Elliptic fibrations and K3 surfaces

Cecília Salgado

Universidade Federal do Rio de Janeiro

Colóquio Latinoamericano de Álgebra 26.07.2016

Plan

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Plan

- Introduction
- Problem
- Method
- Classification

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Curves

Curves

Curves

 $\left\{\begin{array}{cc} \text{Smooth projective} \\ \text{algebraic curves over } k\end{array}\right\} \xrightarrow[1-1]{} \left\{\begin{array}{cc} \text{Field extensions of} \\ \text{transcendence degree 1}\end{array}\right\}$ $C \qquad \longmapsto \qquad k(C)$

Classification : According to the genus g(C).

Curves

 $\left\{\begin{array}{ll} \text{Smooth projective} \\ \text{algebraic curves over } k\end{array}\right\} \stackrel{1-1}{\longleftrightarrow} \left\{\begin{array}{l} \text{Field extensions of} \\ \text{transcendence degree 1}\end{array}\right\}$ $C \qquad \longmapsto \qquad k(C)$

Classification : According to the genus g(C).

Special attention to : Elliptic Curves!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Surfaces !

<□ > < @ > < E > < E > E のQ @

Surfaces ! But we no longer have a 1 - 1 correspondence between smooth projective algebraic surfaces and their function fields.

Surfaces ! But we no longer have a 1-1 correspondence between smooth projective algebraic surfaces and their function fields.

Classification (Kodaira) : According to $\kappa(X) = \text{maxdim}(\overline{\phi}_{|nK_X|}(X))$. Or $\kappa(X) = -\infty$ if $\dim H^0(nK_X) = 0$, for all *n*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Surfaces ! But we no longer have a 1 - 1 correspondence between smooth projective algebraic surfaces and their function fields.

Classification (Kodaira) : According to $\kappa(X) = \text{maxdim}(\overline{\phi}_{|nK_X|}(X))$. Or $\kappa(X) = -\infty$ if $\dim H^0(nK_X) = 0$, for all *n*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\blacktriangleright \kappa = -\infty$$

Surfaces ! But we no longer have a 1 - 1 correspondence between smooth projective algebraic surfaces and their function fields.

Classification (Kodaira) : According to $\kappa(X) = \text{maxdim}(\overline{\phi}_{|nK_X|}(X))$. Or $\kappa(X) = -\infty$ if $\dim H^0(nK_X) = 0$, for all *n*.

• $\kappa = -\infty$ (Rational, $C \times \mathbb{P}^1$)

Surfaces ! But we no longer have a 1 - 1 correspondence between smooth projective algebraic surfaces and their function fields.

Classification (Kodaira) : According to $\kappa(X) = \text{maxdim}(\overline{\phi}_{|nK_X|}(X))$. Or $\kappa(X) = -\infty$ if $\dim H^0(nK_X) = 0$, for all *n*.

$$\kappa = -\infty \text{ (Rational, } C \times \mathbb{P}^1 \text{)}$$
$$\kappa = 0$$

Surfaces ! But we no longer have a 1-1 correspondence between smooth projective algebraic surfaces and their function fields.

Classification (Kodaira) : According to $\kappa(X) = \text{maxdim}(\overline{\phi}_{|nK_X|}(X))$. Or $\kappa(X) = -\infty$ if $\dim H^0(nK_X) = 0$, for all *n*.

•
$$\kappa = -\infty$$
 (Rational, $C imes \mathbb{P}^1$)

• $\kappa = 0$ (Abelian, Bielliptic, Enriques and K3)

Surfaces ! But we no longer have a 1-1 correspondence between smooth projective algebraic surfaces and their function fields.

Classification (Kodaira) : According to $\kappa(X) = \text{maxdim}(\overline{\phi}_{|nK_X|}(X))$. Or $\kappa(X) = -\infty$ if $\dim H^0(nK_X) = 0$, for all *n*.

•
$$\kappa = -\infty$$
 (Rational, $C imes \mathbb{P}^1$)

- $\kappa = 0$ (Abelian, Bielliptic, Enriques and K3)
- $\blacktriangleright \kappa = 1$

Surfaces ! But we no longer have a 1-1 correspondence between smooth projective algebraic surfaces and their function fields.

Classification (Kodaira) : According to $\kappa(X) = \text{maxdim}(\overline{\phi}_{|nK_X|}(X))$. Or $\kappa(X) = -\infty$ if $\dim H^0(nK_X) = 0$, for all *n*.

•
$$\kappa = -\infty$$
 (Rational, $\mathcal{C} imes \mathbb{P}^1$)

- $\kappa = 0$ (Abelian, Bielliptic, Enriques and K3)
- $\kappa = 1$ (I'll tell you soon !)

Surfaces ! But we no longer have a 1-1 correspondence between smooth projective algebraic surfaces and their function fields.

Classification (Kodaira) : According to $\kappa(X) = \text{maxdim}(\overline{\phi}_{|nK_X|}(X))$. Or $\kappa(X) = -\infty$ if $\dim H^0(nK_X) = 0$, for all *n*.

•
$$\kappa = -\infty$$
 (Rational, $\mathcal{C} imes \mathbb{P}^1$)

• $\kappa = 0$ (Abelian, Bielliptic, Enriques and K3)

•
$$\kappa = 1$$
 (I'll tell you soon !)

Surfaces ! But we no longer have a 1-1 correspondence between smooth projective algebraic surfaces and their function fields.

Classification (Kodaira) : According to $\kappa(X) = \text{maxdim}(\overline{\phi}_{|nK_X|}(X))$. Or $\kappa(X) = -\infty$ if $\dim H^0(nK_X) = 0$, for all *n*.

•
$$\kappa = -\infty$$
 (Rational, $\mathcal{C} imes \mathbb{P}^1$)

• $\kappa = 0$ (Abelian, Bielliptic, Enriques and K3)

•
$$\kappa = 1$$
 (I'll tell you soon !)

• $\kappa = 2$ (general type)

Surfaces ! But we no longer have a 1-1 correspondence between smooth projective algebraic surfaces and their function fields.

Classification (Kodaira) : According to $\kappa(X) = \text{maxdim}(\overline{\phi}_{|nK_X|}(X))$. Or $\kappa(X) = -\infty$ if $\dim H^0(nK_X) = 0$, for all *n*.

•
$$\kappa = -\infty$$
 (Rational, $\mathcal{C} imes \mathbb{P}^1$)

κ = 0 (Abelian, Bielliptic, Enriques and K3)

•
$$\kappa = 1$$
 (I'll tell you soon !)

• $\kappa = 2$ (general type)

Major tool to study surfaces : Look at curves inside them !

Surfaces ! But we no longer have a 1-1 correspondence between smooth projective algebraic surfaces and their function fields.

Classification (Kodaira) : According to $\kappa(X) = \text{maxdim}(\overline{\phi}_{|nK_X|}(X))$. Or $\kappa(X) = -\infty$ if $\dim H^0(nK_X) = 0$, for all *n*.

•
$$\kappa = -\infty$$
 (Rational, $\mathcal{C} imes \mathbb{P}^1$)

κ = 0 (Abelian, Bielliptic, Enriques and K3)

•
$$\kappa = 1$$
 (I'll tell you soon !)

• $\kappa = 2$ (general type)

Major tool to study surfaces : Look at curves inside them !

Our goal today : Look for elliptic curves inside a K3 surfaces.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A K3 surface is a smooth algebraic surface such that :

A K3 surface is a smooth algebraic surface such that :

DEFINITION

An elliptic fibration with base B on a surface Y is a proper morphism $\pi: Y \to B$ such that :

• $\pi^{-1}(t)$ is a smooth genus 1 curve for almost all t.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A K3 surface is a smooth algebraic surface such that :

DEFINITION

An elliptic fibration with base B on a surface Y is a proper morphism $\pi : Y \to B$ such that :

- $\pi^{-1}(t)$ is a smooth genus 1 curve for almost all t.
- ▶ (relatively minimal) fibers contain no (-1)-curves.

A K3 surface is a smooth algebraic surface such that :

DEFINITION

An elliptic fibration with base B on a surface Y is a proper morphism $\pi : Y \to B$ such that :

- $\pi^{-1}(t)$ is a smooth genus 1 curve for almost all t.
- ▶ (relatively minimal) fibers contain no (-1)-curves.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• (jacobian) there is a section for π .

A K3 surface is a smooth algebraic surface such that :

DEFINITION

An elliptic fibration with base B on a surface Y is a proper morphism $\pi : Y \to B$ such that :

- $\pi^{-1}(t)$ is a smooth genus 1 curve for almost all t.
- ▶ (relatively minimal) fibers contain no (-1)-curves.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• (jacobian) there is a section for π .

Just because : It is easier to work with curves

(ロ)、(型)、(E)、(E)、 E) の(の)

- Just because : It is easier to work with curves
- For the algebraic geometers : Gives information on the Picard group (Shioda–Tate formula)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Just because : It is easier to work with curves
- For the algebraic geometers : Gives information on the Picard group (Shioda–Tate formula)
- For the number theorists : Potential density of rational points (Bogomolov–Tschinkel)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Just because : It is easier to work with curves
- For the algebraic geometers : Gives information on the Picard group (Shioda–Tate formula)
- For the number theorists : Potential density of rational points (Bogomolov–Tschinkel)
- For both : If more than one fibration, can be used to produce high rank curves (Base change)

- Just because : It is easier to work with curves
- For the algebraic geometers : Gives information on the Picard group (Shioda–Tate formula)
- For the number theorists : Potential density of rational points (Bogomolov–Tschinkel)
- For both : If more than one fibration, can be used to produce high rank curves (Base change)

Elliptic fibrations on algebraic surfaces

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへぐ

Elliptic fibrations on algebraic surfaces

Which surfaces admit elliptic fibrations?

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>
Which surfaces admit elliptic fibrations?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Some rational surfaces

Which surfaces admit elliptic fibrations?

Some rational surfaces (blow-up of P² in F ∩ G where F, G cubics).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Which surfaces admit elliptic fibrations?

Some rational surfaces (blow-up of P² in F ∩ G where F, G cubics).

Enriques surfaces

Which surfaces admit elliptic fibrations?

- Some rational surfaces (blow-up of P² in F ∩ G where F, G cubics).
- Enriques surfaces (fibrations in general do not have sections).

Which surfaces admit elliptic fibrations?

- Some rational surfaces (blow-up of P² in F ∩ G where F, G cubics).
- Enriques surfaces (fibrations in general do not have sections).

• All surfaces of Kodaira dimension $\kappa = 1$.

Which surfaces admit elliptic fibrations?

- Some rational surfaces (blow-up of P² in F ∩ G where F, G cubics).
- Enriques surfaces (fibrations in general do not have sections).

• All surfaces of Kodaira dimension $\kappa = 1$.

<ロト < 個 > < 目 > < 目 > 目 の < @</p>

Question 1 : Do K3 surfaces admit elliptic fibrations?

(ロ)、(型)、(E)、(E)、 E) の(の)

Question 1 : Do K3 surfaces admit elliptic fibrations?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Answer(s) :

Question 1 : Do K3 surfaces admit elliptic fibrations?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Answer(s) :

► In general,

Question 1 : Do K3 surfaces admit elliptic fibrations?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Answer(s) :

► In general, NO !

Question 1: Do K3 surfaces admit elliptic fibrations?

Answer(s) :

In general, NO! (If ρ = 1, then X cannot have an elliptic fibration).

Question 1 : Do K3 surfaces admit elliptic fibrations?

Answer(s) :

In general, NO! (If ρ = 1, then X cannot have an elliptic fibration).

But sometimes they do !

Question 1 : Do K3 surfaces admit elliptic fibrations?

Answer(s) :

In general, NO! (If ρ = 1, then X cannot have an elliptic fibration).

But sometimes they do !

Question 2 : When does this happen?

Question 1 : Do K3 surfaces admit elliptic fibrations?

Answer(s) :

- In general, NO! (If ρ = 1, then X cannot have an elliptic fibration).
- But sometimes they do !

Question 2 : When does this happen?

 Need the quadratic form associated to intersection pairing to represent zero.

Question 1 : Do K3 surfaces admit elliptic fibrations?

Answer(s) :

- In general, NO! (If ρ = 1, then X cannot have an elliptic fibration).
- But sometimes they do !

Question 2 : When does this happen?

 Need the quadratic form associated to intersection pairing to represent zero.

• $2 \le \rho \le 4$: Sometimes.

Question 1 : Do K3 surfaces admit elliptic fibrations?

Answer(s) :

- In general, NO! (If ρ = 1, then X cannot have an elliptic fibration).
- But sometimes they do !

Question 2 : When does this happen?

 Need the quadratic form associated to intersection pairing to represent zero.

- $2 \le \rho \le 4$: Sometimes.
- $\rho \ge 5$: Always !

Question 1 : Do K3 surfaces admit elliptic fibrations?

Answer(s) :

- In general, NO! (If ρ = 1, then X cannot have an elliptic fibration).
- But sometimes they do !

Question 2 : When does this happen?

 Need the quadratic form associated to intersection pairing to represent zero.

- $2 \le \rho \le 4$: Sometimes.
- $\rho \ge 5$: Always !
- $\rho \ge 12$: have a section.

Question 1 : Do K3 surfaces admit elliptic fibrations?

Answer(s) :

- In general, NO! (If ρ = 1, then X cannot have an elliptic fibration).
- But sometimes they do !

Question 2 : When does this happen?

 Need the quadratic form associated to intersection pairing to represent zero.

- $2 \le \rho \le 4$: Sometimes.
- $\rho \ge 5$: Always!
- ρ ≥ 12 : have a section.(can embed the lattice U inside NS(X)).

Special Feature : K3's are the only ones that might admit more than one (jacobian) elliptic fibration that is not of product type.

Special Feature : K3's are the only ones that might admit more than one (jacobian) elliptic fibration that is not of product type.

Natural problem : Classify all elliptic fibrations on certain K3 surfaces.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Special Feature : K3's are the only ones that might admit more than one (jacobian) elliptic fibration that is not of product type.

Natural problem : Classify all elliptic fibrations on certain K3 surfaces.

Tool/Method : Lattice structure of the Néron-Severi and Mordell-Weil groups.

<ロ> <@> < E> < E> E のQの

▶ Oguiso : Kummer surfaces of E₁ × E₂ two non-isogenous elliptic curves.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Oguiso : Kummer surfaces of E₁ × E₂ two non-isogenous elliptic curves.
- Kloosterman : 2 : 1-covers of \mathbb{P}^2 ramified over six lines.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ▶ Oguiso : Kummer surfaces of E₁ × E₂ two non-isogenous elliptic curves.
- Kloosterman : 2 : 1-covers of \mathbb{P}^2 ramified over six lines.
- Nishiyama : cyclic quotients of product of two special elliptic curves.

- ▶ Oguiso : Kummer surfaces of E₁ × E₂ two non-isogenous elliptic curves.
- Kloosterman : 2 : 1-covers of \mathbb{P}^2 ramified over six lines.
- Nishiyama : cyclic quotients of product of two special elliptic curves.

► Comparin-Garbagnati : 2 : 1-covers of P² ramified over reducible sextic whose components are rational curves.

- ▶ Oguiso : Kummer surfaces of E₁ × E₂ two non-isogenous elliptic curves.
- Kloosterman : 2 : 1-covers of \mathbb{P}^2 ramified over six lines.
- Nishiyama : cyclic quotients of product of two special elliptic curves.

- ► Comparin-Garbagnati : 2 : 1-covers of P² ramified over reducible sextic whose components are rational curves.
- Bertin-Lecacheux : Modular K3 associated to $\Gamma_1(8)$.

- Oguiso : Kummer surfaces of E₁ × E₂ two non-isogenous elliptic curves.
- Kloosterman : 2 : 1-covers of \mathbb{P}^2 ramified over six lines.
- Nishiyama : cyclic quotients of product of two special elliptic curves.
- ► Comparin-Garbagnati : 2 : 1-covers of P² ramified over reducible sextic whose components are rational curves.
- Bertin-Lecacheux : Modular K3 associated to Γ₁(8).
- ▶ BGHLMSW (Women in Numbers Europe) : A singular K3 with transcendental lattice isometric to < 2 > ⊕ < 6 >.

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

X is a K3 surface with a non-symplectic involution ι .

X is a K3 surface with a non-symplectic involution ι .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Fixed locus of non-symplectic-involutions :

X is a K3 surface with a non-symplectic involution ι .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Fixed locus of non-symplectic-involutions :

a)
$$\operatorname{Fix}(\iota) = \emptyset$$
.

X is a K3 surface with a non-symplectic involution ι .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fixed locus of non-symplectic-involutions :

X is a K3 surface with a non-symplectic involution ι .

Fixed locus of non-symplectic-involutions :

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

X is a K3 surface with a non-symplectic involution ι .

Fixed locus of non-symplectic-involutions :

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Today : We deal with case *b*).
The K3 surfaces we consider

X is a K3 surface with a non-symplectic involution ι .

Fixed locus of non-symplectic-involutions :

Today : We deal with case *b*). Our bonus : X/ι rational elliptic surface !

The K3 surfaces we consider

X is a K3 surface with a non-symplectic involution ι .

Fixed locus of non-symplectic-involutions :

Today : We deal with case *b*). Our bonus : X/ι rational elliptic surface !

Idea : Ask what happens to elliptic fibrations on X when they descend to X/ι ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 ■ - のへで

The possibilities are :

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The possibilities are :

i)
$$\iota(F_t) = F_{t'}$$
:

The possibilities are :

i) $\iota(F_t) = F_{t'}$: Involution on the base of the fibration.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The possibilities are :

i)
$$\iota(F_t) = F_{t'}$$
: Involution on the base of the fibration.
ii) $\iota(F_t) = F_t$:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The possibilities are :

- i) $\iota(F_t) = F_{t'}$: Involution on the base of the fibration.
- ii) $\iota(F_t) = F_t$: Non-symplectic involution restricted to the fibers (hyperelliptic involution !)

The possibilities are :

- i) $\iota(F_t) = F_{t'}$: Involution on the base of the fibration.
- ii) $\iota(F_t) = F_t$: Non-symplectic involution restricted to the fibers (hyperelliptic involution !)

iii) $\iota(F_t) = G_s$:

The possibilities are :

- i) $\iota(F_t) = F_{t'}$: Involution on the base of the fibration.
- ii) $\iota(F_t) = F_t$: Non-symplectic involution restricted to the fibers (hyperelliptic involution !)

iii) $\iota(F_t) = G_s$: Takes the fibers of an elliptic fibration to the fibers of another elliptic fibration.

The possibilities are :

- i) $\iota(F_t) = F_{t'}$: Involution on the base of the fibration.
- ii) $\iota(F_t) = F_t$: Non-symplectic involution restricted to the fibers (hyperelliptic involution !)

iii) $\iota(F_t) = G_s$: Takes the fibers of an elliptic fibration to the fibers of another elliptic fibration.

Today : To avoid case *iii*), assume ι^* acts as the identity on NS(X).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Today we only analyze cases i) and ii).

・ロト・日本・モート モー うへぐ

Today we only analyze cases *i*) and *ii*).

Let $\varphi: X \to X/\iota$ be the quotient map.

Today we only analyze cases *i*) and *ii*).

Let $\varphi: X \to X/\iota$ be the quotient map.

i) $\iota(F_t) = F_{t'}$. Let $C_t = \varphi(F_t)$. Then C_t gives a genus 1 fibration on X/ι .

Today we only analyze cases i) and ii).

Let $\varphi: X \to X/\iota$ be the quotient map.

i) $\iota(F_t) = F_{t'}$. Let $C_t = \varphi(F_t)$. Then C_t gives a genus 1 fibration on X/ι .

ii) $\iota(F_t) = F_t$. In this case ι fixes 4 points in F_t . The curve $D_t = \varphi(F_t)$ is a rational curve. We get a conic bundle on X/ι .

Today we only analyze cases i) and ii).

Let $\varphi: X \to X/\iota$ be the quotient map.

i) $\iota(F_t) = F_{t'}$. Let $C_t = \varphi(F_t)$. Then C_t gives a genus 1 fibration on X/ι .

ii) $\iota(F_t) = F_t$. In this case ι fixes 4 points in F_t . The curve $D_t = \varphi(F_t)$ is a rational curve. We get a conic bundle on X/ι .

Task : Classify all conic bundles on X/ι .

Mordell-Weil groups of fibrations induced by conic bundles

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ∽ � � �

Mordell-Weil groups of fibrations induced by conic bundles

Consider X a K3 surface with a non-symplectic involution ι "acting" as the identity on NS(X).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Mordell-Weil groups of fibrations induced by conic bundles

Consider X a K3 surface with a non-symplectic involution ι "acting" as the identity on NS(X).

LEMMA

Let $\pi : X \to \mathbb{P}^1$ be an elliptic fibration induced by a conic bundle. Then $MW(\pi) \subseteq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Moreover, ι it fixes a curve which is not rational then $MW(\pi) \subseteq \mathbb{Z}/2\mathbb{Z}$.

Let k be the number of rational curves fixed by ι ,

(ロ)、(型)、(E)、(E)、 E) の(の)

Let k be the number of rational curves fixed by ι , then $1 \le k \le 9$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let k be the number of rational curves fixed by ι , then $1 \le k \le 9$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We analyze all possible cases.

Let k be the number of rational curves fixed by ι , then $1 \le k \le 9$. We analyze all possible cases.

k = 9 :

trivial lattice	$MW(\mathcal{E})$
$U\oplus A_8$	$\mathbb{Z}/3\mathbb{Z}$
$U \oplus E_8 \oplus E_8 \oplus A_1$	$\{1\}$
$U \oplus E_7 \oplus D_{10}$	$\mathbb{Z}/2\mathbb{Z}$
$U \oplus D_{16} \oplus A_1$	$\mathbb{Z}/2\mathbb{Z}$

(1)

k = 8 :

trivial lattice	$MW(\mathcal{E})$
$U \oplus A_7$	\mathbb{Z}
$U \oplus E_8 \oplus E_7 \oplus A_1$	$\{1\}$
$U\oplus E_8\oplus D_8$	$\{1\}$
$U \oplus E_7 \oplus E_7 \oplus A_1 \oplus A_1$	$\mathbb{Z}/2\mathbb{Z}$
$U \oplus E_7 \oplus D_8 \oplus A_1$	$\mathbb{Z}/2\mathbb{Z}$
$U\oplus D_{16}$	$\{1\}$
$U \oplus D_{14} \oplus A_1 \oplus A_1$	$\mathbb{Z}/2\mathbb{Z}$
$U \oplus D_{12} \oplus D_4$	$\mathbb{Z}/2\mathbb{Z}$
$U \oplus D_{10} \oplus D_6$	$\mathbb{Z}/2\mathbb{Z}$
$U\oplus D_8\oplus D_8$	$\mathbb{Z}/2\mathbb{Z}$

(2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

k = 7:

trivial lattice	$MW(\mathcal{E})$
$U \oplus A_7$	\mathbb{Z}^2
$U \oplus E_8 \oplus D_6 \oplus A_1$	$\{1\}$
$U \oplus E_7 \oplus D_6 \oplus A_1 \oplus A_1$	$\mathbb{Z}/2\mathbb{Z}$
$U\oplus E_7\oplus D_8$	{1}
$U \oplus E_7 \oplus E_7 \oplus A_1$	{1}
$U\oplus D_{14}\oplus A_1$	$\{1\}$
$\bigcup \oplus D_{12} \oplus A_1 \oplus A_1 \oplus A_1$	$\mathbb{Z}/2\mathbb{Z}$
$U\oplus D_{10}\oplus D_4\oplus A_1$	$\mathbb{Z}/2\mathbb{Z}$
$U \oplus D_8 \oplus D_6 \oplus A_1$	$\mathbb{Z}/2\mathbb{Z}$

(3)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

k = 6 :

trivial lattice	$MM(\mathcal{E})$
	10100 (C)
$U\oplus A_6$	\mathbb{Z}^3
$U\oplus E_8\oplus D_4\oplus A_1\oplus A_1$	{1}
$U \oplus E_7 \oplus D_6 \oplus A_1$	$\{1\}$
$U \oplus E_7 \oplus D_4 \oplus A_1 \oplus A_1 \oplus A_1$	$\mathbb{Z}/2\mathbb{Z}$
$U\oplus D_{12}\oplus A_1^2$	$\{1\}$
$U\oplus D_{10}\oplus D_4$	$\{1\}$
$U\oplus D_{10}\oplus A_1^4$	$\mathbb{Z}/2\mathbb{Z}$
$U\oplus D_8\oplus D_6$	$\{1\}$
$U\oplus D_8\oplus D_4\oplus A_1\oplus A_1$	$\mathbb{Z}/2\mathbb{Z}$
$U\oplus D_6\oplus D_6\oplus A_1\oplus A_1$	$\mathbb{Z}/2\mathbb{Z}$

(4)

k = 5:

trivial lattice	$MW(\mathcal{E})$
$U \oplus A_5$	\mathbb{Z}^4
$U \oplus E_8 \oplus A_1^5$	{1}
$U \oplus E_7 \oplus D_4 \oplus A_1 \oplus A_1$	{1}
$U\oplus E_7\oplus A_1^6$	$\mathbb{Z}/2\mathbb{Z}$
$\bigcup \oplus D_{10} \oplus A_1 \oplus A_1 \oplus A_1$	{1}
$U \oplus D_8 \oplus D_4 \oplus A_1$	{1}
$U\oplus D_8\oplus A_1^5$	$\mathbb{Z}/2\mathbb{Z}$
$U \oplus D_6 \oplus D_6 \oplus A_1$	{1}
$U \oplus D_6 \oplus D_4 \oplus A_1^3$	$\mathbb{Z}/2\mathbb{Z}$

(5)

<□ > < @ > < E > < E > E のQ @

$$k = 4$$
 :

trivial lattice	$MW(\mathcal{E})$
$U\oplus A_4$	\mathbb{Z}^5
$U\oplus E_7\oplus A_1^5$	$\{1\}$
$U\oplus D_8\oplus A_1^4$	$\{1\}$
$U \oplus D_6 \oplus D_4 \oplus A_1^2$	$\{1\}$
$U\oplus D_6\oplus A_1^6$	$\mathbb{Z}/2\mathbb{Z}$
$U\oplus D_6\oplus A_1^6$	$\mathbb{Z}/2\mathbb{Z}$
$U \oplus D_4 \oplus D_4 \oplus D_4$	$\{1\}$
$U \oplus D_4 \oplus D_4 \oplus A_1^4$	$\mathbb{Z}/2\mathbb{Z}$

k = 3 :

trivial lattice	$MW(\mathcal{E})$
$U \oplus A_3$	\mathbb{Z}^6
$U\oplus D_6\oplus A_1^5$	{1}
$U \oplus D_4 \oplus D_4 \oplus A_1^3$	$\{1\}$
$U\oplus D_4\oplus A_1^7$	$\mathbb{Z}/2\mathbb{Z}$

(6)

(7)

$$k = 2$$
 :

trivial lattice	$MW(\mathcal{E})$
$U \oplus A_2$	\mathbb{Z}^7
$U \oplus D_4 \oplus A_1^6$	$\{1\}$
$U \oplus A_1^{10}$	$\mathbb{Z}/2\mathbb{Z}$

k = 1:

trivial lattice	$MW(\mathcal{E})$
$U \oplus A_1$	\mathbb{Z}^8
$U\oplus A_1^9$	$\{1\}$

(8)

Obrigada ! Muchas Gracias !