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Lie brackets

Given variables x and y, their bracket is

[x,y] = xy — yx.

Let x1,...,Xx, be n independent variables.
Let Per, be the space spanned by all monomials

Xg(1) " * " Xo(n) where o € S,,.

Let Lie, be the subspace of Per, spanned by all full bracketings of
X1,...,Xp. For example, a full bracketing when n =3 is

[x2, x3], x1] = xex3x1 — X1X0X3 — X3X0X1 + X1X3%2.

Fact. dimLie, = (n— 1)\
Example. Lies is spanned by

[x1,[x2,x3]] and [x,[x1,x3]] (Dynkin basis).



Free algebras
Let V be a vector space and L(V) the free Lie algebra on V. Then

L(V) = @) Lie, @, VE".
n>1

The free associative algebra on V is

T(V) = P Per, 25, V" = P V.

n>1 n>1

The free commutative algebra on V' is

S(V) = P1n@s, VO =PV,

n>1 n>1

where 1, is the trivial representation of S,.
The sequences

{Lmn}n217 {Pern}n217 {1n}n21

are classical operads.



The partition lattice

Let I, be the lattice of partitions of [n].

1234

[13-24] 1342 [12:34]

[123-4] [1423[[1243] [132:4] [12:34

1.23-4

Fact. dim Heop(M,) = (n — 1)1.



Joyal-Klyachko-Stanley

Theorem There is an isomorphism of S,-modules
Lien = Hiop(My) ® €

where Lie, = n-linear part of the free Lie algebra,
M, = lattice of partitions of [n],
€n = sign representation of S,.
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The role of the braid arrangement

Claim: JKS is a statement about the braid arrangement B,,.

B, is the collection of hyperplanes x; = x; in R".
1, is the lattice of flats and Per,, is the set of chambers of ;.

In fact: JKS is a special case of a general result that holds for all
real hyperplane arrangements.

Let A be a real hyperplane arrangement.
We define a space Lie(A) such that

Lie(A) = H*P(M(A)) ® O(A)

naturally in A, where M(.A) is the lattice of flats and O(.A) is the
orientation space of A.



Faces and flats

Let A be a hyperplane arrangement in a real vector space.

» The hyperplanes in A split space into a collection X(.A) of
convex polyhedral cones called faces.

» The faces of top dimension are called chambers.
Let I'(A) be the set of chambers.

» The subspaces obtained as intersections of hyperplanes in A
are called flats. Let IM(.A) be the set of flats.

Example. 3 lines, 13 faces (6 chambers), 5 flats.

N/




Faces of the braid arrangement
» Faces of B, are in bijection with ordered partitions of [n],
e.g. 1|23 = {(Xl,Xz,X3) | X1 > Xp = X3}.

» Chambers are in bijection with linear orders on [n]
(or permutations in Sp).
» Flats are in bijection with partitions of [n].

\ e/

132 123

3]1)2 123

— 312 — 123 — 12]3 —

/\
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The braid arrangements B3 and B,

b|c|a

blalc

alb|c bld|c|a

b|d|a|c

alclb
blc|d|a

bla|d|c



Faces and flats

» The set M(A) is a lattice.
» The set X(.A) is a monoid.
> The set T'(A) is a two-sided ideal in X(.A).

Example. R1R> = C.

e Bland (1974), Tits (1974), Bidigare-Hanlon-Rockmore (1997).
e Brown-Diaconis (1998), Billera-Brown-Diaconis (1999).



The support map

The support of a face F is the intersection of all the hyperplanes
that contain it:

supp F = ﬂ H.
HDF

It is a flat.
The map supp : X(A) — M(.A) is a morphism of monoids:

supp(FG) = supp F V supp G.

Moreover, M(.A) is the abelianization of X(.A).



The Tits product for the braid arrangement

Let F =(S51,...,5p) and G = (Tx,..., T4) be ordered partitions of [n].

The Tits product of F and G is

FG = (A1, A Apts- -5 Ang)

(empty intersections are removed).
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Lie and the zero-lune condition

Let k be a field of characteristic 0.

Definition. Lie(.A) is the subspace of kI'(A) consisting of

elements
Z ac C such that Z ac=0
Cer(A) cet

for every nontrivial lune /.

Let B, be the braid arrangement.
Then kI(B,) = Per,,.
That Lie(B,) = Lie, boils down to a classical criterion of Ree.



Zero-lune condition and Jacobi identity
The braid arrangement As:

132
312 123
1 2
231

32 13

Three Lie elements that sum to O:

1

1

This is the Jacobi identity
[[2,3], 1] + [[1, 2], 3] + [[3,1], 2] = 0.

0 1
SERORERE)
+ +
1 0 1 1 0 1

0 T



Example: rank 2 arrangements

Consider an arrangement of 4 lines. Lunes are halfplanes.

d a

Zero-lune condition: a+ b+ c+d =0.
For an arrangement D, of n lines on the plane,

dim Lie(D,) = n—1.



Joyal-Klyachko-Stanley generalized

Theorem. Lie(A) = H*P(MN(A)) @ O(A).

Moreover: Dynkin basis <+ Bjorner-Wachs basis.

Corollary. dim Lie(A) = (—1)"*%4,(M(A)) (Mébius invariant).

M(A) is a geometric lattice:

rank(X V Y) > rank(X) 4 rank(Y) — rank(X A Y).



The Dynkin-Specht-Wever Theorem

Let H be a generic hyperplane for A. Define the Dynkin element

HH: Z (_1)rank(F)F_

F:FCH*

Theorem. 6y is an idempotent in the monoid algebra kX (.A).
Moreover,
Okl (A) = Lie(A).

(Topology of lunes N halfspaces enters in the proof.)

Corollary. The set {#uC | C C H™ } is a basis of Lie(A).
This is the Dynkin basis.



Restriction and contraction

Let X be a flat of A.
The restriction Ax consists of the hyperplanes H in A which
contain X. The ambient space remains the same.

The contraction AX consists of the intersections HN X where H is
in A and does not contain X. The ambient space is X.



Faces under restriction and contraction

NAx)={Yen(A4)| Y > X}.

Given a face F with supp F = X, there are canonical bijections
T(Ax)={GeX(A)|G=F},
MAx)={Cel(A)| C>F}.

Let G be the face of Ax corresponding to G D F.

NAX) = {Y e N(A) | Y < X},
Z(.AX) ={F e X(A) |supp F < X},
MAX)={Cer(A)|suppF = X}.




Operads

Let arr™ denote the groupoid of real hyperplane arrangements and
their isomorphisms.
A generalized species is a functor

P:arr* — Vec.

Thus, P is a collection of vector spaces P(.A), one space for each
isomorphism class of real hyperplane arrangement A.

The category of species is monoidal under substitution:
(PoQ)A) = P P(AY)®Q(Ax).
Xen(A)

A generalized operad is a monoid in this category.

This parallels Joyal's approach to classical operads:

(BH)X = B|X| and (Bn)X = H B‘X‘
Sex



The trinity of operads

The generalized associative operad is As := kI':
for any flat X, let

As(AX) @ As(Ax) — As(4), F® Cr+ C.
Lie is the generalized Lie operad. It is a suboperad of As:

As(AX) ® As(Ax) — As(A)

| |

Lie(AX) ® Lie(Ax) — Lie(A)

For any arrangement A, let Com(.A) = k.
For any flat X, let

Com(AX) ® Com(Ax) — Com(A), k®k>=k.

Com is the generalized commutative operad.



Koszul duality

Theorem.
» As, Lie and Com are Koszul operads.
» As' = As, Lie' = Com.

Notes.
» JKS is a consequence of Koszul duality between Lie and Com.
(Classical case: Fresse.)
» Another is the fact that the Tits algebra kX (.A) is (quadratic
and) Koszul, with Koszul dual equal to the incidence algebra
of the poset M(.A). (Facts known from work of Polo, Saliola).



Associative and commutative

Let P be a generalized species.
An associative structure on P is a collection of maps

wur : P(Ax) — P(A) where X =suppF,

one for each A and each F € X(.A), subject to:

P(Ao) 12~ P(A) P(Ax) —"= P(A)
R
P(Ay)

whenever F < G. Here X = supp F and Y = supp G.
A commutative structure is an associative structure such that

ur = e whenever supp F =suppG.



Hopf and Lie

Let H be a generalized species.
A Hopf structure on H consists of two collections of maps

H(Ax) A: (4)

that are associative and coassociative, subject to

Ag

H(Ax) ———=H(A)

H(Ay)

A(FG)F /J'(GF)G
H(Axvy) = H(Ayvx)
for every pair of faces F and G of A.
Here X = supp F and Y = supp G.

Lie structures can also be defined.



Primitives

Let H be a Hopf monoid.
Its primitive part is the generalized species P(H) defined by

= [ ker(Af: H(A) = H(AsppF)).-

FeX(A)
F#0

Proposition. P(H) is a Lie monoid.



The Hopf monoid of chambers

Consider the generalized species kI'(A) (underlying As).
For each face F of A, define

pF  kF(Ax) — kF(A) Af  kM(A) — kM (Ax)
Cer— C C— (FC)F.

Proposition.
» kI is a Hopf monoid.
» Lie = P(kIM).

This generalizes a criterion of Friedrichs for the free Lie algebra:

L(V) = P(T(V)).



Cartier-Milnor-Moore

Let k be a field of characteristic 0.
Theorem. Let H be a cocommutative Hopf monoid. Then

H = Como P(H).
In other words,

HA) > D P(H)(Ax).

XeN(A)

v

Follow Cartier's proof of the classical result.

v

Generalize the classical Eulerian idempotents.

Understand the structure of the algebra kX(.A) and its
semisimple quotient kM(.A).

v

v

Employ results of Brown-Diaconis and Saliola.



Zaslavsky's formula

This may be obtained as a consequence of CMM.

Friedrichs: Lie = P(kIN)
CMM: kF(A) = P Lie(Ax)
Xen(A)
— dimkF(A)= ) dimLie(Ax)
Xen(A)
JKS: #HO(A) = D (1) Xy (M(Ax)).
Xen(A)

The number of chambers is determined by the lattice of flats.
(Zaslavsky)



Thank you.



