Lie theory on real hyperplane arrangements

Marcelo Aguiar, Cornell University joint with Swapneel Mahajan, IIT Mumbai

XXI Coloquio Latinoamericano de Álgebra
Universidad de Buenos Aires
July 25, 2016

Lie brackets

Given variables x and y, their bracket is

$$
[x, y]=x y-y x
$$

Let x_{1}, \ldots, x_{n} be n independent variables.
Let Per_{n} be the space spanned by all monomials

$$
x_{\sigma(1)} \cdots x_{\sigma(n)} \quad \text { where } \quad \sigma \in S_{n} .
$$

Let Lie_{n} be the subspace of Per_{n} spanned by all full bracketings of x_{1}, \ldots, x_{n}. For example, a full bracketing when $n=3$ is

$$
\left[\left[x_{2}, x_{3}\right], x_{1}\right]=x_{2} x_{3} x_{1}-x_{1} x_{2} x_{3}-x_{3} x_{2} x_{1}+x_{1} x_{3} x_{2}
$$

Fact. $\operatorname{dim} \mathrm{Lie}_{n}=(n-1)$!.
Example. Lie_{3} is spanned by

$$
\left[x_{1},\left[x_{2}, x_{3}\right]\right] \text { and }\left[x_{2},\left[x_{1}, x_{3}\right]\right] \text { (Dynkin basis). }
$$

Free algebras

Let V be a vector space and $L(V)$ the free Lie algebra on V. Then

$$
L(V)=\bigoplus_{n \geq 1} \operatorname{Lie}_{n} \otimes_{\mathrm{S}_{n}} V^{\otimes n}
$$

The free associative algebra on V is

$$
T(V)=\bigoplus_{n \geq 1} \operatorname{Per}_{n} \otimes_{S_{n}} V^{\otimes n}=\bigoplus_{n \geq 1} V^{\otimes n}
$$

The free commutative algebra on V is

$$
S(V)=\bigoplus_{n \geq 1} 1_{n} \otimes_{S_{n}} V^{\otimes n}=\bigoplus_{n \geq 1}\left(V^{\otimes n}\right)_{S_{n}}
$$

where 1_{n} is the trivial representation of S_{n}.
The sequences

$$
\left\{\operatorname{Lie}_{n}\right\}_{n \geq 1}, \quad\left\{\operatorname{Per}_{n}\right\}_{n \geq 1}, \quad\left\{1_{n}\right\}_{n \geq 1}
$$

are classical operads.

The partition lattice

Let Π_{n} be the lattice of partitions of $[n]$.

Fact. $\operatorname{dim} H_{\text {top }}\left(\Pi_{n}\right)=(n-1)!$.

Joyal-Klyachko-Stanley

Theorem There is an isomorphism of S_{n}-modules

$$
\operatorname{Lie}_{n} \cong H_{\text {top }}\left(\Pi_{n}\right) \otimes \epsilon_{n}
$$

where $\operatorname{Lie}_{n}=n$-linear part of the free Lie algebra,
$\Pi_{n}=$ lattice of partitions of [n],
$\epsilon_{n}=$ sign representation of S_{n}.

- Hanlon (1981), Stanley (1982)
- Klyachko (1974)
- Joyal (1986)
- Barcelo (1990), Barcelo-Bergeron (1990)
- Björner (1982, 1992), Wachs (1994), Björner-Wachs (2005)
- Garsia (1990)

The role of the braid arrangement

Claim: JKS is a statement about the braid arrangement \mathcal{B}_{n}.
\mathcal{B}_{n} is the collection of hyperplanes $x_{i}=x_{j}$ in \mathbb{R}^{n}.
Π_{n} is the lattice of flats and Per_{n} is the set of chambers of \mathcal{B}_{n}.

In fact: JKS is a special case of a general result that holds for all real hyperplane arrangements.

Let \mathcal{A} be a real hyperplane arrangement.
We define a space $\operatorname{Lie}(\mathcal{A})$ such that

$$
\operatorname{Lie}(\mathcal{A}) \cong H^{\mathrm{top}}(\boldsymbol{\Pi}(\mathcal{A})) \otimes \mathbf{O}(\mathcal{A})
$$

naturally in \mathcal{A}, where $\boldsymbol{\Pi}(\mathcal{A})$ is the lattice of flats and $\mathbf{O}(\mathcal{A})$ is the orientation space of \mathcal{A}.

Faces and flats

Let \mathcal{A} be a hyperplane arrangement in a real vector space.

- The hyperplanes in \mathcal{A} split space into a collection $\boldsymbol{\Sigma}(\mathcal{A})$ of convex polyhedral cones called faces.
- The faces of top dimension are called chambers. Let $\boldsymbol{\Gamma}(\mathcal{A})$ be the set of chambers.
- The subspaces obtained as intersections of hyperplanes in \mathcal{A} are called flats. Let $\boldsymbol{\Pi}(\mathcal{A})$ be the set of flats.

Example. 3 lines, 13 faces (6 chambers), 5 flats.

Faces of the braid arrangement

- Faces of \mathcal{B}_{n} are in bijection with ordered partitions of $[n]$,

$$
\text { e.g. } 1 \mid 23=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}>x_{2}=x_{3}\right\} .
$$

- Chambers are in bijection with linear orders on [n] (or permutations in S_{n}).
- Flats are in bijection with partitions of [n].

The braid arrangements \mathcal{B}_{3} and \mathcal{B}_{4}

Faces and flats

- The set $\boldsymbol{\Pi}(\mathcal{A})$ is a lattice.
- The set $\boldsymbol{\Sigma}(\mathcal{A})$ is a monoid.
- The set $\boldsymbol{\Gamma}(\mathcal{A})$ is a two-sided ideal in $\boldsymbol{\Sigma}(\mathcal{A})$.

Example. $R_{1} R_{2}=C$.

- Bland (1974), Tits (1974), Bidigare-Hanlon-Rockmore (1997).
- Brown-Diaconis (1998), Billera-Brown-Diaconis (1999).

The support map

The support of a face F is the intersection of all the hyperplanes that contain it:

$$
\text { supp } F=\bigcap_{H \supseteq F} H
$$

It is a flat.
The map supp : $\boldsymbol{\Sigma}(\mathcal{A}) \rightarrow \boldsymbol{\Pi}(\mathcal{A})$ is a morphism of monoids:

$$
\operatorname{supp}(F G)=\operatorname{supp} F \vee \operatorname{supp} G
$$

Moreover, $\boldsymbol{\Pi}(\mathcal{A})$ is the abelianization of $\boldsymbol{\Sigma}(\mathcal{A})$.

The Tits product for the braid arrangement

Let $F=\left(S_{1}, \ldots, S_{p}\right)$ and $G=\left(T_{1}, \ldots, T_{q}\right)$ be ordered partitions of [$\left.n\right]$.

The Tits product of F and G is

$$
F G=\left(A_{11}, \ldots, A_{1 q}, \ldots, A_{p 1}, \ldots, A_{p q}\right)
$$

(empty intersections are removed).

Lunes

A face H and a chamber D with $H \leq D$ define a lune

$$
\ell(H, D)=\{C \in \Gamma(\mathcal{A}) \mid H C=D\}
$$

Lie and the zero-lune condition

Let \mathbb{k} be a field of characteristic 0 .
Definition. $\operatorname{Lie}(\mathcal{A})$ is the subspace of $\mathbb{k} \boldsymbol{\Gamma}(\mathcal{A})$ consisting of elements

$$
\sum_{C \in \boldsymbol{\Gamma}(\mathcal{A})} a_{C} C \text { such that } \sum_{C \in \ell} a_{C}=0
$$

for every nontrivial lune ℓ.

Let \mathcal{B}_{n} be the braid arrangement.
Then $\mathbb{k} \boldsymbol{\Gamma}\left(\mathcal{B}_{n}\right)=$ Per $_{n}$.
That $\operatorname{Lie}\left(\mathcal{B}_{n}\right)=\operatorname{Lie}_{n}$ boils down to a classical criterion of Ree.

Zero-lune condition and Jacobi identity

The braid arrangement \mathcal{A}_{3} :

Three Lie elements that sum to 0 :

This is the Jacobi identity

$$
[[2,3], 1]+[[1,2], 3]+[[3,1], 2]=0 .
$$

Example: rank 2 arrangements

Consider an arrangement of 4 lines. Lunes are halfplanes.

Zero-lune condition: $a+b+c+d=0$.
For an arrangement \mathcal{D}_{n} of n lines on the plane,

$$
\operatorname{dim} \operatorname{Lie}\left(\mathcal{D}_{n}\right)=n-1
$$

Joyal-Klyachko-Stanley generalized

Theorem. $\operatorname{Lie}(\mathcal{A}) \cong H^{\text {top }}(\boldsymbol{\Pi}(\mathcal{A})) \otimes \mathbf{O}(\mathcal{A})$.
Moreover: Dynkin basis \leftrightarrow Björner-Wachs basis.
Corollary. $\operatorname{dim} \operatorname{Lie}(\mathcal{A})=(-1)^{\operatorname{rank} \mathcal{A}} \mu(\boldsymbol{\Pi}(\mathcal{A}))$ (Möbius invariant).
$\boldsymbol{\Pi}(\mathcal{A})$ is a geometric lattice:

$$
\operatorname{rank}(X \vee Y) \geq \operatorname{rank}(X)+\operatorname{rank}(Y)-\operatorname{rank}(X \wedge Y)
$$

The Dynkin-Specht-Wever Theorem

Let H be a generic hyperplane for \mathcal{A}. Define the Dynkin element

$$
\theta_{\mathrm{H}}=\sum_{F: F \subseteq \mathrm{H}^{+}}(-1)^{\mathrm{rank}(F)} F
$$

Theorem. θ_{H} is an idempotent in the monoid algebra $\mathbb{k} \boldsymbol{\Sigma}(\mathcal{A})$. Moreover,

$$
\theta_{\mathrm{H}} \mathbb{k} \boldsymbol{\Gamma}(\mathcal{A})=\operatorname{Lie}(\mathcal{A}) .
$$

(Topology of lunes \cap halfspaces enters in the proof.)

Corollary. The set $\left\{\theta_{\mathrm{H}} C \mid C \subseteq \mathrm{H}^{-}\right\}$is a basis of $\operatorname{Lie}(\mathcal{A})$. This is the Dynkin basis.

Restriction and contraction

Let X be a flat of \mathcal{A}.
The restriction \mathcal{A}_{X} consists of the hyperplanes H in \mathcal{A} which contain X. The ambient space remains the same.

The contraction \mathcal{A}^{X} consists of the intersections $\mathrm{H} \cap X$ where H is in \mathcal{A} and does not contain X. The ambient space is X.

Faces under restriction and contraction

$$
\boldsymbol{\Pi}\left(\mathcal{A}_{X}\right)=\{Y \in \boldsymbol{\Pi}(\mathcal{A}) \mid Y \geq X\} .
$$

Given a face F with supp $F=X$, there are canonical bijections

$$
\begin{aligned}
\boldsymbol{\Sigma}\left(\mathcal{A}_{X}\right) & \cong\{G \in \boldsymbol{\Sigma}(\mathcal{A}) \mid G \geq F\} \\
\boldsymbol{\Gamma}\left(\mathcal{A}_{X}\right) & \cong\{C \in \boldsymbol{\Gamma}(\mathcal{A}) \mid C \geq F\}
\end{aligned}
$$

Let G_{F} be the face of \mathcal{A}_{X} corresponding to $G \supseteq F$.

$$
\begin{gathered}
\boldsymbol{\Pi}\left(\mathcal{A}^{X}\right)=\{Y \in \boldsymbol{\Pi}(\mathcal{A}) \mid Y \leq X\} \\
\boldsymbol{\Sigma}\left(\mathcal{A}^{X}\right)=\{F \in \boldsymbol{\Sigma}(\mathcal{A}) \mid \operatorname{supp} F \leq X\}, \\
\boldsymbol{\Gamma}\left(\mathcal{A}^{X}\right)=\{C \in \boldsymbol{\Gamma}(\mathcal{A}) \mid \operatorname{supp} F=X\} .
\end{gathered}
$$

Operads

Let $\mathbf{a r r}^{\times}$denote the groupoid of real hyperplane arrangements and their isomorphisms.
A generalized species is a functor

$$
\mathbf{P}: \mathbf{a r r}^{\times} \rightarrow \text { Vec } .
$$

Thus, \mathbf{P} is a collection of vector spaces $\mathbf{P}(\mathcal{A})$, one space for each isomorphism class of real hyperplane arrangement \mathcal{A}.

The category of species is monoidal under substitution:

$$
(\mathbf{P} \circ \mathbf{Q})(\mathcal{A})=\bigoplus_{x \in \boldsymbol{\Pi}(\mathcal{A})} \mathbf{P}\left(\mathcal{A}^{X}\right) \otimes \mathbf{Q}\left(\mathcal{A}_{X}\right)
$$

A generalized operad is a monoid in this category.

This parallels Joyal's approach to classical operads:

$$
\left(\mathcal{B}_{n}\right)^{X} \cong \mathcal{B}_{|X|} \quad \text { and } \quad\left(\mathcal{B}_{n}\right)_{X} \cong \prod_{S \in X} \mathcal{B}_{|X|}
$$

The trinity of operads

The generalized associative operad is $\mathbf{A s}:=\mathbb{k} \boldsymbol{\Gamma}$: for any flat X, let

$$
\mathbf{A s}\left(\mathcal{A}^{X}\right) \otimes \mathbf{A} \mathbf{s}\left(\mathcal{A}_{X}\right) \rightarrow \mathbf{A s}(\mathcal{A}), \quad F \otimes C_{F} \mapsto C
$$

Lie is the generalized Lie operad. It is a suboperad of As:

For any arrangement \mathcal{A}, let $\operatorname{Com}(\mathcal{A})=\mathbb{k}$.
For any flat X, let

$$
\operatorname{Com}\left(\mathcal{A}^{X}\right) \otimes \operatorname{Com}\left(\mathcal{A}_{X}\right) \rightarrow \operatorname{Com}(\mathcal{A}), \quad \mathbb{k} \otimes \mathbb{k} \cong \mathbb{k}
$$

Com is the generalized commutative operad.

Koszul duality

Theorem.

- As, Lie and Com are Koszul operads.
- As ${ }^{!} \cong \mathbf{A s}, \mathbf{L i e}!\cong \mathbf{C o m}$.

Notes.

- JKS is a consequence of Koszul duality between Lie and Com. (Classical case: Fresse.)
- Another is the fact that the Tits algebra $\mathbb{k} \boldsymbol{\Sigma}(\mathcal{A})$ is (quadratic and) Koszul, with Koszul dual equal to the incidence algebra of the poset $\boldsymbol{\Pi}(\mathcal{A})$. (Facts known from work of Polo, Saliola).

Associative and commutative

Let \mathbf{P} be a generalized species.
An associative structure on \mathbf{P} is a collection of maps

$$
\mu_{F}: \mathbf{P}\left(\mathcal{A}_{X}\right) \rightarrow \mathbf{P}(\mathcal{A}) \quad \text { where } \quad X=\operatorname{supp} F
$$

one for each \mathcal{A} and each $F \in \boldsymbol{\Sigma}(\mathcal{A})$, subject to:

whenever $F \leq G$. Here $X=\operatorname{supp} F$ and $Y=\operatorname{supp} G$.
A commutative structure is an associative structure such that

$$
\mu_{F}=\mu_{G} \quad \text { whenever } \quad \operatorname{supp} F=\operatorname{supp} G .
$$

Hopf and Lie

Let \mathbf{H} be a generalized species.
A Hopf structure on \mathbf{H} consists of two collections of maps

$$
\mathbf{H}\left(\mathcal{A}_{X}\right) \underset{\Delta_{F}}{\stackrel{\mu_{F}}{\leftrightarrows}} \mathbf{H}(\mathcal{A})
$$

that are associative and coassociative, subject to

for every pair of faces F and G of \mathcal{A}. Here $X=\operatorname{supp} F$ and $Y=\operatorname{supp} G$.

Lie structures can also be defined.

Primitives

Let \mathbf{H} be a Hopf monoid.
Its primitive part is the generalized species $\mathbf{P}(\mathbf{H})$ defined by

$$
\mathbf{P}(\mathbf{H})(\mathcal{A})=\bigcap_{\substack{F \in \boldsymbol{\Sigma}(\mathcal{A}) \\ F \neq O}} \operatorname{ker}\left(\Delta_{F}: \mathbf{H}(\mathcal{A}) \rightarrow \mathbf{H}\left(\mathcal{A}_{\text {supp } F}\right)\right)
$$

Proposition. $\mathbf{P}(\mathbf{H})$ is a Lie monoid.

The Hopf monoid of chambers

Consider the generalized species $\mathbb{k} \boldsymbol{\Gamma}(\mathcal{A})$ (underlying $\mathbf{A s}$).
For each face F of \mathcal{A}, define

$$
\begin{array}{rlrl}
\mu_{F}: \mathbb{k} \boldsymbol{\Gamma}\left(\mathcal{A}_{X}\right) & \rightarrow \mathbb{k} \boldsymbol{\Gamma}(\mathcal{A}) & \Delta_{F}: \mathbb{k} \boldsymbol{\Gamma}(\mathcal{A}) & \rightarrow \mathbb{k} \boldsymbol{\Gamma}\left(\mathcal{A}_{X}\right) \\
C_{F} & \mapsto C & C & \mapsto(F C)_{F} .
\end{array}
$$

Proposition.

- $\mathbb{k} \Gamma$ is a Hopf monoid.
- $\mathbf{L i e}=\mathbf{P}(\mathbb{k} \Gamma)$.

This generalizes a criterion of Friedrichs for the free Lie algebra:

$$
L(V)=P(T(V))
$$

Cartier-Milnor-Moore

Let \mathbb{k} be a field of characteristic 0 .
Theorem. Let \mathbf{H} be a cocommutative Hopf monoid. Then

$$
\mathbf{H} \cong \operatorname{Com} \circ \mathbf{P}(\mathbf{H}) .
$$

In other words,

$$
\mathbf{H}(\mathcal{A}) \cong \bigoplus_{x \in \boldsymbol{\Pi}(\mathcal{A})} \mathbf{P}(\mathbf{H})\left(\mathcal{A}_{x}\right)
$$

- Follow Cartier's proof of the classical result.
- Generalize the classical Eulerian idempotents.
- Understand the structure of the algebra $\mathbb{k} \boldsymbol{\Sigma}(\mathcal{A})$ and its semisimple quotient $\mathbb{k} \boldsymbol{\Pi}(\mathcal{A})$.
- Employ results of Brown-Diaconis and Saliola.

Zaslavsky's formula

This may be obtained as a consequence of CMM.

Friedrichs:
CMM:

$$
\begin{array}{rlrl}
\text { ichs: } & \mathbf{L i e} & =\mathbf{P}(\mathbb{k} \boldsymbol{\Gamma}) \\
\text { MM: } & \mathbb{k} \boldsymbol{\Gamma}(\mathcal{A}) & \cong \bigoplus_{X \in \boldsymbol{\Pi}(\mathcal{A})} \operatorname{Lie}\left(\mathcal{A}_{X}\right) \\
\Longrightarrow & \operatorname{dim} \mathbb{k} \boldsymbol{\Gamma}(\mathcal{A}) & =\sum_{x \in \mathbf{\Pi}(\mathcal{A})} \operatorname{dim} \operatorname{Lie}\left(\mathcal{A}_{X}\right) \\
& & \# \boldsymbol{\Gamma}(\mathcal{A}) & =\sum_{x \in \boldsymbol{\Pi}(\mathcal{A})}(-1)^{\operatorname{corank} X} \mu\left(\boldsymbol{\Pi}\left(\mathcal{A}_{X}\right)\right) .
\end{array}
$$

JKS:

The number of chambers is determined by the lattice of flats. (Zaslavsky)

Thank you.

