About Spetses

Michel Broué

Université Paris-Diderot Paris VII

> Buenos Aires
> July 2016

An example of a known Unknown : Spets

An example of a known Unknown : Spets

Long lasting joint work between Gunter Malle, Jean Michel, and myself,

An example of a known Unknown : Spets

Long lasting joint work between Gunter Malle, Jean Michel, and myself,

 initiated on the Greek island named SPETSES in 1993
An example of a known Unknown : Spets

> Long lasting joint work between Gunter Malle, Jean Michel, and myself,

initiated on the Greek island named SPETSES in 1993

(there, we computed unipotent degrees, Frobenius eigenvalues, families, Fourier matrix, for the "generic fake finite reductive group"

An example of a known Unknown : Spets

> Long lasting joint work between Gunter Malle, Jean Michel, and myself,

initiated on the Greek island named SPETSES in 1993

(there, we computed unipotent degrees, Frobenius eigenvalues, families, Fourier matrix, for the "generic fake finite reductive group" ("Spets?")

An example of a known Unknown : Spets

> Long lasting joint work between Gunter Malle, Jean Michel, and myself,

initiated on the Greek island named SPETSES in 1993

(there, we computed unipotent degrees, Frobenius eigenvalues, families, Fourier matrix, for the "generic fake finite reductive group" ("Spets?") whose Weyl group is the cyclic group μ_{3} of order 3...),

An example of a known Unknown : Spets

> Long lasting joint work between Gunter Malle, Jean Michel, and myself,

initiated on the Greek island named SPETSES in 1993

(there, we computed unipotent degrees, Frobenius eigenvalues, families, Fourier matrix, for the "generic fake finite reductive group" ("Spets?") whose Weyl group is the cyclic group $\boldsymbol{\mu}_{3}$ of order 3...),
going on with the collaboration of Olivier Dudas, and more and more of Cédric Bonnafé.
I. Generic point of view on finite reductive groups

I. Generic point of view on finite reductive groups

Let \mathbf{G} be a connected reductive algebraic group over $\overline{\mathbb{F}}_{q}$

I. Generic point of view on finite reductive groups

Let \mathbf{G} be a connected reductive algebraic group over $\overline{\mathbb{F}}_{q}$ (e.g., $\mathbf{G}=\mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{p}\right)$),

I. Generic point of view on finite reductive groups

Let \mathbf{G} be a connected reductive algebraic group over $\overline{\mathbb{F}}_{q}$ (e.g., $\mathbf{G}=G L_{n}\left(\overline{\mathbb{F}}_{p}\right)$), with Weyl group W,

I. Generic point of view on finite reductive groups

Let \mathbf{G} be a connected reductive algebraic group over $\overline{\mathbb{F}}_{q}$ (e.g., $\mathbf{G}=G L_{n}\left(\overline{\mathbb{F}}_{p}\right)$), with Weyl group W, group of co-characters Y,

I. Generic point of view on finite reductive groups

Let \mathbf{G} be a connected reductive algebraic group over $\overline{\mathbb{F}}_{q}$ (e.g., $\mathbf{G}=\mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{p}\right)$),
with Weyl group W, group of co-characters Y, endowed with a rational structure over \mathbb{F}_{q} via a Frobenius endomorphism F.

I. Generic point of view on finite reductive groups

Let \mathbf{G} be a connected reductive algebraic group over $\overline{\mathbb{F}}_{q}$ (e.g., $\mathbf{G}=G L_{n}\left(\overline{\mathbb{F}}_{p}\right)$),
with Weyl group W, group of co-characters Y, endowed with a rational structure over \mathbb{F}_{q} via a Frobenius endomorphism F.
The group $G:=\mathbf{G}^{F}$

I. Generic point of view on finite reductive groups

Let \mathbf{G} be a connected reductive algebraic group over $\overline{\mathbb{F}}_{q}$ (e.g., $\mathbf{G}=G L_{n}\left(\overline{\mathbb{F}}_{p}\right)$),
with Weyl group W, group of co-characters Y, endowed with a rational structure over \mathbb{F}_{q} via a Frobenius endomorphism F.
The group $G:=\mathbf{G}^{F}$
(e.g., $\mathbf{G}=G L_{n}(q)$)

I. Generic point of view on finite reductive groups

Let \mathbf{G} be a connected reductive algebraic group over $\overline{\mathbb{F}}_{q}$ (e.g., $\mathbf{G}=G L_{n}\left(\overline{\mathbb{F}}_{p}\right)$),
with Weyl group W, group of co-characters Y, endowed with a rational structure over \mathbb{F}_{q} via a Frobenius endomorphism F.
The group $G:=\mathbf{G}^{F}$
(e.g., $\mathbf{G}=\mathrm{GL}_{n}(q)$)
is called a finite reductive group.

I. Generic point of view on finite reductive groups

Let \mathbf{G} be a connected reductive algebraic group over $\overline{\mathbb{F}}_{q}$
(e.g., $\mathbf{G}=G L_{n}\left(\overline{\mathbb{F}}_{p}\right)$),
with Weyl group W, group of co-characters Y, endowed with a rational structure over \mathbb{F}_{q} via a Frobenius endomorphism F.
The group $G:=\mathbf{G}^{F}$
(e.g., $\mathbf{G}=\mathrm{GL}_{n}(q)$)
is called a finite reductive group.
To simplify the lecture

I. Generic point of view on finite reductive groups

Let \mathbf{G} be a connected reductive algebraic group over $\overline{\mathbb{F}}_{q}$
(e.g., $\mathbf{G}=G L_{n}\left(\overline{\mathbb{F}}_{p}\right)$),
with Weyl group W, group of co-characters Y, endowed with a rational structure over \mathbb{F}_{q} via a Frobenius endomorphism F.
The group $G:=\mathbf{G}^{F}$
(e.g., $\mathbf{G}=\mathrm{GL}_{n}(q)$)
is called a finite reductive group.
To simplify the lecture we assume that G is split, i.e., F acts on Y by multiplication by q.

I. Generic point of view on finite reductive groups

Let \mathbf{G} be a connected reductive algebraic group over $\overline{\mathbb{F}}_{q}$
(e.g., $\mathbf{G}=G L_{n}\left(\overline{\mathbb{F}}_{p}\right)$),
with Weyl group W, group of co-characters Y, endowed with a rational structure over \mathbb{F}_{q} via a Frobenius endomorphism F.
The group $G:=\mathbf{G}^{F}$
(e.g., $\mathbf{G}=\mathrm{GL}_{n}(q)$)
is called a finite reductive group.
To simplify the lecture we assume that G is split, i.e., F acts on Y by multiplication by q.

The type of G is $\mathbb{G}:=(V, W)$ where $V:=\mathbb{C} \otimes_{\mathbb{Z}} Y$.

I. Generic point of view on finite reductive groups

Let \mathbf{G} be a connected reductive algebraic group over $\overline{\mathbb{F}}_{q}$
(e.g., $\mathbf{G}=G L_{n}\left(\overline{\mathbb{F}}_{p}\right)$),
with Weyl group W, group of co-characters Y, endowed with a rational structure over \mathbb{F}_{q} via a Frobenius endomorphism F.
The group $G:=\mathbf{G}^{F}$
(e.g., $\mathbf{G}=\mathrm{GL}_{n}(q)$)
is called a finite reductive group.
To simplify the lecture we assume that G is split, i.e., F acts on Y by multiplication by q.

$$
\text { The type of } G \text { is } \mathbb{G}:=(V, W) \text { where } V:=\mathbb{C} \otimes_{\mathbb{Z}} Y \text {. }
$$

Lots of numerical data associated with G come from evaluation at $x=q$ of polynomials in x which depends only on the type \mathbb{G}.

I. Generic point of view on finite reductive groups

Let \mathbf{G} be a connected reductive algebraic group over $\overline{\mathbb{F}}_{q}$
(e.g., $\mathbf{G}=G L_{n}\left(\overline{\mathbb{F}}_{p}\right)$),
with Weyl group W, group of co-characters Y, endowed with a rational structure over \mathbb{F}_{q} via a Frobenius endomorphism F.
The group $G:=\mathbf{G}^{F}$
(e.g., $\mathbf{G}=\mathrm{GL}_{n}(q)$)
is called a finite reductive group.
To simplify the lecture we assume that G is split, i.e., F acts on Y by multiplication by q.

$$
\text { The type of } G \text { is } \mathbb{G}:=(V, W) \text { where } V:=\mathbb{C} \otimes_{\mathbb{Z}} Y \text {. }
$$

Lots of numerical data associated with G come from evaluation at $x=q$ of polynomials in x which depends only on the type \mathbb{G}.

Let us give some examples.

1. The polynomial order

1. The polynomial order

The element of $\mathbb{Z}[x]$ defined by

1. The polynomial order

The element of $\mathbb{Z}[x]$ defined by

$$
|\mathbb{G}|(x)=x^{N} \frac{1}{\frac{1}{|W|} \sum_{w \in W} \frac{1}{\operatorname{det}_{V}(1-w x)}}
$$

1. The polynomial order

The element of $\mathbb{Z}[x]$ defined by

$$
|\mathbb{G}|(x)=x^{N} \frac{1}{\frac{1}{|W|} \sum_{w \in W} \frac{1}{\operatorname{det} v(1-w x)}}
$$

is the polynomial order of \mathbb{G},

1. The polynomial order

The element of $\mathbb{Z}[x]$ defined by

$$
|\mathbb{G}|(x)=x^{N} \frac{1}{\frac{1}{|W|} \sum_{w \in W} \frac{1}{\operatorname{det}_{V}(1-w x)}}
$$

is the polynomial order of \mathbb{G}, that is, $|\mathbb{G}|(q)=|G|$.

1. The polynomial order

The element of $\mathbb{Z}[x]$ defined by

$$
|\mathbb{G}|(x)=x^{N} \frac{1}{\frac{1}{|W|} \sum_{w \in W} \frac{1}{\operatorname{det} v(1-w x)}}
$$

is the polynomial order of \mathbb{G}, that is, $|\mathbb{G}|(q)=|G|$.

- Then

$$
|\mathbb{G}|(x)=x^{N} \prod_{\zeta \bmod \text { Gal }} \Phi_{\zeta}(x)^{a(\zeta)}
$$

1. The polynomial order

The element of $\mathbb{Z}[x]$ defined by

$$
|\mathbb{G}|(x)=x^{N} \frac{1}{\frac{1}{|W|} \sum_{w \in W} \frac{1}{\operatorname{det} v(1-w x)}}
$$

is the polynomial order of \mathbb{G}, that is, $|\mathbb{G}|(q)=|G|$.

- Then

$$
|\mathbb{G}|(x)=x^{N} \prod_{\zeta \bmod \mathrm{Gal}} \Phi_{\zeta}(x)^{a(\zeta)},
$$

Plus: for \mathbf{L} an F-stable Levi subgroup of \mathbf{G}, its porder $|\mathbb{L}|(x)$ divides $|\mathbb{G}|(x))$.

1. The polynomial order

The element of $\mathbb{Z}[x]$ defined by

$$
|\mathbb{G}|(x)=x^{N} \frac{1}{\frac{1}{|W|} \sum_{w \in W} \frac{1}{\operatorname{det} v(1-w x)}}
$$

is the polynomial order of \mathbb{G}, that is, $|\mathbb{G}|(q)=|G|$.

- Then

$$
|\mathbb{G}|(x)=x^{N} \prod_{\zeta \bmod \mathrm{Gal}} \Phi_{\zeta}(x)^{a(\zeta)},
$$

Plus: for \mathbf{L} an F-stable Levi subgroup of \mathbf{G}, its porder $|\mathbb{L}|(x)$ divides $|\mathbb{G}|(x))$.

- I insist: the polynomial order depends only on the type (V, W) (not on a root datum).

1. The polynomial order

The element of $\mathbb{Z}[x]$ defined by

$$
|\mathbb{G}|(x)=x^{N} \frac{1}{\frac{1}{|W|} \sum_{w \in W} \frac{1}{\operatorname{det} v(1-w x)}}
$$

is the polynomial order of \mathbb{G}, that is, $|\mathbb{G}|(q)=|G|$.

- Then

$$
|\mathbb{G}|(x)=x^{N} \prod_{\zeta \bmod \mathrm{Gal}} \Phi_{\zeta}(x)^{a(\zeta)}
$$

Plus: for \mathbf{L} an F-stable Levi subgroup of \mathbf{G}, its porder $|\mathbb{L}|(x)$ divides $|\mathbb{G}|(x))$.

- I insist: the polynomial order depends only on the type (V, W) (not on a root datum). Thus

$$
\left|\mathrm{SO}_{2 n+1}(q)\right|=\left|\mathrm{Sp}_{2 n}(q)\right|
$$

2. Unipotent characters, generic degrees (Lusztig)

2. Unipotent characters, generic degrees (Lusztig)

(1) The set $\operatorname{Un}(G)$ of unipotent characters of G is parametrized by the set of unipotent generic characters $\operatorname{Un}(\mathbb{G})$ (depending only on the type). Let us denote that parametrization by

$$
\operatorname{Un}(\mathbb{G}) \rightarrow \operatorname{Un}(G), \rho \mapsto \rho_{q}
$$

2. Unipotent characters, generic degrees (Lusztig)

(1) The set $\operatorname{Un}(G)$ of unipotent characters of G is parametrized by the set of unipotent generic characters $\operatorname{Un}(\mathbb{G})$ (depending only on the type). Let us denote that parametrization by

$$
\operatorname{Un}(\mathbb{G}) \rightarrow \operatorname{Un}(G), \rho \mapsto \rho_{q}
$$

(2) Generic degree : for all $\rho \in \operatorname{Un}(\mathbb{G})$, there exists $\operatorname{Deg}_{\rho}(x) \in \mathbb{Q}[x]$ such that

$$
\left.\operatorname{Deg}_{\rho}(x)\right|_{x=q}=\operatorname{Deg}\left(\rho_{q}\right)
$$

2. Unipotent characters, generic degrees (Lusztig)

(1) The set $\operatorname{Un}(G)$ of unipotent characters of G is parametrized by the set of unipotent generic characters $\operatorname{Un}(\mathbb{G})$ (depending only on the type). Let us denote that parametrization by

$$
\operatorname{Un}(\mathbb{G}) \rightarrow \operatorname{Un}(G), \rho \mapsto \rho_{q}
$$

(2) Generic degree : for all $\rho \in \operatorname{Un}(\mathbb{G})$, there exists $\operatorname{Deg}_{\rho}(x) \in \mathbb{Q}[x]$ such that

$$
\left.\operatorname{Deg}_{\rho}(x)\right|_{x=q}=\operatorname{Deg}\left(\rho_{q}\right)=\rho_{q}(1)
$$

2. Unipotent characters, generic degrees (Lusztig)

(1) The set $\operatorname{Un}(G)$ of unipotent characters of G is parametrized by the set of unipotent generic characters $\operatorname{Un}(\mathbb{G})$ (depending only on the type). Let us denote that parametrization by

$$
\operatorname{Un}(\mathbb{G}) \rightarrow \operatorname{Un}(G), \rho \mapsto \rho_{q}
$$

(2) Generic degree : for all $\rho \in \operatorname{Un}(\mathbb{G})$, there exists $\operatorname{Deg}_{\rho}(x) \in \mathbb{Q}[x]$ such that

$$
\left.\operatorname{Deg}_{\rho}(x)\right|_{x=q}=\operatorname{Deg}\left(\rho_{q}\right)=\rho_{q}(1)
$$

Of course, the (generic) degrees divide the (polynomial) order of \mathbb{G}.

2. Unipotent characters, generic degrees (Lusztig)

(1) The set $\operatorname{Un}(G)$ of unipotent characters of G is parametrized by the set of unipotent generic characters $\operatorname{Un}(\mathbb{G})$ (depending only on the type). Let us denote that parametrization by

$$
\operatorname{Un}(\mathbb{G}) \rightarrow \operatorname{Un}(G), \rho \mapsto \rho_{q}
$$

(2) Generic degree : for all $\rho \in \operatorname{Un}(\mathbb{G})$, there exists $\operatorname{Deg}_{\rho}(x) \in \mathbb{Q}[x]$ such that

$$
\left.\operatorname{Deg}_{\rho}(x)\right|_{x=q}=\operatorname{Deg}\left(\rho_{q}\right)=\rho_{q}(1)
$$

Of course, the (generic) degrees divide the (polynomial) order of \mathbb{G}.
(3) Every $\rho \in \operatorname{Un}(\mathbb{G})$ comes equipped with a Frobenius eigenvalue Fr_{ρ}, a root of unity

2. Unipotent characters, generic degrees (Lusztig)

(1) The set $\operatorname{Un}(G)$ of unipotent characters of G is parametrized by the set of unipotent generic characters $\operatorname{Un}(\mathbb{G})$ (depending only on the type). Let us denote that parametrization by

$$
\operatorname{Un}(\mathbb{G}) \rightarrow \operatorname{Un}(G), \rho \mapsto \rho_{q}
$$

(2) Generic degree: for all $\rho \in \operatorname{Un}(\mathbb{G})$, there exists $\operatorname{Deg}_{\rho}(x) \in \mathbb{Q}[x]$ such that

$$
\left.\operatorname{Deg}_{\rho}(x)\right|_{x=q}=\operatorname{Deg}\left(\rho_{q}\right)=\rho_{q}(1)
$$

Of course, the (generic) degrees divide the (polynomial) order of \mathbb{G}.
(3) Every $\rho \in \operatorname{Un}(\mathbb{G})$ comes equipped with a Frobenius eigenvalue Fr_{ρ}, a root of unity
\ldots...which has something to do with the Deligne-Lusztig varieties $\mathbf{X}_{w} \ldots$

Generic unipotent characters, continued

Generic unipotent characters, continued

... have lots of other properties, like the partition of $\operatorname{Un}(\mathbb{G})$ into Harish-Chandra series, or more generally

Generic unipotent characters, continued

... have lots of other properties, like the partition of $\operatorname{Un}(\mathbb{G})$ into Harish-Chandra series, or more generally
(9) For all $\zeta \in \boldsymbol{\mu}$, partition of $\operatorname{Un}(\mathbb{G})$ into ζ-Harish-Chandra series.

Generic unipotent characters, continued

... have lots of other properties, like the partition of $\operatorname{Un}(\mathbb{G})$ into Harish-Chandra series, or more generally
(3) For all $\zeta \in \boldsymbol{\mu}$, partition of $\operatorname{Un}(\mathbb{G})$ into ζ-Harish-Chandra series.
(0) Description of the principal ζ-Harish-Chandra series with a ζ-cyclotomic Hecke algebra.

Generic unipotent characters, continued

... have lots of other properties, like the partition of $\operatorname{Un}(\mathbb{G})$ into Harish-Chandra series, or more generally
(3) For all $\zeta \in \boldsymbol{\mu}$, partition of $\operatorname{Un}(\mathbb{G})$ into ζ-Harish-Chandra series.
(0) Description of the principal ζ-Harish-Chandra series with a ζ-cyclotomic Hecke algebra.

The principal 1-Harish-Chandra series is the usual principal Harish-Chandra series.

Generic unipotent characters, continued

... have lots of other properties, like the partition of $\operatorname{Un}(\mathbb{G})$ into Harish-Chandra series, or more generally
(3) For all $\zeta \in \boldsymbol{\mu}$, partition of $\operatorname{Un}(\mathbb{G})$ into ζ-Harish-Chandra series.
(1) Description of the principal ζ-Harish-Chandra series with a ζ-cyclotomic Hecke algebra.

The principal 1-Harish-Chandra series is the usual principal Harish-Chandra series.
Let us devote some time to the notion of ζ-cyclotomic Hecke algebras.

Generic unipotent characters, continued

... have lots of other properties, like the partition of $\operatorname{Un}(\mathbb{G})$ into Harish-Chandra series, or more generally
(3) For all $\zeta \in \boldsymbol{\mu}$, partition of $\operatorname{Un}(\mathbb{G})$ into ζ-Harish-Chandra series.
(0) Description of the principal ζ-Harish-Chandra series with a ζ-cyclotomic Hecke algebra.

The principal 1-Harish-Chandra series is the usual principal Harish-Chandra series.
Let us devote some time to the notion of ζ-cyclotomic Hecke algebras.
Then we shall come back to the generic properties of $\operatorname{Un}(\mathbb{G})$.

3. ζ-regular elements and ζ-cyclotomic Hecke algebras

3. ζ-regular elements and ζ-cyclotomic Hecke algebras

What follows holds more generally for any pair $\mathbb{G}=(V, W)$ where

3. ζ-regular elements and ζ-cyclotomic Hecke algebras

What follows holds more generally for any pair $\mathbb{G}=(V, W)$ where - V is a finite dimensional complex vector space,

3. ζ-regular elements and ζ-cyclotomic Hecke algebras

What follows holds more generally for any pair $\mathbb{G}=(V, W)$ where

- V is a finite dimensional complex vector space,
- W is a finite subgroup of $G L(V)$ generated by (pseudo)-reflections.

3. ζ-regular elements and ζ-cyclotomic Hecke algebras

What follows holds more generally for any pair $\mathbb{G}=(V, W)$ where

- V is a finite dimensional complex vector space,
- W is a finite subgroup of $G L(V)$ generated by (pseudo)-reflections.

Let \mathcal{A} be the set of reflecting hyperplanes of W. A root of unity ζ is called regular if there exist $w \in W$ and $x \in V^{\text {reg }}:=V \backslash \bigcup_{H \in \mathcal{A}} H$ such that $w(x)=\zeta x$. We then say that w is ζ-regular.

3. ζ-regular elements and ζ-cyclotomic Hecke algebras

What follows holds more generally for any pair $\mathbb{G}=(V, W)$ where

- V is a finite dimensional complex vector space,
- W is a finite subgroup of $\mathrm{GL}(V)$ generated by (pseudo)-reflections.

Let \mathcal{A} be the set of reflecting hyperplanes of W. A root of unity ζ is called regular if there exist $w \in W$ and $x \in V^{\text {reg }}:=V \backslash \bigcup_{H \in \mathcal{A}} H$ such that $w(x)=\zeta x$. We then say that w is ζ-regular.

From now on we assume that ζ is regular. Then

3. ζ-regular elements and ζ-cyclotomic Hecke algebras

What follows holds more generally for any pair $\mathbb{G}=(V, W)$ where

- V is a finite dimensional complex vector space,
- W is a finite subgroup of $\mathrm{GL}(V)$ generated by (pseudo)-reflections.

Let \mathcal{A} be the set of reflecting hyperplanes of W. A root of unity ζ is called regular if there exist $w \in W$ and $x \in V^{\text {reg }}:=V \backslash \bigcup_{H \in \mathcal{A}} H$ such that $w(x)=\zeta x$. We then say that w is ζ-regular.

From now on we assume that ζ is regular. Then

- [Springer] The group $W_{\zeta}:=C_{W}(w)$ acts faithfully as a reflection group on the vector space $V_{\zeta}:=\operatorname{ker}\left(w-\zeta \operatorname{ld}_{V}\right)$.

3. ζ-regular elements and ζ-cyclotomic Hecke algebras

What follows holds more generally for any pair $\mathbb{G}=(V, W)$ where

- V is a finite dimensional complex vector space,
- W is a finite subgroup of $\mathrm{GL}(V)$ generated by (pseudo)-reflections.

Let \mathcal{A} be the set of reflecting hyperplanes of W. A root of unity ζ is called regular if there exist $w \in W$ and $x \in V^{\text {reg }}:=V \backslash \bigcup_{H \in \mathcal{A}} H$ such that $w(x)=\zeta x$. We then say that w is ζ-regular.

From now on we assume that ζ is regular. Then

- [Springer] The group $W_{\zeta}:=C_{W}(w)$ acts faithfully as a reflection group on the vector space $V_{\zeta}:=\operatorname{ker}\left(w-\zeta \operatorname{ld}_{V}\right)$.
- The group W_{ζ} is called the ζ-cyclotomic Weyl group.

3. ζ-regular elements and ζ-cyclotomic Hecke algebras

What follows holds more generally for any pair $\mathbb{G}=(V, W)$ where

- V is a finite dimensional complex vector space,
- W is a finite subgroup of $G L(V)$ generated by (pseudo)-reflections.

Let \mathcal{A} be the set of reflecting hyperplanes of W. A root of unity ζ is called regular if there exist $w \in W$ and $x \in V^{\text {reg }}:=V \backslash \bigcup_{H \in \mathcal{A}} H$ such that $w(x)=\zeta x$. We then say that w is ζ-regular.

From now on we assume that ζ is regular. Then

- [Springer] The group $W_{\zeta}:=C_{W}(w)$ acts faithfully as a reflection group on the vector space $V_{\zeta}:=\operatorname{ker}\left(w-\zeta \operatorname{ld}_{V}\right)$.
- The group W_{ζ} is called the ζ-cyclotomic Weyl group.
[Note that $\left.W_{1}=W\right]$.

3.1. Hecke algebras everywhere

3.1. Hecke algebras everywhere

One knows that the (ordinary) principal series $\operatorname{Un}(\mathbb{G}, 1)$

3.1. Hecke algebras everywhere

One knows that the (ordinary) principal series $\operatorname{Un}(\mathbb{G}, 1)$

- corresponds to unipotent characters of G occurring in $\overline{\mathbf{Q}}_{\ell}(G / B)$,

3.1. Hecke algebras everywhere

One knows that the (ordinary) principal series $\operatorname{Un}(\mathbb{G}, 1)$

- corresponds to unipotent characters of G occurring in $\overline{\mathbf{Q}}_{\ell}(G / B)$,
- and the commutant of that module is the (ordinary) Hecke algebra of W evaluated at q.

3.1. Hecke algebras everywhere

One knows that the (ordinary) principal series $\operatorname{Un}(\mathbb{G}, 1)$

- corresponds to unipotent characters of G occurring in $\overline{\mathbf{Q}}_{\ell}(G / B)$,
- and the commutant of that module is the (ordinary) Hecke algebra of W evaluated at q.
One conjectures that the ζ-principal series $\operatorname{Un}(\mathbb{G}, \zeta)$

3.1. Hecke algebras everywhere

One knows that the (ordinary) principal series $\operatorname{Un}(\mathbb{G}, 1)$

- corresponds to unipotent characters of G occurring in $\overline{\mathbf{Q}}_{\ell}(G / B)$,
- and the commutant of that module is the (ordinary) Hecke algebra of W evaluated at q.
One conjectures that the ζ-principal series Un(\mathbb{G}, ζ)
(!) for a good choice of w

3.1. Hecke algebras everywhere

One knows that the (ordinary) principal series $\operatorname{Un}(\mathbb{G}, 1)$

- corresponds to unipotent characters of G occurring in $\overline{\mathbf{Q}}_{\ell}(G / B)$,
- and the commutant of that module is the (ordinary) Hecke algebra of W evaluated at q.
One conjectures that the ζ-principal series $\operatorname{Un}(\mathbb{G}, \zeta)$
(!) for a good choice of w
- corresponds to unipotent characters of G occurring in $\bigoplus_{n} H_{c}^{n}\left(\mathbf{X}_{w}, \overline{\mathbb{Q}}_{\ell}\right)$,

3.1. Hecke algebras everywhere

One knows that the (ordinary) principal series $\operatorname{Un}(\mathbb{G}, 1)$

- corresponds to unipotent characters of G occurring in $\overline{\mathbf{Q}}_{\ell}(G / B)$,
- and the commutant of that module is the (ordinary) Hecke algebra of W evaluated at q.
One conjectures that the ζ-principal series $\operatorname{Un}(\mathbb{G}, \zeta)$
(!) for a good choice of w
- corresponds to unipotent characters of G occurring in $\bigoplus_{n} H_{c}^{n}\left(\mathbf{X}_{w}, \overline{\mathbb{Q}}_{\ell}\right)$,
- and the commutant of that module is a ζ-cyclotomic Hecke algebra of W_{ζ} evaluated at q.

3.1. Hecke algebras everywhere

One knows that the (ordinary) principal series Un($\mathbb{G}, 1$)

- corresponds to unipotent characters of G occurring in $\overline{\mathbf{Q}}_{\ell}(G / B)$,
- and the commutant of that module is the (ordinary) Hecke algebra of W evaluated at q.
One conjectures that the ζ-principal series $\operatorname{Un}(\mathbb{G}, \zeta)$
(!) for a good choice of w
- corresponds to unipotent characters of G occurring in $\bigoplus_{n} H_{c}^{n}\left(\mathbf{X}_{w}, \overline{\mathbb{Q}}_{\ell}\right)$,
- and the commutant of that module is a ζ-cyclotomic Hecke algebra of W_{ζ} evaluated at q.

We shall now introduce the notion of ζ-cyclotomic Hecke algebra.

3.2. ζ-cyclotomic Hecke algebras

3.2. ζ-cyclotomic Hecke algebras

- A ζ-cyclotomic Hecke algebra $\mathcal{H}\left(W_{\zeta}\right)$ of W_{ζ} is in particular

3.2. ζ-cyclotomic Hecke algebras

- A ζ-cyclotomic Hecke algebra $\mathcal{H}\left(W_{\zeta}\right)$ of W_{ζ} is in particular - a $\mathbb{C}\left[x, x^{-1}\right]$-algebra,

3.2. ζ-cyclotomic Hecke algebras

- A ζ-cyclotomic Hecke algebra $\mathcal{H}\left(W_{\zeta}\right)$ of W_{ζ} is in particular
- a $\mathbb{C}\left[x, x^{-1}\right]$-algebra,
- an image of the group algebra of the braid group $B_{W_{\zeta}}$ attached to W_{ζ},

3.2. ζ-cyclotomic Hecke algebras

- A ζ-cyclotomic Hecke algebra $\mathcal{H}\left(W_{\zeta}\right)$ of W_{ζ} is in particular
- a $\mathbb{C}\left[x, x^{-1}\right]$-algebra,
- an image of the group algebra of the braid group $B_{W_{\varsigma}}$ attached to W_{ζ},
- a deformation (via x) of the group algebra of W_{ζ},

3.2. ζ-cyclotomic Hecke algebras

- A ζ-cyclotomic Hecke algebra $\mathcal{H}\left(W_{\zeta}\right)$ of W_{ζ} is in particular
- a $\mathbb{C}\left[x, x^{-1}\right]$-algebra,
- an image of the group algebra of the braid group $B_{W_{\zeta}}$ attached to W_{ζ},
- a deformation (via x) of the group algebra of W_{ζ},
- which specializes to that algebra for $x=\zeta$.

3.2. ζ-cyclotomic Hecke algebras

- A ζ-cyclotomic Hecke algebra $\mathcal{H}\left(W_{\zeta}\right)$ of W_{ζ} is in particular
- a $\mathbb{C}\left[x, x^{-1}\right]$-algebra,
- an image of the group algebra of the braid group $B_{W_{\zeta}}$ attached to W_{ζ},
- a deformation (via x) of the group algebra of W_{ζ},
- which specializes to that algebra for $x=\zeta$.
- Examples:

3.2. ζ-cyclotomic Hecke algebras

- A ζ-cyclotomic Hecke algebra $\mathcal{H}\left(W_{\zeta}\right)$ of W_{ζ} is in particular
- a $\mathbb{C}\left[x, x^{-1}\right]$-algebra,
- an image of the group algebra of the braid group $B_{W_{\zeta}}$ attached to W_{ζ},
- a deformation (via x) of the group algebra of W_{ζ},
- which specializes to that algebra for $x=\zeta$.
- Examples:
- Case where $G=\mathrm{GL}_{3}, \zeta=1: W_{\zeta}=W=\mathfrak{S}_{3}$

3.2. ζ-cyclotomic Hecke algebras

- A ζ-cyclotomic Hecke algebra $\mathcal{H}\left(W_{\zeta}\right)$ of W_{ζ} is in particular
- a $\mathbb{C}\left[x, x^{-1}\right]$-algebra,
- an image of the group algebra of the braid group $B_{W_{\zeta}}$ attached to W_{ζ},
- a deformation (via x) of the group algebra of W_{ζ},
- which specializes to that algebra for $x=\zeta$.
- Examples:
- Case where $G=\mathrm{GL}_{3}, \zeta=1: W_{\zeta}=W=\mathfrak{S}_{3}$

3.2. ζ-cyclotomic Hecke algebras

- A ζ-cyclotomic Hecke algebra $\mathcal{H}\left(W_{\zeta}\right)$ of W_{ζ} is in particular
- a $\mathbb{C}\left[x, x^{-1}\right]$-algebra,
- an image of the group algebra of the braid group $B_{W_{\zeta}}$ attached to W_{ζ},
- a deformation (via x) of the group algebra of W_{ζ},
- which specializes to that algebra for $x=\zeta$.
- Examples:
- Case where $G=\mathrm{GL}_{3}, \zeta=1: W_{\zeta}=W=\mathfrak{S}_{3} \longleftrightarrow \bigcirc_{s} \longrightarrow_{t}$

$$
\mathcal{H}(W)=\langle S, T ; S T S=T S T,(S-x)(S+1)=0\rangle \quad \text { is 1-cyclotomic. }
$$

3.2. ζ-cyclotomic Hecke algebras

- A ζ-cyclotomic Hecke algebra $\mathcal{H}\left(W_{\zeta}\right)$ of W_{ζ} is in particular
- a $\mathbb{C}\left[x, x^{-1}\right]$-algebra,
- an image of the group algebra of the braid group $B_{W_{\zeta}}$ attached to W_{ζ},
- a deformation (via x) of the group algebra of W_{ζ},
- which specializes to that algebra for $x=\zeta$.
- Examples:

$$
\mathcal{H}(W)=\langle S, T ; S T S=T S T,(S-x)(S+1)=0\rangle \quad \text { is 1-cyclotomic. }
$$

- For $G=O_{8}(q), W=D_{4}, \zeta=i, W_{i}=G(4,2,2)$

3.2. ζ-cyclotomic Hecke algebras

- A ζ-cyclotomic Hecke algebra $\mathcal{H}\left(W_{\zeta}\right)$ of W_{ζ} is in particular
- a $\mathbb{C}\left[x, x^{-1}\right]$-algebra,
- an image of the group algebra of the braid group $B_{W_{\zeta}}$ attached to W_{ζ},
- a deformation (via x) of the group algebra of W_{ζ},
- which specializes to that algebra for $x=\zeta$.
- Examples:

$$
\mathcal{H}(W)=\langle S, T ; S T S=T S T,(S-x)(S+1)=0\rangle \quad \text { is 1-cyclotomic. }
$$

- For $G=\mathrm{O}_{8}(q), W=D_{4}, \zeta=i, W_{i}=G(4,2,2) \longleftrightarrow$

3.2. ζ-cyclotomic Hecke algebras

- A ζ-cyclotomic Hecke algebra $\mathcal{H}\left(W_{\zeta}\right)$ of W_{ζ} is in particular
- a $\mathbb{C}\left[x, x^{-1}\right]$-algebra,
- an image of the group algebra of the braid group $B_{W_{\zeta}}$ attached to W_{ζ},
- a deformation (via x) of the group algebra of W_{ζ},
- which specializes to that algebra for $x=\zeta$.
- Examples:

$$
\mathcal{H}(W)=\langle S, T ; S T S=T S T,(S-x)(S+1)=0\rangle \quad \text { is 1-cyclotomic. }
$$

- For $G=\mathrm{O}_{8}(q), W=D_{4}, \zeta=i, W_{i}=G(4,2,2) \longleftrightarrow$

$$
\mathcal{H}\left(W_{i}\right)=\left\langle S, T, U ;\left\{\begin{array}{l}
S T U=T U S=U S T \\
\left(S-x^{2}\right)(S-1)=0
\end{array}\right\}\right\rangle
$$

Fundamental properties Case by case checking...

Fundamental properties Case by case checking...
 "There is a proof, but so far I've not seen an explanation" [JHC]

Fundamental properties Case by case checking...
 "There is a proof, but so far l've not seen an explanation" [JHC]

- Such an algebra has a canonical symmetrizing form τ.

Fundamental properties Case by case checking...

"There is a proof, but so far l've not seen an explanation" [JHC]

- Such an algebra has a canonical symmetrizing form τ.
- It becomes split semisimple over $\mathbb{C}\left(x^{1 /\left|Z W_{\zeta}\right|}\right)$.

Fundamental properties Case by case checking...

"There is a proof, but so far l've not seen an explanation" [JHC]

- Such an algebra has a canonical symmetrizing form τ.
- It becomes split semisimple over $\mathbb{C}\left(x^{1 /\left|Z W_{\zeta}\right|}\right)$.
\Rightarrow Hence each absolute irreducible character χ of $\mathcal{H}\left(W_{\zeta}\right)$ is equipped with a Schur element

Fundamental properties Case by case checking...

"There is a proof, but so far l've not seen an explanation" [JHC]

- Such an algebra has a canonical symmetrizing form τ.
- It becomes split semisimple over $\mathbb{C}\left(x^{1 /\left|Z W_{\zeta}\right|}\right)$.
\Rightarrow Hence each absolute irreducible character χ of $\mathcal{H}\left(W_{\zeta}\right)$ is equipped with a Schur element

$$
S_{\chi} \in \mathbb{C}\left[x^{1 /\left|Z W_{\zeta}\right|}, x^{-1 /\left|Z W_{\zeta}\right|}\right] \quad \text { defined by } \tau=\sum_{\chi \in \operatorname{lrr} \mathcal{H}\left(W_{\zeta}\right)} \frac{\chi}{S_{\chi}} .
$$

3.3. Spetsial ζ-cyclotomic Hecke algebras

Definition

A ζ-cyclotomic Hecke algebra $\mathcal{H}\left(W_{\zeta}\right)$ of W_{ζ} is spetsial for \mathbb{G} if

3.3. Spetsial ζ-cyclotomic Hecke algebras

Definition

A ζ-cyclotomic Hecke algebra $\mathcal{H}\left(W_{\zeta}\right)$ of W_{ζ} is spetsial for \mathbb{G} if
(1) it satisfies various technical conditions...

3.3. Spetsial ζ-cyclotomic Hecke algebras

Definition

A ζ-cyclotomic Hecke algebra $\mathcal{H}\left(W_{\zeta}\right)$ of W_{ζ} is spetsial for \mathbb{G} if
(1) it satisfies various technical conditions...
(2) for each absolute irreducible character χ of $\mathcal{H}\left(W_{\zeta}\right)$,

$$
S_{\chi} \in \mathbb{C}\left[x, x^{-1}\right]
$$

3.3. Spetsial ζ-cyclotomic Hecke algebras

Definition

A ζ-cyclotomic Hecke algebra $\mathcal{H}\left(W_{\zeta}\right)$ of W_{ζ} is spetsial for \mathbb{G} if
(1) it satisfies various technical conditions...
(2) for each absolute irreducible character χ of $\mathcal{H}\left(W_{\zeta}\right)$,

$$
S_{\chi} \in \mathbb{C}\left[x, x^{-1}\right]
$$

(and not only $\mathbb{C}\left[x^{1 /\left|Z W_{\varsigma}\right|}, x^{-1 /\left|Z W_{\varsigma}\right|}\right]$).

On Un($\mathbb{G})$ again

On Un($\mathbb{G})$ again

When we started speaking about ζ-regular elements, ζ-cyclotomic Weyl groups, spetsial ζ-cyclotomic Hecke algebras, we were stating "generic properties" of unipotent characters :

On Un($\mathbb{G})$ again

When we started speaking about ζ-regular elements, ζ-cyclotomic Weyl groups, spetsial ζ-cyclotomic Hecke algebras, we were stating "generic properties" of unipotent characters :
... lots of other properties, like the partition of $\operatorname{Un}(\mathbb{G})$ into ζ-Harish-Chandra series:

On Un($\mathbb{G})$ again

When we started speaking about ζ-regular elements, ζ-cyclotomic Weyl groups, spetsial ζ-cyclotomic Hecke algebras, we were stating "generic properties" of unipotent characters :
... lots of other properties, like the partition of $\operatorname{Un}(\mathbb{G})$ into ζ-Harish-Chandra series:
(6) Description of the principal ζ-Harish-Chandra series with a spetsial ζ-cyclotomic Hecke algebra.

Let us come back to that long list.

On Un($\mathbb{G})$ again

When we started speaking about ζ-regular elements, ζ-cyclotomic Weyl groups, spetsial ζ-cyclotomic Hecke algebras, we were stating "generic properties" of unipotent characters :
... lots of other properties, like the partition of $\operatorname{Un}(\mathbb{G})$ into ζ-Harish-Chandra series:
(6) Description of the principal ζ-Harish-Chandra series with a spetsial ζ-cyclotomic Hecke algebra.

Let us come back to that long list.
(O) Partition of Un($\mathbb{G})$ into families and their Intersections with ζ-Harish-Chandra series (Rouquier blocks).

On Un($\mathbb{G})$ again

When we started speaking about ζ-regular elements, ζ-cyclotomic Weyl groups, spetsial ζ-cyclotomic Hecke algebras, we were stating "generic properties" of unipotent characters :
... lots of other properties, like the partition of $\operatorname{Un}(\mathbb{G})$ into ζ-Harish-Chandra series:
(6) Description of the principal ζ-Harish-Chandra series with a spetsial ζ-cyclotomic Hecke algebra.

Let us come back to that long list.
(O) Partition of Un($\mathbb{G})$ into families and their Intersections with ζ-Harish-Chandra series (Rouquier blocks).
(8) Ennola permutation on $\operatorname{Un}(\mathbb{G})$.

On Un($\mathbb{G})$ again

When we started speaking about ζ-regular elements, ζ-cyclotomic Weyl groups, spetsial ζ-cyclotomic Hecke algebras, we were stating "generic properties" of unipotent characters :
... lots of other properties, like the partition of $\operatorname{Un}(\mathbb{G})$ into ζ-Harish-Chandra series:
(6) Description of the principal ζ-Harish-Chandra series with a spetsial ζ-cyclotomic Hecke algebra.

Let us come back to that long list.
(O) Partition of Un($\mathbb{G})$ into families and their Intersections with ζ-Harish-Chandra series (Rouquier blocks).
(8) Ennola permutation on $\operatorname{Un}(\mathbb{G})$.
[This is an abstract formulation of the fact that $U_{n}(q)= \pm \mathrm{GL}_{n}(-q)$]

On Un($\mathbb{G})$ again

When we started speaking about ζ-regular elements, ζ-cyclotomic Weyl groups, spetsial ζ-cyclotomic Hecke algebras, we were stating "generic properties" of unipotent characters :
... lots of other properties, like the partition of $\operatorname{Un}(\mathbb{G})$ into ζ-Harish-Chandra series:
(6) Description of the principal ζ-Harish-Chandra series with a spetsial ζ-cyclotomic Hecke algebra.

Let us come back to that long list.
(7) Partition of $\operatorname{Un}(\mathbb{G})$ into families and their Intersections with ζ-Harish-Chandra series (Rouquier blocks).
(8) Ennola permutation on $\operatorname{Un}(\mathbb{G})$.
[This is an abstract formulation of the fact that $U_{n}(q)= \pm G L_{n}(-q)$]
(9) Fourier matrices and $\mathrm{SL}_{2}(\mathbb{Z})$-representation.

On Un($\mathbb{G})$ again

When we started speaking about ζ-regular elements, ζ-cyclotomic Weyl groups, spetsial ζ-cyclotomic Hecke algebras, we were stating "generic properties" of unipotent characters :
... lots of other properties, like the partition of $\operatorname{Un}(\mathbb{G})$ into ζ-Harish-Chandra series:
(6) Description of the principal ζ-Harish-Chandra series with a spetsial ζ-cyclotomic Hecke algebra.

Let us come back to that long list.
(7) Partition of $\operatorname{Un}(\mathbb{G})$ into families and their Intersections with ζ-Harish-Chandra series (Rouquier blocks).
(8) Ennola permutation on $\operatorname{Un}(\mathbb{G})$.
[This is an abstract formulation of the fact that $U_{n}(q)= \pm \mathrm{GL}_{n}(-q)$]
(9) Fourier matrices and $\mathrm{SL}_{2}(\mathbb{Z})$-representation.

We shall review this now in the more general context of "Spetses".

II. Towards Spetses

II. Towards Spetses

- Try to treat a complex reflection group as a Weyl group: try to build a thing $\mathbb{G}(x)$ (x an indeterminate) associated with a type $\mathbb{G}=(V, W)$ where W is a (pseudo)-reflection group.

II. Towards Spetses

- Try to treat a complex reflection group as a Weyl group: try to build a thing $\mathbb{G}(x)$ (x an indeterminate) associated with a type $\mathbb{G}=(V, W)$ where W is a (pseudo)-reflection group.
- Try at least to build "unipotent characters" of \mathbb{G}, or at least to build their degrees (polynomials in x), Frobenius eigenvalues (roots of unity), Fourier matrices.

II. Towards Spetses

- Try to treat a complex reflection group as a Weyl group: try to build a thing $\mathbb{G}(x)$ (x an indeterminate) associated with a type $\mathbb{G}=(V, W)$ where W is a (pseudo)-reflection group.
- Try at least to build "unipotent characters" of \mathbb{G}, or at least to build their degrees (polynomials in x), Frobenius eigenvalues (roots of unity), Fourier matrices.
- Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for H_{4} which was determined by Malle in 1994).

II. Towards Spetses

- Try to treat a complex reflection group as a Weyl group: try to build a thing $\mathbb{G}(x)$ (x an indeterminate) associated with a type $\mathbb{G}=(V, W)$ where W is a (pseudo)-reflection group.
- Try at least to build "unipotent characters" of \mathbb{G}, or at least to build their degrees (polynomials in x), Frobenius eigenvalues (roots of unity), Fourier matrices.
- Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for H_{4} which was determined by Malle in 1994).
- Malle gave a solution for imprimitive spetsial complex reflection groups in 1995.

II. Towards Spetses

- Try to treat a complex reflection group as a Weyl group: try to build a thing $\mathbb{G}(x)$ (x an indeterminate) associated with a type $\mathbb{G}=(V, W)$ where W is a (pseudo)-reflection group.
- Try at least to build "unipotent characters" of \mathbb{G}, or at least to build their degrees (polynomials in x), Frobenius eigenvalues (roots of unity), Fourier matrices.
- Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for H_{4} which was determined by Malle in 1994).
- Malle gave a solution for imprimitive spetsial complex reflection groups in 1995.
- Stating a long series of precise axioms - many of technical nature we can now show that there is a unique solution for all primitive spetsial complex reflection groups.

II. Towards Spetses

- Try to treat a complex reflection group as a Weyl group: try to build a thing $\mathbb{G}(x)$ (x an indeterminate) associated with a type $\mathbb{G}=(V, W)$ where W is a (pseudo)-reflection group.
- Try at least to build "unipotent characters" of \mathbb{G}, or at least to build their degrees (polynomials in x), Frobenius eigenvalues (roots of unity), Fourier matrices.
- Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for H_{4} which was determined by Malle in 1994).
- Malle gave a solution for imprimitive spetsial complex reflection groups in 1995.
- Stating a long series of precise axioms - many of technical nature we can now show that there is a unique solution for all primitive spetsial complex reflection groups.
M. Broué, G. Malle, J. Michel, Split spetses for primitive reflection groups, Astérisque 359 (2014)

A double object : double N

A double object : double N

$$
\mathbb{G}=(V, W), \text { where }
$$

A double object : double N

$\mathbb{G}=(V, W)$, where

- V is a complex vector space of dimension r,

A double object : double N

$\mathbb{G}=(V, W)$, where

- V is a complex vector space of dimension r,
- W is finite (pseudo)-reflection subgroup of $\mathrm{GL}(V)$,

A double object : double N

$\mathbb{G}=(V, W)$, where

- V is a complex vector space of dimension r,
- W is finite (pseudo)-reflection subgroup of $\mathrm{GL}(V)$,
$\mathcal{A}(W):=$ the hyperplanes arrangement of W.

A double object : double N

$\mathbb{G}=(V, W)$, where

- V is a complex vector space of dimension r,
- W is finite (pseudo)-reflection subgroup of $G L(V)$,
$\mathcal{A}(W):=$ the hyperplanes arrangement of W.
- $N_{W}^{\text {hyp }}:=$ number of reflecting hyperplanes,

A double object : double N

$\mathbb{G}=(V, W)$, where

- V is a complex vector space of dimension r,
- W is finite (pseudo)-reflection subgroup of $\mathrm{GL}(V)$,
$\mathcal{A}(W):=$ the hyperplanes arrangement of W.
- $N_{W}^{\text {hyp }}:=$ number of reflecting hyperplanes,
- $N_{W}^{\text {ref }}:=$ number of reflections.

A double object : double N

$\mathbb{G}=(V, W)$, where

- V is a complex vector space of dimension r,
- W is finite (pseudo)-reflection subgroup of $G L(V)$,
$\mathcal{A}(W):=$ the hyperplanes arrangement of W.
- $N_{W}^{\text {hyp }}:=$ number of reflecting hyperplanes,
- $N_{W}^{r e f}:=$ number of reflections.

$$
N_{W}^{\text {hyp }}=N_{W}^{\text {ref }} \text { if } W \text { is generated by true reflections. }
$$

Double polynomial order

Double polynomial order

$$
\begin{aligned}
& \left|\mathbb{G}_{\mathrm{c}}\right|(x):=(-1)^{r} x^{N_{W}^{\mathrm{hyp}}} \frac{1}{\frac{1}{|W|} \sum_{w \in W} \frac{1}{\operatorname{det}_{V}(1-w x)^{*}}} \\
& \left|\mathbb{G}_{\mathrm{nc}}\right|(x):=(-1)^{r} x^{N_{W}^{\text {ref }}} \frac{1}{\frac{1}{|W|} \sum_{w \in W} \frac{1}{\operatorname{det}_{V}(1-w x)^{*}}}
\end{aligned}
$$

Double polynomial order

$$
\begin{aligned}
& \left|\mathbb{G}_{c}\right|(x):=(-1)^{r} x^{x_{W}^{\text {hyp }}} \frac{1}{\frac{1}{|W|} \sum_{w \in W} \frac{1}{\operatorname{det}_{V}(1-w x)^{*}}} \\
& \left|\mathbb{G}_{\mathrm{nc}}\right|(x):=(-1)^{r} x^{N_{W}^{\text {ref }}} \frac{1}{\frac{1}{|W|} \sum_{w \in W} \frac{1}{\operatorname{det}_{V}(1-w x)^{*}}}
\end{aligned}
$$

The compact and the noncompact order coincide if W is generated by true reflections.

2. Spetsial ζ-cyclotomic Hecke algebras for \mathbb{G}

2. Spetsial ζ-cyclotomic Hecke algebras for \mathbb{G}

As above,

2. Spetsial ζ-cyclotomic Hecke algebras for \mathbb{G}

As above,

- $W_{\zeta}=C_{W}(w)$ is the centralizer of a ζ-regular element $w \in W$,

2. Spetsial ζ-cyclotomic Hecke algebras for \mathbb{G}

As above,

- $W_{\zeta}=C_{W}(w)$ is the centralizer of a ζ-regular element $w \in W$,
- A ζ-cyclotomic Hecke algebra $\mathcal{H}\left(W_{\zeta}\right)$ is spetsial for \mathbb{G} if

2. Spetsial ζ-cyclotomic Hecke algebras for \mathbb{G}

As above,

- $W_{\zeta}=C_{W}(w)$ is the centralizer of a ζ-regular element $w \in W$,
- A ζ-cyclotomic Hecke algebra $\mathcal{H}\left(W_{\zeta}\right)$ is spetsial for \mathbb{G} if
(1) for each absolute irreducible character χ of $\mathcal{H}\left(W_{\zeta}\right)$,

$$
S_{\chi} \in \mathbb{C}\left[x, x^{-1}\right],
$$

2. Spetsial ζ-cyclotomic Hecke algebras for \mathbb{G}

As above,

- $W_{\zeta}=C_{W}(w)$ is the centralizer of a ζ-regular element $w \in W$,
- A ζ-cyclotomic Hecke algebra $\mathcal{H}\left(W_{\zeta}\right)$ is spetsial for \mathbb{G} if
(1) for each absolute irreducible character χ of $\mathcal{H}\left(W_{\zeta}\right)$,

$$
S_{\chi} \in \mathbb{C}\left[x, x^{-1}\right],
$$

(2) and $\mathcal{H}\left(W_{\zeta}\right)$ satisfies various technical conditions, which split into

2. Spetsial ζ-cyclotomic Hecke algebras for \mathbb{G}

As above,

- $W_{\zeta}=C_{W}(w)$ is the centralizer of a ζ-regular element $w \in W$,
- A ζ-cyclotomic Hecke algebra $\mathcal{H}\left(W_{\zeta}\right)$ is spetsial for \mathbb{G} if
(1) for each absolute irreducible character χ of $\mathcal{H}\left(W_{\zeta}\right)$,

$$
S_{\chi} \in \mathbb{C}\left[x, x^{-1}\right],
$$

(2) and $\mathcal{H}\left(W_{\zeta}\right)$ satisfies various technical conditions, which split into * compact type conditions,

2. Spetsial ζ-cyclotomic Hecke algebras for \mathbb{G}

As above,

- $W_{\zeta}=C_{W}(w)$ is the centralizer of a ζ-regular element $w \in W$,
- A ζ-cyclotomic Hecke algebra $\mathcal{H}\left(W_{\zeta}\right)$ is spetsial for \mathbb{G} if
(1) for each absolute irreducible character χ of $\mathcal{H}\left(W_{\zeta}\right)$,

$$
S_{\chi} \in \mathbb{C}\left[x, x^{-1}\right],
$$

(2) and $\mathcal{H}\left(W_{\zeta}\right)$ satisfies various technical conditions, which split into

* compact type conditions,
\star noncompact type conditions.

2. Spetsial ζ-cyclotomic Hecke algebras for \mathbb{G}

As above,

- $W_{\zeta}=C_{W}(w)$ is the centralizer of a ζ-regular element $w \in W$,
- A ζ-cyclotomic Hecke algebra $\mathcal{H}\left(W_{\zeta}\right)$ is spetsial for \mathbb{G} if
(1) for each absolute irreducible character χ of $\mathcal{H}\left(W_{\zeta}\right)$,

$$
S_{\chi} \in \mathbb{C}\left[x, x^{-1}\right],
$$

(2) and $\mathcal{H}\left(W_{\zeta}\right)$ satisfies various technical conditions, which split into

* compact type conditions,
\star noncompact type conditions.

These conditions coincide if W is generated by true reflections.

2.1. Spetsial 1-cyclotomic Hecke algebras, special groups

Theorem

2.1. Spetsial 1-cyclotomic Hecke algebras, special groups

Theorem

(1) A 1-cyclotomic Hecke algebra can be spetsial of compact type for \mathbb{G} only if it is the algebra $\mathcal{H}^{c}(W)$ defined by

$$
\left\{\begin{array}{l}
\mathcal{H}_{\mathrm{c}}(W)=\left\langle\mathbf{s}_{H}\right\rangle_{H \in \mathcal{A}} \quad \text { with relations: } \\
\left.\left(\mathbf{s}_{H}-x\right)\left(1+\mathbf{s}_{H}+\cdots+\mathbf{s}_{H}^{e_{H}-1}\right)=0 \quad \text { (if } \mathbf{s}_{H} \text { has order } e_{H}\right)
\end{array}\right.
$$

2.1. Spetsial 1-cyclotomic Hecke algebras, special groups

Theorem

(1) A 1-cyclotomic Hecke algebra can be spetsial of compact type for \mathbb{G} only if it is the algebra $\mathcal{H}^{c}(W)$ defined by

$$
\left\{\begin{array}{l}
\mathcal{H}_{\mathrm{c}}(W)=\left\langle\mathbf{s}_{H}\right\rangle_{H \in \mathcal{A}} \quad \text { with relations: } \\
\left.\left(\mathbf{s}_{H}-x\right)\left(1+\mathbf{s}_{H}+\cdots+\mathbf{s}_{H}^{e_{H}-1}\right)=0 \quad \text { (if } \mathbf{s}_{H} \text { has order } e_{H}\right)
\end{array}\right.
$$

(2) A 1-cyclotomic Hecke algebras can be spetsial of noncompact type for \mathbb{G} only if it is the algebra $\mathcal{H}^{\text {nc }}(W)$ defined by

$$
\left\{\begin{array}{l}
\mathcal{H}^{\mathrm{nc}}(W)=\left\langle\mathbf{s}_{H}\right\rangle_{H \in \mathcal{A}} \quad \text { with relations: } \\
\left(\mathbf{s}_{H}-x\right)\left(x^{e_{H}-1}+x^{e_{H}-2} \mathbf{s}_{H}+\cdots+\mathbf{s}_{H}^{e_{H}-1}\right)=0 .
\end{array}\right.
$$

2.2. Spetsial groups

2.2. Spetsial groups

Let $\mathcal{H}(W)$ denote either $\mathcal{H}^{\mathrm{c}}(W)$ or $\mathcal{H}^{\mathrm{nc}}(W)$.

2.2. Spetsial groups

Let $\mathcal{H}(W)$ denote either $\mathcal{H}^{c}(W)$ or $\mathcal{H}^{\mathrm{nc}}(W)$.
Theorem (G. Malle)-Definition

2.2. Spetsial groups

Let $\mathcal{H}(W)$ denote either $\mathcal{H}^{c}(W)$ or $\mathcal{H}^{\mathrm{nc}}(W)$.
Theorem (G. Malle)-Definition
Assume W acts irreducibly on V. The following assertions are equivalent.

2.2. Spetsial groups

Let $\mathcal{H}(W)$ denote either $\mathcal{H}^{c}(W)$ or $\mathcal{H}^{\mathrm{nc}}(W)$.
Theorem (G. Malle)-Definition
Assume W acts irreducibly on V. The following assertions are equivalent.
(i) $\mathcal{H}(W)$ is spetsial.

2.2. Spetsial groups

Let $\mathcal{H}(W)$ denote either $\mathcal{H}^{c}(W)$ or $\mathcal{H}^{\mathrm{nc}}(W)$.
Theorem (G. Malle)-Definition
Assume W acts irreducibly on V. The following assertions are equivalent.
(i) $\mathcal{H}(W)$ is spetsial.
(ii) For each absolutely irreducible character χ of $\mathcal{H}(W), S_{\chi} \in \mathbb{C}\left[x, x^{-1}\right]$.

2.2. Spetsial groups

Let $\mathcal{H}(W)$ denote either $\mathcal{H}^{c}(W)$ or $\mathcal{H}^{\mathrm{nc}}(W)$.
Theorem (G. Malle)-Definition
Assume W acts irreducibly on V. The following assertions are equivalent.
(i) $\mathcal{H}(W)$ is spetsial.
(ii) For each absolutely irreducible character χ of $\mathcal{H}(W), S_{\chi} \in \mathbb{C}\left[x, x^{-1}\right]$.
(iii) W is one of the following groups (Shephard-Todd's notation), called the spetsial groups:

2.2. Spetsial groups

Let $\mathcal{H}(W)$ denote either $\mathcal{H}^{c}(W)$ or $\mathcal{H}^{\mathrm{nc}}(W)$.
Theorem (G. Malle)-Definition
Assume W acts irreducibly on V. The following assertions are equivalent.
(i) $\mathcal{H}(W)$ is spetsial.
(ii) For each absolutely irreducible character χ of $\mathcal{H}(W), S_{\chi} \in \mathbb{C}\left[x, x^{-1}\right]$.
(iii) W is one of the following groups (Shephard-Todd's notation), called the spetsial groups:

- $G(d, 1, n)_{(d, n \geq 1)}, G(e, e, n)_{(e, n \geq 2)}$,

2.2. Spetsial groups

Let $\mathcal{H}(W)$ denote either $\mathcal{H}^{c}(W)$ or $\mathcal{H}^{\mathrm{nc}}(W)$.
Theorem (G. Malle)-Definition
Assume W acts irreducibly on V. The following assertions are equivalent.
(i) $\mathcal{H}(W)$ is spetsial.
(ii) For each absolutely irreducible character χ of $\mathcal{H}(W), S_{\chi} \in \mathbb{C}\left[x, x^{-1}\right]$.
(iii) W is one of the following groups (Shephard-Todd's notation), called the spetsial groups:

- $G(d, 1, n)_{(d, n \geq 1)}, G(e, e, n)_{(e, n \geq 2)}$,
- all groups $G_{i}(4 \leq i \leq 37)$ well generated by true reflections,

2.2. Spetsial groups

Let $\mathcal{H}(W)$ denote either $\mathcal{H}^{c}(W)$ or $\mathcal{H}^{\mathrm{nc}}(W)$.
Theorem (G. Malle)-Definition
Assume W acts irreducibly on V. The following assertions are equivalent.
(i) $\mathcal{H}(W)$ is spetsial.
(ii) For each absolutely irreducible character χ of $\mathcal{H}(W), S_{\chi} \in \mathbb{C}\left[x, x^{-1}\right]$.
(iii) W is one of the following groups (Shephard-Todd's notation), called the spetsial groups:

- $G(d, 1, n)_{(d, n \geq 1)}, G(e, e, n)_{(e, n \geq 2)}$,
- all groups $G_{i}(4 \leq i \leq 37)$ well generated by true reflections,
- $G_{4}, G_{6}, G_{8}, G_{25}, G_{26}, G_{32}$.

3. Some data associated with spetsial groups

3. Some data associated with spetsial groups

Given $\mathbb{G}=(V, W)$ where W is special, there are

3. Some data associated with spetsial groups

Given $\mathbb{G}=(V, W)$ where W is special, there are

- the set $\operatorname{Un}\left(\mathbb{G}_{\mathrm{c}}\right)$ of unipotent characters (compact type),

3. Some data associated with spetsial groups

Given $\mathbb{G}=(V, W)$ where W is special, there are

- the set Un $\left(\mathbb{G}_{\mathrm{c}}\right)$ of unipotent characters (compact type),
- the set $\operatorname{Un}\left(\mathbb{G}_{\mathrm{nc}}\right)$ of unipotent characters (noncompact type),

3. Some data associated with spetsial groups

Given $\mathbb{G}=(V, W)$ where W is special, there are

- the set Un $\left(\mathbb{G}_{\mathrm{c}}\right)$ of unipotent characters (compact type),
- the set $\operatorname{Un}\left(\mathbb{G}_{\mathrm{nc}}\right)$ of unipotent characters (noncompact type), which coincide if W is generated by true reflections

3. Some data associated with spetsial groups

Given $\mathbb{G}=(V, W)$ where W is special, there are

- the set $\operatorname{Un}\left(\mathbb{G}_{\mathrm{c}}\right)$ of unipotent characters (compact type),
- the set $\operatorname{Un}\left(\mathbb{G}_{\mathrm{nc}}\right)$ of unipotent characters (noncompact type), which coincide if W is generated by true reflections
each of them (denoted $\operatorname{Un}(\mathbb{G})$ below), endowed with two maps

3. Some data associated with spetsial groups

Given $\mathbb{G}=(V, W)$ where W is special, there are

- the set $\operatorname{Un}\left(\mathbb{G}_{\mathrm{c}}\right)$ of unipotent characters (compact type),
- the set $\operatorname{Un}\left(\mathbb{G}_{\mathrm{nc}}\right)$ of unipotent characters (noncompact type),

which coincide if W is generated by true reflections

each of them (denoted $\operatorname{Un}(\mathbb{G})$ below), endowed with two maps

- the map degree

$$
\operatorname{Deg}: \operatorname{Un}(\mathbb{G}) \rightarrow \mathbb{C}[x], \rho \mapsto \operatorname{Deg}_{\rho}(x),
$$

defined up to sign,

3. Some data associated with spetsial groups

Given $\mathbb{G}=(V, W)$ where W is special, there are

- the set $\operatorname{Un}\left(\mathbb{G}_{\mathrm{c}}\right)$ of unipotent characters (compact type),
- the set $\operatorname{Un}\left(\mathbb{G}_{\mathrm{nc}}\right)$ of unipotent characters (noncompact type), which coincide if W is generated by true reflections each of them (denoted $\operatorname{Un}(\mathbb{G})$ below), endowed with two maps
- the map degree

$$
\operatorname{Deg}: \operatorname{Un}(\mathbb{G}) \rightarrow \mathbb{C}[x], \rho \mapsto \operatorname{Deg}_{\rho}(x)
$$

defined up to sign,

- the map Frobenius eigenvalue $\rho \mapsto \operatorname{Fr}_{\rho}$, where Fr_{ρ} is a root of unity,

3. Some data associated with spetsial groups

Given $\mathbb{G}=(V, W)$ where W is special, there are

- the set $\operatorname{Un}\left(\mathbb{G}_{\mathrm{c}}\right)$ of unipotent characters (compact type),
- the set $\operatorname{Un}\left(\mathbb{G}_{\mathrm{nc}}\right)$ of unipotent characters (noncompact type),

which coincide if W is generated by true reflections

each of them (denoted $\operatorname{Un}(\mathbb{G})$ below), endowed with two maps

- the map degree

$$
\operatorname{Deg}: \operatorname{Un}(\mathbb{G}) \rightarrow \mathbb{C}[x], \rho \mapsto \operatorname{Deg}_{\rho}(x)
$$

defined up to sign,

- the map Frobenius eigenvalue $\rho \mapsto \operatorname{Fr}_{\rho}$, where Fr_{ρ} is a root of unity,
- a bijection (Alvis-Curtis duality)

$$
\operatorname{Un}\left(\mathbb{G}_{\mathrm{c}}\right) \rightarrow \operatorname{Un}\left(\mathbb{G}_{\mathrm{nc}}\right), \rho \mapsto \rho^{\mathrm{nc}}
$$

3. Some data associated with spetsial groups

Given $\mathbb{G}=(V, W)$ where W is special, there are

- the set $\operatorname{Un}\left(\mathbb{G}_{\mathrm{c}}\right)$ of unipotent characters (compact type),
- the set $\operatorname{Un}\left(\mathbb{G}_{\mathrm{nc}}\right)$ of unipotent characters (noncompact type),

which coincide if W is generated by true reflections

each of them (denoted $\operatorname{Un}(\mathbb{G})$ below), endowed with two maps

- the map degree

$$
\operatorname{Deg}: \operatorname{Un}(\mathbb{G}) \rightarrow \mathbb{C}[x], \rho \mapsto \operatorname{Deg}_{\rho}(x)
$$

defined up to sign,

- the map Frobenius eigenvalue $\rho \mapsto \operatorname{Fr}_{\rho}$, where Fr_{ρ} is a root of unity,
- a bijection (Alvis-Curtis duality)

$$
\operatorname{Un}\left(\mathbb{G}_{\mathrm{c}}\right) \rightarrow \operatorname{Un}\left(\mathbb{G}_{\mathrm{nc}}\right), \rho \mapsto \rho^{\mathrm{nc}}
$$

with lots of properties (axioms) described below.

3.1. First axioms

3.1. First axioms

Connection compact / noncompact

3.1. First axioms

Connection compact / noncompact

(1) $\operatorname{Deg}_{\rho^{\mathrm{nc}}}(x)=x^{N_{W}^{\text {ref }}} \operatorname{Deg}_{\rho}(1 / x)^{*}$,

3.1. First axioms

Connection compact / noncompact

(1) $\operatorname{Deg}_{\rho^{n c}}(x)=x^{N_{W}^{\text {ef }}} \operatorname{Deg}_{\rho}(1 / x)^{*}$, (!) up to sign!

3.1. First axioms

Connection compact / noncompact

(1) $\operatorname{Deg}_{\rho^{\mathrm{nc}}}(x)=x^{N_{W}^{\text {ref }}} \operatorname{Deg}_{\rho}(1 / x)^{*}$, (!) up to sign!
(2) $\mathrm{Fr}_{\rho} \mathrm{Fr}_{\rho^{n c}}=1$.

3.1. First axioms

Connection compact / noncompact

(1) $\operatorname{Deg}_{\rho^{\text {nc }}}(x)=x^{N_{W}^{\text {ref }}} \operatorname{Deg}_{\rho}(1 / x)^{*}$, (!) up to sign!
(2) $\operatorname{Fr}_{\rho} \operatorname{Fr}_{\rho^{n c}}=1$.

From now on we only describe the compact type case.

3.1. First axioms

Connection compact / noncompact
(1) $\operatorname{Deg}_{\rho^{\text {nc }}}(x)=x^{N_{W}^{\text {ref }}} \operatorname{Deg}_{\rho}(1 / x)^{*}$, (!) up to sign!
(2) $\operatorname{Fr}_{\rho} \operatorname{Fr}_{\rho^{n c}}=1$.

From now on we only describe the compact type case.

Definition

Let $\zeta \in \boldsymbol{\mu}$.

3.1. First axioms

Connection compact / noncompact

(1) $\operatorname{Deg}_{\rho^{\text {nc }}}(x)=x^{N_{W}^{\text {ref }}} \operatorname{Deg}_{\rho}(1 / x)^{*}$, (!) up to sign!
(2) $\operatorname{Fr}_{\rho} \operatorname{Fr}_{\rho^{n c}}=1$.

From now on we only describe the compact type case.

Definition

Let $\zeta \in \boldsymbol{\mu}$.
The ζ-principal series is

$$
\operatorname{Un}(\mathbb{G}, \zeta):=\left\{\rho \in \operatorname{Un}(\mathbb{G}) \mid \operatorname{Deg}_{\rho}(\zeta) \neq 0\right\}
$$

ζ-Axioms (compact type)

3.2. ζ-Axioms

ζ-Axioms (compact type)

3.2. ζ-Axioms

For $w \in W$ a ζ-regular element, there are

ζ-Axioms (compact type)

3.2. ζ-Axioms

For $w \in W$ a ζ-regular element, there are

- a spetsial ζ-cyclotomic Hecke algebra of compact type $\mathcal{H}\left(W_{\zeta}\right)$ associated with w,

ζ-Axioms (compact type)

3.2. ζ-Axioms

For $w \in W$ a ζ-regular element, there are

- a spetsial ζ-cyclotomic Hecke algebra of compact type $\mathcal{H}\left(W_{\zeta}\right)$ associated with w,
- and a bijection

$$
\operatorname{Irr} \mathcal{H}\left(W_{\zeta}\right) \xrightarrow{\sim} \operatorname{Un}(\mathbb{G}, \zeta), \chi \mapsto \rho_{\chi}
$$

ζ-Axioms (compact type)

3.2. ζ-Axioms

For $w \in W$ a ζ-regular element, there are

- a spetsial ζ-cyclotomic Hecke algebra of compact type $\mathcal{H}\left(W_{\zeta}\right)$ associated with w,
- and a bijection

$$
\operatorname{Irr} \mathcal{H}\left(W_{\zeta}\right) \xrightarrow{\sim} \operatorname{Un}(\mathbb{G}, \zeta), \chi \mapsto \rho_{\chi}
$$

such that

ζ-Axioms (compact type)

3.2. ζ-Axioms

For $w \in W$ a ζ-regular element, there are

- a spetsial ζ-cyclotomic Hecke algebra of compact type $\mathcal{H}\left(W_{\zeta}\right)$ associated with w,
- and a bijection

$$
\operatorname{Irr} \mathcal{H}\left(W_{\zeta}\right) \xrightarrow{\sim} \operatorname{Un}(\mathbb{G}, \zeta), \chi \mapsto \rho_{\chi}
$$

such that
(1) $\operatorname{Deg}_{\rho_{\chi}}(x)= \pm \frac{\left[|\mathbb{G}|(x):\left|\mathbb{T}_{w}\right|(x)\right]_{x^{\prime}}}{S_{\chi}(x)}$,

ζ-Axioms (compact type)

3.2. ζ-Axioms

For $w \in W$ a ζ-regular element, there are

- a spetsial ζ-cyclotomic Hecke algebra of compact type $\mathcal{H}\left(W_{\zeta}\right)$ associated with w,
- and a bijection

$$
\operatorname{Irr} \mathcal{H}\left(W_{\zeta}\right) \xrightarrow{\sim} \operatorname{Un}(\mathbb{G}, \zeta), \chi \mapsto \rho_{\chi}
$$

such that
(1) $\operatorname{Deg}_{\rho_{\chi}}(x)= \pm \frac{\left[|\mathbb{G}|(x):\left|\mathbb{T}_{w}\right|(x)\right]_{x^{\prime}}}{S_{\chi}(x)}$,
(2) $\mathrm{Fr}_{\rho_{\chi}}=$ explicit formula depending only on $\mathcal{H}\left(W_{\zeta}\right)$ and χ.

3.3. Rouquier blocks

3.3. Rouquier blocks

- If the representation of W_{ζ} on V_{ζ} is rational over some cyclotomic field K, the ζ-cyclotomic Hecke algebra $\mathcal{H}\left(W_{\zeta}\right)$ may be defined over $\mathbb{Z}_{K}\left[x, x^{-1}\right]$.

Definition

The Rouquier blocks of a ζ-cyclotomic Hecke algebra $\mathcal{H}\left(W_{\zeta}\right)$ are the blocks of the algebra

$$
\mathbb{Z}_{K}\left[x, x^{-1},\left(\left(x^{n}-1\right)^{-1}\right)_{n \geq 1}\right] \otimes_{\mathbb{Z}\left[x, x^{-1}\right]} \mathcal{H}\left(W_{\zeta}\right)
$$

- The Rouquier blocks of ζ-cyclotomic Hecke algebras have been classified in all cases (Malle-Rouquier, B.-Kim, Chlouveraki).
- For $\zeta=1$ and W Coxeter group, Rouquier blocks are nothing but the characters associated with two sided cells (Kazhdan-Lusztig theory).

3.4. Families and Rouquier blocks

3.4. Families and Rouquier blocks

Families

There is a partition

$$
\operatorname{Un}(\mathbb{G})=\bigsqcup_{\mathcal{F} \in \operatorname{Fam}(\mathbb{G})} \mathcal{F}
$$

(where the \mathcal{F}^{\prime} 's are the families of unipotent characters), hence for all regular ζ,

$$
\operatorname{Un}(\mathbb{G}, \zeta)=\bigsqcup_{\mathcal{F} \in \operatorname{Fam}(\mathbb{G})}(\mathcal{F} \cap \operatorname{Un}(\mathbb{G}, \zeta)),
$$

with the following properties.
(1) Through the bijection $\operatorname{Un}(\mathbb{G}, \zeta) \xrightarrow{\sim} \operatorname{Irr} \mathcal{H}\left(W_{\zeta}\right)$, the nonempty intersections $\mathcal{F} \cap \operatorname{Un}(\mathbb{G}, \zeta)$ are the Rouquier blocks of $\operatorname{Irr} \mathcal{H}\left(W_{\zeta}\right)$.
(2) The integers a_{ρ} (valuation of Deg_{ρ}) and A_{ρ} (degree of Deg_{ρ}) are constant for ρ in a family \mathcal{F}.

The Fourier matrices

Let us denote by \mathbf{B}_{2} the braid group on three brands, generated by two elements \mathbf{s} and \mathbf{t} satisfying the relation

Let us set $\mathbf{w}_{0}:=$ sts. It is known that

The Fourier matrices

Let us denote by \mathbf{B}_{2} the braid group on three brands, generated by two elements \mathbf{s} and \mathbf{t} satisfying the relation

Let us set $\mathbf{w}_{0}:=\mathbf{s t s}$. It is known that

- the center of \mathbf{B}_{2} is infinite cyclic and generated by

$$
\mathbf{w}_{0}^{2}=(\mathbf{s t s})^{2}=(\mathbf{s t})^{3},
$$

The Fourier matrices

Let us denote by \mathbf{B}_{2} the braid group on three brands, generated by two elements \mathbf{s} and \mathbf{t} satisfying the relation

$$
\stackrel{s}{\mathbf{s}} \quad \mathbf{s t s}=\mathbf{t s t}
$$

Let us set $\mathbf{w}_{0}:=$ sts. It is known that

- the center of \mathbf{B}_{2} is infinite cyclic and generated by $\mathbf{w}_{0}^{2}=(\mathbf{s t s})^{2}=(\mathbf{s t})^{3}$,
- the map

$$
\mathbf{s} \mapsto\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \mathbf{t} \mapsto\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)
$$

induces an isomorphism $\mathbf{B}_{2} /\left\langle\mathbf{w}_{0}^{4}\right\rangle \xrightarrow{\sim} S_{2}(\mathbb{Z})$.

Let \mathcal{F} be a family in $\operatorname{Un}(\mathbb{G})$.

Let \mathcal{F} be a family in $\operatorname{Un}(\mathbb{G})$.

The S-matric (Fourier matrix)

Let \mathcal{F} be a family in $\operatorname{Un}(\mathbb{G})$.

The S-matric (Fourier matrix)

There is a complex matrix S with entries indexed by $\mathcal{F} \times \mathcal{F}$, such that for all $\chi_{0} \in \operatorname{Irr}(W)$,

$$
\sum_{\chi \in \operatorname{lrr}(W)} S_{\rho_{\chi}, \rho_{\chi_{0}}} \operatorname{Feg}_{\chi}=\operatorname{Deg}_{\rho_{\chi_{0}}}
$$

Let \mathcal{F} be a family in $\operatorname{Un}(\mathbb{G})$.

The S-matric (Fourier matrix)

There is a complex matrix S with entries indexed by $\mathcal{F} \times \mathcal{F}$, such that for all $\chi_{0} \in \operatorname{Irr}(W)$,

$$
\sum_{\chi \in \operatorname{lrr}(W)} S_{\rho_{\chi}, \rho_{\chi_{0}}} \operatorname{Feg}_{\chi}=\operatorname{Deg}_{\rho_{\chi_{0}}}
$$

and with the following properties.

Let \mathcal{F} be a family in $\operatorname{Un}(\mathbb{G})$.

The S-matric (Fourier matrix)

There is a complex matrix S with entries indexed by $\mathcal{F} \times \mathcal{F}$, such that for all $\chi_{0} \in \operatorname{Irr}(W)$,

$$
\sum_{\chi \in \operatorname{lrr}(W)} S_{\rho_{\chi}, \rho_{\chi_{0}}} \operatorname{Feg}_{\chi}=\operatorname{Deg}_{\rho_{\chi_{0}}}
$$

and with the following properties.
(1) S is unitary and symmetric,

Let \mathcal{F} be a family in $\operatorname{Un}(\mathbb{G})$.

The S-matric (Fourier matrix)

There is a complex matrix S with entries indexed by $\mathcal{F} \times \mathcal{F}$, such that for all $\chi_{0} \in \operatorname{Irr}(W)$,

$$
\sum_{\chi \in \operatorname{lrr}(W)} S_{\rho_{\chi}, \rho_{\chi_{0}}} \operatorname{Feg}_{\chi}=\operatorname{Deg}_{\rho_{\chi_{0}}},
$$

and with the following properties.
(1) S is unitary and symmetric,
(2) S^{2} is an order 2 monomial matrix with entries in $\{ \pm 1\}$,

Let \mathcal{F} be a family in $\operatorname{Un}(\mathbb{G})$.

The S-matric (Fourier matrix)

There is a complex matrix S with entries indexed by $\mathcal{F} \times \mathcal{F}$, such that for all $\chi_{0} \in \operatorname{Irr}(W)$,

$$
\sum_{\chi \in \operatorname{lrr}(W)} S_{\rho_{\chi}, \rho_{\chi_{0}}} \operatorname{Feg}_{\chi}=\operatorname{Deg}_{\rho_{\chi_{0}}}
$$

and with the following properties.
(1) S is unitary and symmetric,
(2) S^{2} is an order 2 monomial matrix with entries in $\{ \pm 1\}$,
(3) there exists a special character of W (in the Rouquier block corresponding to \mathcal{F}) such that

Let \mathcal{F} be a family in $\operatorname{Un}(\mathbb{G})$.

The S-matric (Fourier matrix)

There is a complex matrix S with entries indexed by $\mathcal{F} \times \mathcal{F}$, such that for all $\chi_{0} \in \operatorname{Irr}(W)$,

$$
\sum_{\chi \in \operatorname{lrr}(W)} S_{\rho_{\chi}, \rho_{\chi_{0}}} \operatorname{Feg}_{\chi}=\operatorname{Deg}_{\rho_{\chi_{0}}}
$$

and with the following properties.
(1) S is unitary and symmetric,
(2) S^{2} is an order 2 monomial matrix with entries in $\{ \pm 1\}$,
(3) there exists a special character of W (in the Rouquier block corresponding to \mathcal{F}) such that
(1) the corresponding row i_{0} of S has no zero entry,

Let \mathcal{F} be a family in $\operatorname{Un}(\mathbb{G})$.

The S-matric (Fourier matrix)

There is a complex matrix S with entries indexed by $\mathcal{F} \times \mathcal{F}$, such that for all $\chi_{0} \in \operatorname{Irr}(W)$,

$$
\sum_{\chi \in \operatorname{lrr}(W)} S_{\rho_{\chi}, \rho_{\chi_{0}}} \mathrm{Feg}_{\chi}=\operatorname{Deg}_{\rho_{\chi_{0}}}
$$

and with the following properties.
(1) S is unitary and symmetric,
(2) S^{2} is an order 2 monomial matrix with entries in $\{ \pm 1\}$,
(3) there exists a special character of W (in the Rouquier block corresponding to \mathcal{F}) such that
(1) the corresponding row i_{0} of S has no zero entry,
(2) (Verlinde type formula) for all $i, j, k \in \mathcal{F}$, the sums $\sum_{l} S_{l, i} S_{l, j} S_{l, k}^{*} S_{l, i_{0}}^{-1}$ are integers.

Frobenius and Shintani matrices

Frobenius and Shintani matrices

- Let Ω be the diagonal matrix indexed by $\mathcal{F} \times \mathcal{F}$ whose diagonal term at $\rho \in \mathcal{F}$ is the Frobenius eigenvalue Fr_{ρ}.

Frobenius and Shintani matrices

- Let Ω be the diagonal matrix indexed by $\mathcal{F} \times \mathcal{F}$ whose diagonal term at $\rho \in \mathcal{F}$ is the Frobenius eigenvalue Fr_{ρ}.
- Define $\mathrm{Sh}:=S \cdot \Omega \cdot S^{-1}$.

Frobenius and Shintani matrices

- Let Ω be the diagonal matrix indexed by $\mathcal{F} \times \mathcal{F}$ whose diagonal term at $\rho \in \mathcal{F}$ is the Frobenius eigenvalue Fr_{ρ}.
- Define $\mathrm{Sh}:=S \cdot \Omega \cdot S^{-1}$.

Fact a

a "There is a proof, but so far l've not seen an explanation" [JHC]

Frobenius and Shintani matrices

- Let Ω be the diagonal matrix indexed by $\mathcal{F} \times \mathcal{F}$ whose diagonal term at $\rho \in \mathcal{F}$ is the Frobenius eigenvalue Fr_{ρ}.
- Define $\mathrm{Sh}:=S \cdot \Omega \cdot S^{-1}$.

Fact a

The map

$$
\mathbf{s} \mapsto \Omega, \mathbf{t} \mapsto \mathrm{Sh}
$$

induces a representation of $\mathrm{SL}_{2}(\mathbb{Z})$ onto the complex vector space with basis \mathcal{F} such that $\mathbf{w}_{0} \mapsto S$.

Frobenius and Shintani matrices

- Let Ω be the diagonal matrix indexed by $\mathcal{F} \times \mathcal{F}$ whose diagonal term at $\rho \in \mathcal{F}$ is the Frobenius eigenvalue Fr_{ρ}.
- Define $\mathrm{Sh}:=S \cdot \Omega \cdot S^{-1}$.

Fact a

The map

$$
\mathbf{s} \mapsto \Omega, \mathbf{t} \mapsto \mathrm{Sh}
$$

induces a representation of $\mathrm{SL}_{2}(\mathbb{Z})$ onto the complex vector space with basis \mathcal{F} such that $\mathbf{w}_{0} \mapsto S$.

All this makes us think of a kind of modular datum, and perhaps for the Spets of a kind of triangulated modular tensor category (?).

The Fourier matrix for G_{4}

		01	02	12		01	34	04	25	13
	1		
01		$\frac{1+\frac{1}{\sqrt{-3}}}{2}$	$\frac{1-\frac{1}{\sqrt{-3}}}{2}$	$\frac{-1}{\sqrt{-3}}$						
02		$\frac{1-\frac{1}{\sqrt{-3}}}{2}$	$\frac{1+\frac{1}{\sqrt{-3}}}{2}$	$\frac{1}{\sqrt{-3}}$.				
12		$\frac{-1}{\sqrt{-3}}$	$\frac{1}{\sqrt{-3}}$	$\frac{-1}{\sqrt{-3}}$.	.				
	-		.		1		.	.	.	
01	-					$\frac{1}{2 \sqrt{-3}}$	$\frac{-1}{2 \sqrt{-3}}$	$\frac{1}{2}$	$\frac{-1}{\sqrt{-3}}$	$\frac{1}{2}$
34	-					$\frac{-1}{2 \sqrt{-3}}$	$\frac{1}{2 \sqrt{-3}}$	$\frac{1}{2}$	$\frac{1}{\sqrt{-3}}$	$\frac{1}{2}$
04	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$		$-\frac{1}{2}$
25	-					$\frac{-1}{\sqrt{-3}}$	$\frac{1}{\sqrt{-3}}$		$\frac{-1}{\sqrt{-3}}$	
13	.					$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$.	$\frac{1}{2}$

Unipotent characters for G_{4}

(3)-(3)

Unipotent characters for G_{4}

In red $=$ the Φ_{6}^{\prime}-series.

- = the Φ_{4}-series.

Character	Degree	FakeDegree	Eigenvalue	Family
- $\phi_{1,0}$	- 1	1	1	C_{1}
$\phi_{2,1}$	$\frac{3-\sqrt{-3}}{6} q \Phi_{3}^{\prime} \Phi_{4} \Phi_{6}^{\prime \prime}$	$q \Phi_{4}$	1	$X_{3} .01$
$\phi_{2,3}$	$\frac{3+\sqrt{-3}}{6} q \Phi_{3}^{\prime \prime} \Phi_{4} \Phi_{6}^{\prime}$	$q^{3} \Phi_{4}$	1	$X_{3} .02$
$Z_{3}: 2$	$\frac{\sqrt{-3}}{3} q \Phi_{1} \Phi_{2} \Phi_{4}$	0	ζ_{3}^{2}	$X_{3} .12$
- $\phi_{3,2}$	- $q^{2} \Phi_{3} \Phi_{6}$	$q^{2} \Phi_{3} \Phi_{6}$	1	C_{1}
$\phi_{1,4}$	$\frac{-\sqrt{-3}}{6} q^{4} \Phi_{3}^{\prime \prime} \Phi_{4} \Phi_{6}^{\prime \prime}$	q^{4}	1	$X_{5} .1$
$\phi_{1,8}$	$\frac{\sqrt{-3}}{6} q^{4} \Phi_{3}^{\prime} \Phi_{4} \Phi_{6}^{\prime}$	q^{8}	1	$X_{5} .2$
- $\phi_{2,5}$	- $\frac{1}{2} q^{4} \Phi_{2}^{2} \Phi_{6}$	$q^{5} \Phi_{4}$	1	$\chi_{5} .3$
$Z_{3}: 11$	$\frac{\sqrt{-3}}{3} q^{4} \Phi_{1} \Phi_{2} \Phi_{4}$	0	ζ_{3}^{2}	$X_{5} .4$
- G_{4}	- $\frac{1}{2} q^{4} \Phi_{1}^{2} \Phi_{3}$	0	-1	$\chi_{5} .5$
$\Phi_{3}^{\prime}, \Phi_{3}^{\prime \prime}\left(\right.$ resp. $\left.\Phi_{6}^{\prime}, \Phi_{6}^{\prime \prime}\right)$ are factors of $\Phi_{3}\left(\right.$ resp $\left.\Phi_{6}\right)$ in $\mathbb{Q}\left(\zeta_{3}\right)$				

