left(X, \mathcal{O}_{X}\right)=0$ (regular).

DEFInition

An elliptic fibration with base B on a surface Y is a proper morphism $\pi: Y \rightarrow B$ such that :

- $\pi^{-1}(t)$ is a smooth genus 1 curve for almost all t.

Generalizing elliptic curves/ The surfaces we consider

Definition

A K3 surface is a smooth algebraic surface such that :

- $K_{X} \equiv 0$
- $h^{1}\left(X, \mathcal{O}_{X}\right)=0$ (regular).

DEFInition

An elliptic fibration with base B on a surface Y is a proper morphism $\pi: Y \rightarrow B$ such that :

- $\pi^{-1}(t)$ is a smooth genus 1 curve for almost all t.
- (relatively minimal) fibers contain no (-1)-curves.

Generalizing elliptic curves/ The surfaces we consider

Definition

A K3 surface is a smooth algebraic surface such that :

- $K_{X} \equiv 0$
- $h^{1}\left(X, \mathcal{O}_{X}\right)=0$ (regular).

DEFInition

An elliptic fibration with base B on a surface Y is a proper morphism $\pi: Y \rightarrow B$ such that :

- $\pi^{-1}(t)$ is a smooth genus 1 curve for almost all t.
- (relatively minimal) fibers contain no (-1)-curves.
- (jacobian) there is a section for π.

Generalizing elliptic curves/ The surfaces we consider

Definition

A K3 surface is a smooth algebraic surface such that :

- $K_{X} \equiv 0$
- $h^{1}\left(X, \mathcal{O}_{X}\right)=0$ (regular).

DEFInition

An elliptic fibration with base B on a surface Y is a proper morphism $\pi: Y \rightarrow B$ such that :

- $\pi^{-1}(t)$ is a smooth genus 1 curve for almost all t.
- (relatively minimal) fibers contain no (-1)-curves.
- (jacobian) there is a section for π.

Why are elliptic fibrations important?

Why are elliptic fibrations important?

- Just because : It is easier to work with curves

Why are elliptic fibrations important?

- Just because: It is easier to work with curves
- For the algebraic geometers : Gives information on the Picard group (Shioda-Tate formula)

Why are elliptic fibrations important?

- Just because : It is easier to work with curves
- For the algebraic geometers : Gives information on the Picard group (Shioda-Tate formula)
- For the number theorists : Potential density of rational points (Bogomolov-Tschinkel)

Why are elliptic fibrations important?

- Just because : It is easier to work with curves
- For the algebraic geometers : Gives information on the Picard group (Shioda-Tate formula)
- For the number theorists : Potential density of rational points (Bogomolov-Tschinkel)
- For both : If more than one fibration, can be used to produce high rank curves (Base change)

Why are elliptic fibrations important?

- Just because : It is easier to work with curves
- For the algebraic geometers : Gives information on the Picard group (Shioda-Tate formula)
- For the number theorists : Potential density of rational points (Bogomolov-Tschinkel)
- For both : If more than one fibration, can be used to produce high rank curves (Base change)

Elliptic fibrations on algebraic surfaces

Elliptic fibrations on algebraic surfaces

Which surfaces admit elliptic fibrations?

Elliptic fibrations on algebraic surfaces

Which surfaces admit elliptic fibrations?

- Some rational surfaces

Elliptic fibrations on algebraic surfaces

Which surfaces admit elliptic fibrations?

- Some rational surfaces (blow-up of \mathbb{P}^{2} in $F \cap G$ where F, G cubics).

Elliptic fibrations on algebraic surfaces

Which surfaces admit elliptic fibrations?

- Some rational surfaces (blow-up of \mathbb{P}^{2} in $F \cap G$ where F, G cubics).
- Enriques surfaces

Elliptic fibrations on algebraic surfaces

Which surfaces admit elliptic fibrations?

- Some rational surfaces (blow-up of \mathbb{P}^{2} in $F \cap G$ where F, G cubics).
- Enriques surfaces (fibrations in general do not have sections).

Elliptic fibrations on algebraic surfaces

Which surfaces admit elliptic fibrations?

- Some rational surfaces (blow-up of \mathbb{P}^{2} in $F \cap G$ where F, G cubics).
- Enriques surfaces (fibrations in general do not have sections).
- All surfaces of Kodaira dimension $\kappa=1$.

Elliptic fibrations on algebraic surfaces

Which surfaces admit elliptic fibrations?

- Some rational surfaces (blow-up of \mathbb{P}^{2} in $F \cap G$ where F, G cubics).
- Enriques surfaces (fibrations in general do not have sections).
- All surfaces of Kodaira dimension $\kappa=1$.

K3 surfaces and elliptic fibrations

K3 surfaces and elliptic fibrations

Question 1 : Do K3 surfaces admit elliptic fibrations?

K3 surfaces and elliptic fibrations

Question 1 : Do K3 surfaces admit elliptic fibrations?
Answer(s) :

K3 surfaces and elliptic fibrations

Question 1 : Do K3 surfaces admit elliptic fibrations?
Answer(s) :

- In general,

K3 surfaces and elliptic fibrations

Question 1 : Do K3 surfaces admit elliptic fibrations?
Answer(s) :

- In general, NO!

K3 surfaces and elliptic fibrations

Question 1 : Do K3 surfaces admit elliptic fibrations?
Answer(s) :

- In general, NO! (If $\rho=1$, then X cannot have an elliptic fibration).

K3 surfaces and elliptic fibrations

Question 1 : Do K3 surfaces admit elliptic fibrations?
Answer(s) :

- In general, NO! (If $\rho=1$, then X cannot have an elliptic fibration).
- But sometimes they do!

K3 surfaces and elliptic fibrations

Question 1 : Do K3 surfaces admit elliptic fibrations?
Answer(s) :

- In general, NO! (If $\rho=1$, then X cannot have an elliptic fibration).
- But sometimes they do!

Question 2: When does this happen?

K3 surfaces and elliptic fibrations

Question 1 : Do K3 surfaces admit elliptic fibrations?
Answer(s) :

- In general, NO! (If $\rho=1$, then X cannot have an elliptic fibration).
- But sometimes they do!

Question 2: When does this happen?

- Need the quadratic form associated to intersection pairing to represent zero.

K3 surfaces and elliptic fibrations

Question 1 : Do K3 surfaces admit elliptic fibrations?
Answer(s) :

- In general, NO! (If $\rho=1$, then X cannot have an elliptic fibration).
- But sometimes they do!

Question 2: When does this happen?

- Need the quadratic form associated to intersection pairing to represent zero.
- $2 \leq \rho \leq 4$: Sometimes.

K3 surfaces and elliptic fibrations

Question 1 : Do K3 surfaces admit elliptic fibrations?
Answer(s) :

- In general, NO! (If $\rho=1$, then X cannot have an elliptic fibration).
- But sometimes they do!

Question 2: When does this happen?

- Need the quadratic form associated to intersection pairing to represent zero.
- $2 \leq \rho \leq 4$: Sometimes.
- $\rho \geq 5$: Always!

K3 surfaces and elliptic fibrations

Question 1 : Do K3 surfaces admit elliptic fibrations?
Answer(s) :

- In general, NO! (If $\rho=1$, then X cannot have an elliptic fibration).
- But sometimes they do!

Question 2: When does this happen?

- Need the quadratic form associated to intersection pairing to represent zero.
- $2 \leq \rho \leq 4$: Sometimes.
- $\rho \geq 5$: Always!
- $\rho \geq 12$: have a section.

K3 surfaces and elliptic fibrations

Question 1 : Do K3 surfaces admit elliptic fibrations?
Answer(s) :

- In general, NO! (If $\rho=1$, then X cannot have an elliptic fibration).
- But sometimes they do!

Question 2: When does this happen?

- Need the quadratic form associated to intersection pairing to represent zero.
- $2 \leq \rho \leq 4$: Sometimes.
- $\rho \geq 5$: Always !
- $\rho \geq 12$: have a section. (can embed the lattice U inside $\mathrm{NS}(X)$).

Special Feature : K3's are the only ones that might admit more than one (jacobian) elliptic fibration that is not of product type.

Special Feature : K3's are the only ones that might admit more than one (jacobian) elliptic fibration that is not of product type.

Natural problem : Classify all elliptic fibrations on certain K3 surfaces.

Special Feature : K3's are the only ones that might admit more than one (jacobian) elliptic fibration that is not of product type.

Natural problem : Classify all elliptic fibrations on certain K3 surfaces.

Tool/Method : Lattice structure of the Néron-Severi and Mordell-Weil groups.

What is known?

What is known?

- Oguiso: Kummer surfaces of $E_{1} \times E_{2}$ two non-isogenous elliptic curves.

What is known?

- Oguiso: Kummer surfaces of $E_{1} \times E_{2}$ two non-isogenous elliptic curves.
- Kloosterman : 2 : 1 -covers of \mathbb{P}^{2} ramified over six lines.

What is known?

- Oguiso: Kummer surfaces of $E_{1} \times E_{2}$ two non-isogenous elliptic curves.
- Kloosterman : 2 : 1-covers of \mathbb{P}^{2} ramified over six lines.
- Nishiyama : cyclic quotients of product of two special elliptic curves.

What is known?

- Oguiso: Kummer surfaces of $E_{1} \times E_{2}$ two non-isogenous elliptic curves.
- Kloosterman : 2 : 1-covers of \mathbb{P}^{2} ramified over six lines.
- Nishiyama : cyclic quotients of product of two special elliptic curves.
- Comparin-Garbagnati : 2 : 1-covers of \mathbb{P}^{2} ramified over reducible sextic whose components are rational curves.

What is known?

- Oguiso: Kummer surfaces of $E_{1} \times E_{2}$ two non-isogenous elliptic curves.
- Kloosterman : 2 : 1-covers of \mathbb{P}^{2} ramified over six lines.
- Nishiyama : cyclic quotients of product of two special elliptic curves.
- Comparin-Garbagnati : 2 : 1-covers of \mathbb{P}^{2} ramified over reducible sextic whose components are rational curves.
- Bertin-Lecacheux : Modular K3 associated to $\Gamma_{1}(8)$.

What is known?

- Oguiso: Kummer surfaces of $E_{1} \times E_{2}$ two non-isogenous elliptic curves.
- Kloosterman : 2: 1-covers of \mathbb{P}^{2} ramified over six lines.
- Nishiyama : cyclic quotients of product of two special elliptic curves.
- Comparin-Garbagnati : 2 : 1-covers of \mathbb{P}^{2} ramified over reducible sextic whose components are rational curves.
- Bertin-Lecacheux : Modular K3 associated to $\Gamma_{1}(8)$.
- BGHLMSW (Women in Numbers Europe) : A singular K3 with transcendental lattice isometric to $<2>\oplus<6\rangle$.

The K3 surfaces we consider

The K3 surfaces we consider

X is a K3 surface with a non-symplectic involution ι.

The K3 surfaces we consider

X is a K 3 surface with a non-symplectic involution ι.
Fixed locus of non-symplectic-involutions :

The K3 surfaces we consider

X is a K3 surface with a non-symplectic involution ι.
Fixed locus of non-symplectic-involutions :
a) $\operatorname{Fix}(\iota)=\emptyset$.

The K3 surfaces we consider

X is a K3 surface with a non-symplectic involution ι.
Fixed locus of non-symplectic-involutions :
a) $\operatorname{Fix}(\iota)=\emptyset$.
b) $\operatorname{Fix}(\iota)=$ genus g curve \cup rational curves.

The K3 surfaces we consider

X is a K3 surface with a non-symplectic involution ι.
Fixed locus of non-symplectic-involutions :
a) $\operatorname{Fix}(\iota)=\emptyset$.
b) $\operatorname{Fix}(\iota)=$ genus g curve \cup rational curves.
c) $\operatorname{Fix}(\iota)=$ two genus 1 curves.

The K3 surfaces we consider

X is a K3 surface with a non-symplectic involution ι.
Fixed locus of non-symplectic-involutions :
a) $\operatorname{Fix}(\iota)=\emptyset$.
b) $\operatorname{Fix}(\iota)=$ genus g curve \cup rational curves.
c) $\operatorname{Fix}(\iota)=$ two genus 1 curves.

Today: We deal with case b).

The K3 surfaces we consider

X is a K3 surface with a non-symplectic involution ι.
Fixed locus of non-symplectic-involutions :
a) $\operatorname{Fix}(\iota)=\emptyset$.
b) $\operatorname{Fix}(\iota)=$ genus g curve \cup rational curves.
c) $\operatorname{Fix}(\iota)=$ two genus 1 curves.

Today : We deal with case b). Our bonus: X / ι rational elliptic surface!

The K3 surfaces we consider

X is a K 3 surface with a non-symplectic involution ι.
Fixed locus of non-symplectic-involutions:
a) $\operatorname{Fix}(\iota)=\emptyset$.
b) $\operatorname{Fix}(\iota)=$ genus g curve \cup rational curves.
c) $\operatorname{Fix}(\iota)=$ two genus 1 curves.

Today: We deal with case b). Our bonus : X / ι rational elliptic surface!

Idea : Ask what happens to elliptic fibrations on X when they descend to X / ι ?

Effect of a non-symplectic involution on the fibers of an elliptic fibration

Effect of a non-symplectic involution on the fibers of an elliptic fibration

The possibilities are :

Effect of a non-symplectic involution on the fibers of an elliptic fibration

The possibilities are:
i) $\iota\left(F_{t}\right)=F_{t^{\prime}}$:

Effect of a non-symplectic involution on the fibers of an elliptic fibration

The possibilities are :
i) $\iota\left(F_{t}\right)=F_{t^{\prime}}$: Involution on the base of the fibration.

Effect of a non-symplectic involution on the fibers of an elliptic fibration

The possibilities are:
i) $\iota\left(F_{t}\right)=F_{t^{\prime}}$: Involution on the base of the fibration.
ii) $\iota\left(F_{t}\right)=F_{t}$:

Effect of a non-symplectic involution on the fibers of an elliptic fibration

The possibilities are:
i) $\iota\left(F_{t}\right)=F_{t^{\prime}}$: Involution on the base of the fibration.
ii) $\iota\left(F_{t}\right)=F_{t}$: Non-symplectic involution restricted to the fibers (hyperelliptic involution!)

Effect of a non-symplectic involution on the fibers of an elliptic fibration

The possibilities are:
i) $\iota\left(F_{t}\right)=F_{t^{\prime}}$: Involution on the base of the fibration.
ii) $\iota\left(F_{t}\right)=F_{t}$: Non-symplectic involution restricted to the fibers (hyperelliptic involution!)
iii) $\iota\left(F_{t}\right)=G_{s}$:

Effect of a non-symplectic involution on the fibers of an elliptic fibration

The possibilities are :
i) $\iota\left(F_{t}\right)=F_{t^{\prime}}$: Involution on the base of the fibration.
ii) $\iota\left(F_{t}\right)=F_{t}$: Non-symplectic involution restricted to the fibers (hyperelliptic involution!)
iii) $\iota\left(F_{t}\right)=G_{s}$: Takes the fibers of an elliptic fibration to the fibers of another elliptic fibration.

Effect of a non-symplectic involution on the fibers of an elliptic fibration

The possibilities are :
i) $\iota\left(F_{t}\right)=F_{t^{\prime}}$: Involution on the base of the fibration.
ii) $\iota\left(F_{t}\right)=F_{t}$: Non-symplectic involution restricted to the fibers (hyperelliptic involution!)
iii) $\iota\left(F_{t}\right)=G_{s}$: Takes the fibers of an elliptic fibration to the fibers of another elliptic fibration.

Today : To avoid case iii), assume ι^{*} acts as the identity on NS (X).

What happens with these fibrations in X / ι ?

What happens with these fibrations in X / ι ?

Today we only analyze cases i) and $i i$).

What happens with these fibrations in X / ι ?

Today we only analyze cases i) and $i i$).
Let $\varphi: X \rightarrow X / \iota$ be the quotient map.

What happens with these fibrations in X / ι ?

Today we only analyze cases i) and $i i$).
Let $\varphi: X \rightarrow X / \iota$ be the quotient map.
i) $\iota\left(F_{t}\right)=F_{t^{\prime}}$. Let $C_{t}=\varphi\left(F_{t}\right)$. Then C_{t} gives a genus 1 fibration on X / ι.

What happens with these fibrations in X / ι ?

Today we only analyze cases i) and $i i$).
Let $\varphi: X \rightarrow X / \iota$ be the quotient map.
i) $\iota\left(F_{t}\right)=F_{t^{\prime}}$. Let $C_{t}=\varphi\left(F_{t}\right)$. Then C_{t} gives a genus 1 fibration on X / ι.
ii) $\iota\left(F_{t}\right)=F_{t}$. In this case ι fixes 4 points in F_{t}. The curve $D_{t}=\varphi\left(F_{t}\right)$ is a rational curve. We get a conic bundle on X / ι.

What happens with these fibrations in X / ι ?

Today we only analyze cases i) and $i i$).
Let $\varphi: X \rightarrow X / \iota$ be the quotient map.
i) $\iota\left(F_{t}\right)=F_{t^{\prime}}$. Let $C_{t}=\varphi\left(F_{t}\right)$. Then C_{t} gives a genus 1 fibration on X / ι.
ii) $\iota\left(F_{t}\right)=F_{t}$. In this case ι fixes 4 points in F_{t}. The curve $D_{t}=\varphi\left(F_{t}\right)$ is a rational curve. We get a conic bundle on X / ι.

Task: Classify all conic bundles on X / ι.

Mordell-Weil groups of fibrations induced by conic bundles

Mordell-Weil groups of fibrations induced by conic bundles

Consider X a $K 3$ surface with a non-symplectic involution ι "acting" as the identity on $\operatorname{NS}(X)$.

Mordell-Weil groups of fibrations induced by conic bundles

Consider X a $K 3$ surface with a non-symplectic involution ι "acting" as the identity on $\operatorname{NS}(X)$.

Lemma

Let $\pi: X \rightarrow \mathbb{P}^{1}$ be an elliptic fibration induced by a conic bundle. Then $\operatorname{MW}(\pi) \subseteq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Moreover, ८ it fixes a curve which is not rational then $\mathrm{MW}(\pi) \subseteq \mathbb{Z} / 2 \mathbb{Z}$.

The classification (joint with A. Garbagnati)

Let k be the number of rational curves fixed by ι,

The classification (joint with A. Garbagnati)

Let k be the number of rational curves fixed by ι, then $1 \leq k \leq 9$.

The classification (joint with A. Garbagnati)

Let k be the number of rational curves fixed by ι, then $1 \leq k \leq 9$.
We analyze all possible cases.

The classification (joint with A. Garbagnati)

Let k be the number of rational curves fixed by ι, then $1 \leq k \leq 9$.
We analyze all possible cases.
$k=9:$

trivial lattice	$M W(\mathcal{E})$
$U \oplus A_{8}$	$\mathbb{Z} / 3 \mathbb{Z}$
$U \oplus E_{8} \oplus E_{8} \oplus A_{1}$	$\{1\}$
$U \oplus E_{7} \oplus D_{10}$	$\mathbb{Z} / 2 \mathbb{Z}$
$U \oplus D_{16} \oplus A_{1}$	$\mathbb{Z} / 2 \mathbb{Z}$

$k=8:$

trivial lattice	$M W(\varepsilon)$
$U \oplus A_{7}$	\mathbb{Z}
$U \oplus E_{8} \oplus E_{7} \oplus A_{1}$	$\{1\}$
$U \oplus E_{8} \oplus D_{8}$	$\{1\}$
$U \oplus E_{7} \oplus E_{7} \oplus A_{1} \oplus A_{1}$	$\mathbb{Z} / 2 \mathbb{Z}$
$U \oplus E_{7} \oplus D_{8} \oplus A_{1}$	$\mathbb{Z} / 2 \mathbb{Z}$
$U \oplus D_{16}$	$\{1\}$
$U \oplus D_{14} \oplus A_{1} \oplus A_{1}$	$\mathbb{Z} / 2 \mathbb{Z}$
$U \oplus D_{12} \oplus D_{4}$	$\mathbb{Z} / 2 \mathbb{Z}$
$U \oplus D_{10} \oplus D_{6}$	$\mathbb{Z} / 2 \mathbb{Z}$
$U \oplus D_{8} \oplus D_{8}$	$\mathbb{Z} / 2 \mathbb{Z}$

$$
k=7:
$$

trivial lattice	$M W(\varepsilon)$
$U \oplus A_{7}$	\mathbb{Z}^{2}
$U \oplus E_{8} \oplus D_{6} \oplus A_{1}$	$\{1\}$
$U \oplus E_{7} \oplus D_{6} \oplus A_{1} \oplus A_{1}$	$\mathbb{Z} / 2 \mathbb{Z}$
$U \oplus E_{7} \oplus D_{8}$	$\{1\}$
$U \oplus E_{7} \oplus E_{7} \oplus A_{1}$	$\{1\}$
$U \oplus D_{14} \oplus A_{1}$	$\{1\}$
$U \oplus D_{12} \oplus A_{1} \oplus A_{1} \oplus A_{1}$	$\mathbb{Z} / 2 \mathbb{Z}$
$U \oplus D_{10} \oplus D_{4} \oplus A_{1}$	$\mathbb{Z} / 2 \mathbb{Z}$
$U \oplus D_{8} \oplus D_{6} \oplus A_{1}$	$\mathbb{Z} / 2 \mathbb{Z}$

$$
k=6:
$$

trivial lattice	$M W(\varepsilon)$
$U \oplus A_{6}$	\mathbb{Z}^{3}
$U \oplus E_{8} \oplus D_{4} \oplus A_{1} \oplus A_{1}$	$\{1\}$
$U \oplus E_{7} \oplus D_{6} \oplus A_{1}$	$\{1\}$
$U \oplus E_{7} \oplus D_{4} \oplus A_{1} \oplus A_{1} \oplus A_{1}$	$\mathbb{Z} / 2 \mathbb{Z}$
$U \oplus D_{12} \oplus A_{1}^{2}$	$\{1\}$
$U \oplus D_{10} \oplus D_{4}$	$\{1\}$
$U \oplus D_{10} \oplus A_{1}^{4}$	$\mathbb{Z} / 2 \mathbb{Z}$
$U \oplus D_{8} \oplus D_{6}$	$\{1\}$
$U \oplus D_{8} \oplus D_{4} \oplus A_{1} \oplus A_{1}$	$\mathbb{Z} / 2 \mathbb{Z}$
$U \oplus D_{6} \oplus D_{6} \oplus A_{1} \oplus A_{1}$	$\mathbb{Z} / 2 \mathbb{Z}$

$k=5:$

trivial lattice	$M W(\varepsilon)$
$U \oplus A_{5}$	\mathbb{Z}^{4}
$U \oplus E_{8} \oplus A_{1}^{5}$	$\{1\}$
$U \oplus E_{7} \oplus D_{4} \oplus A_{1} \oplus A_{1}$	$\{1\}$
$U \oplus E_{7} \oplus A_{1}^{6}$	$\mathbb{Z} / 2 \mathbb{Z}$
$U \oplus D_{10} \oplus A_{1} \oplus A_{1} \oplus A_{1}$	$\{1\}$
$U \oplus D_{8} \oplus D_{4} \oplus A_{1}$	$\{1\}$
$U \oplus D_{8} \oplus A_{1}^{5}$	$\mathbb{Z} / 2 \mathbb{Z}$
$U \oplus D_{6} \oplus D_{6} \oplus A_{1}$	$\{1\}$
$U \oplus D_{6} \oplus D_{4} \oplus A_{1}^{3}$	$\mathbb{Z} / 2 \mathbb{Z}$

$k=4:$

trivial lattice	$M W(\mathcal{E})$
$U \oplus A_{4}$	\mathbb{Z}^{5}
$U \oplus E_{7} \oplus A_{1}^{5}$	$\{1\}$
$U \oplus D_{8} \oplus A_{1}^{4}$	$\{1\}$
$U \oplus D_{6} \oplus D_{4} \oplus A_{1}^{2}$	$\{1\}$
$U \oplus D_{6} \oplus A_{1}^{6}$	$\mathbb{Z} / 2 \mathbb{Z}$
$U \oplus D_{6} \oplus A_{1}^{6}$	$\mathbb{Z} / 2 \mathbb{Z}$
$U \oplus D_{4} \oplus D_{4} \oplus D_{4}$	$\{1\}$
$U \oplus D_{4} \oplus D_{4} \oplus A_{1}^{4}$	$\mathbb{Z} / 2 \mathbb{Z}$

$k=3:$

trivial lattice	$M W(\varepsilon)$
$U \oplus A_{3}$	\mathbb{Z}^{6}
$U \oplus D_{6} \oplus A_{1}^{5}$	$\{1\}$
$U \oplus D_{4} \oplus D_{4} \oplus A_{1}^{3}$	$\{1\}$
$U \oplus D_{4} \oplus A_{1}^{7}$	$\mathbb{Z} / 2 \mathbb{Z}$

$k=2:$

trivial lattice	$M W(\mathcal{E})$
$U \oplus A_{2}$	\mathbb{Z}^{7}
$U \oplus D_{4} \oplus A_{1}^{6}$	$\{1\}$
$U \oplus A_{1}^{10}$	$\mathbb{Z} / 2 \mathbb{Z}$

$k=1:$

trivial lattice	$M W(\mathcal{E})$
$U \oplus A_{1}$	\mathbb{Z}^{8}
$U \oplus A_{1}^{9}$	$\{1\}$

Obrigada! Muchas Gracias !

