
Lie theory on real hyperplane arrangements

Marcelo Aguiar, Cornell University
joint with Swapneel Mahajan, IIT Mumbai

XXI Coloquio Latinoamericano de Álgebra
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Lie brackets
Given variables x and y , their bracket is

[x , y ] = xy − yx .

Let x1, . . . , xn be n independent variables.
Let Pern be the space spanned by all monomials

xσ(1) · · · xσ(n) where σ ∈ Sn.

Let Lien be the subspace of Pern spanned by all full bracketings of
x1, . . . , xn. For example, a full bracketing when n = 3 is[

[x2, x3], x1

]
= x2x3x1 − x1x2x3 − x3x2x1 + x1x3x2.

Fact. dim Lien = (n − 1)!.
Example. Lie3 is spanned by[

x1, [x2, x3]
]

and
[
x2, [x1, x3]

]
(Dynkin basis).



Free algebras
Let V be a vector space and L(V ) the free Lie algebra on V . Then

L(V ) =
⊕
n≥1

Lien⊗SnV
⊗n.

The free associative algebra on V is

T (V ) =
⊕
n≥1

Pern⊗SnV
⊗n =

⊕
n≥1

V⊗n.

The free commutative algebra on V is

S(V ) =
⊕
n≥1

1n ⊗Sn V
⊗n =

⊕
n≥1

(V⊗n)Sn ,

where 1n is the trivial representation of Sn.
The sequences

{Lien}n≥1, {Pern}n≥1, {1n}n≥1

are classical operads.



The partition lattice

Let Πn be the lattice of partitions of [n].
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14·23 1·234 124·3 13·24 123·4 134·2 12·34

1·23·4 14·2·3 1·24·3 13·2·4 12·3·4 1·2·34

1·2·3·4

Fact. dimHtop(Πn) = (n − 1)!.



Joyal-Klyachko-Stanley

Theorem There is an isomorphism of Sn-modules

Lien ∼= Htop(Πn)⊗ εn

where Lien = n-linear part of the free Lie algebra,
Πn = lattice of partitions of [n],
εn = sign representation of Sn.

I Hanlon (1981), Stanley (1982)

I Klyachko (1974)

I Joyal (1986)

I Barcelo (1990), Barcelo-Bergeron (1990)

I Björner (1982, 1992), Wachs (1994), Björner-Wachs (2005)

I Garsia (1990)



The role of the braid arrangement

Claim: JKS is a statement about the braid arrangement Bn.

Bn is the collection of hyperplanes xi = xj in Rn.
Πn is the lattice of flats and Pern is the set of chambers of Bn.

In fact: JKS is a special case of a general result that holds for all
real hyperplane arrangements.

Let A be a real hyperplane arrangement.
We define a space Lie(A) such that

Lie(A) ∼= Htop
(
Π(A)

)
⊗O(A)

naturally in A, where Π(A) is the lattice of flats and O(A) is the
orientation space of A.



Faces and flats

Let A be a hyperplane arrangement in a real vector space.

I The hyperplanes in A split space into a collection Σ(A) of
convex polyhedral cones called faces.

I The faces of top dimension are called chambers.
Let Γ(A) be the set of chambers.

I The subspaces obtained as intersections of hyperplanes in A
are called flats. Let Π(A) be the set of flats.

Example. 3 lines, 13 faces (6 chambers), 5 flats.

•



Faces of the braid arrangement
I Faces of Bn are in bijection with ordered partitions of [n],

e.g. 1|23 = {(x1, x2, x3) | x1 > x2 = x3}.
I Chambers are in bijection with linear orders on [n]

(or permutations in Sn).
I Flats are in bijection with partitions of [n].
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The braid arrangements B3 and B4

The Coxeter complex of type A

Σ[I ] is the normal fan of the standard permutahedron.
Since this polytope is simple, Σ[I ] is a simplicial complex.
This is the Coxeter complex of type A.

replacements

a|b|c

b|a|c

a|c|b

c|b|a

b|c|a

c|a|b

b|ac

a|bc

c|ab

bc|a

ab|c

ac|b

The Coxeter complex of type A

a|b|c|d

b|a|c|d

a|c|b|d

b|c|a|d

c|a|b|d

c|b|a|da|b|d |c

a|d |b|c

a|d |c|b a|c|d |b

b|a|d |c

b|d |a|c
b|d |c|a

b|c|d |a

c|b|d |a

c|d |b|a

c|d |a|b

c|a|d |b

Σ[I ] is the barycentric subdivision of the boundary of a simplex.



Faces and flats

I The set Π(A) is a lattice.

I The set Σ(A) is a monoid.

I The set Γ(A) is a two-sided ideal in Σ(A).

Example. R1R2 = C .

R1

R2

C

•

•

•
tt

• Bland (1974), Tits (1974), Bidigare-Hanlon-Rockmore (1997).
• Brown-Diaconis (1998), Billera-Brown-Diaconis (1999).



The support map

The support of a face F is the intersection of all the hyperplanes
that contain it:

suppF =
⋂
H⊇F

H.

It is a flat.

The map supp : Σ(A)→ Π(A) is a morphism of monoids:

supp(FG ) = suppF ∨ suppG .

Moreover, Π(A) is the abelianization of Σ(A).



The Tits product for the braid arrangement

Let F = (S1, . . . ,Sp) and G = (T1, . . . ,Tq) be ordered partitions of [n].
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The Tits product of F and G is

FG = (A11, . . . ,A1q, . . . ,Ap1, . . . ,Apq)

(empty intersections are removed).



Lunes

A face H and a chamber D with H ≤ D define a lune

`(H,D) = {C ∈ Γ(A) | HC = D}

30 1. ARRANGEMENTS

Exercise. Give an example of a gallery interval which is not a top-lune. Take two
adjacent chambers in say the rank 3 braid arrangement.

Exercise. Consider the coordinate arrangement consisting of the hyperplanes xi = 0
for 1 ≤ i ≤ n. Verify the following. Every cone is a lune. Further, each top-lune
with a base of rank i consists of 2i chambers. In particular, a vertex-based lune
has two chambers. In fact, any pair of adjacent chambers is a vertex-based lune.

1.7.2. Top-directed faces and top-lunes. Let H be any face and D be a cham-
ber containing H. We refer to the face (H,D) as a top-directed face. We define the
support of such a top-directed face to be

eq:supp-tdfaceeq:supp-tdface (1.31) s(H,D) := {C | HC = D}.

By (1.24), this is a convex set of chambers, hence a combinatorial top-cone. Its
closure is given by

eq:supp-tdface-closureeq:supp-tdface-closure (1.32) Cl(s(H,D)) = {F | HF ≤ D}.

To check this: Suppose F belongs to the closure. That is, for some C, we have
HC = D, and F ≤ C. Then HF ≤ HC, so F belongs to the rhs above. Conversely,
suppose F satisfies HF ≤ D. Then HFD = D. So FD belongs to the cone and F
belongs to its closure.

D

H

D

H

The figures show the support of a top-directed face (H,D) in rank 3 in the
cases when H is a vertex, and H is an edge. Note that both supports are in fact
top-lunes. This is true in general, as we will see below.

Proposition 1.21 shows that the support of a top-directed face is a gallery
interval. More precisely:

eq:lune-gal-inteq:lune-gal-int (1.33) s(H,D) = [D, HD].

Convexity of s(H,D) can also be deduced from Proposition 1.31.

p:supp-tdface-cone Proposition 1.38. The geometric cone associated to s(H,D) is the intersection of
those closed half-spaces which contain D and whose base contains H. In particular,
its base is s(H), the support of H.

Proof. Using Lemma 1.6, we deduce that a chamber belongs to s(H,D) iff it
belongs to all closed half-spaces which contain D and whose base passes through
H. !

c:supp-tdface-cone Corollary 1.39. Let H be a hyperplane. Then H is a wall of s(H,D) iff H contains
a panel of D which is greater than H.



Lie and the zero-lune condition

Let k be a field of characteristic 0.

Definition. Lie(A) is the subspace of kΓ(A) consisting of
elements ∑

C∈Γ(A)

aC C such that
∑
C∈`

aC = 0

for every nontrivial lune `.

Let Bn be the braid arrangement.
Then kΓ(Bn) = Pern.
That Lie(Bn) = Lien boils down to a classical criterion of Ree.



Zero-lune condition and Jacobi identity
The braid arrangement A3:

123

132

312

321

231

213

Three Lie elements that sum to 0:

1
1

0

1
1

0
+

1
0

1

1
0

1
+

0
1

1

0
1

1
= 0.

This is the Jacobi identity

[[2, 3], 1] + [[1, 2], 3] + [[3, 1], 2] = 0.



Example: rank 2 arrangements

Consider an arrangement of 4 lines. Lunes are halfplanes.

•

a

b

c

da

b

c

d

Zero-lune condition: a + b + c + d = 0.

For an arrangement Dn of n lines on the plane,

dim Lie(Dn) = n − 1.



Joyal-Klyachko-Stanley generalized

Theorem. Lie(A) ∼= Htop
(
Π(A)

)
⊗O(A).

Moreover: Dynkin basis ↔ Björner-Wachs basis.

Corollary. dim Lie(A) = (−1)rankAµ(Π(A)) (Möbius invariant).

Π(A) is a geometric lattice:

rank(X ∨ Y ) ≥ rank(X ) + rank(Y )− rank(X ∧ Y ).



The Dynkin-Specht-Wever Theorem

Let H be a generic hyperplane for A. Define the Dynkin element

θH =
∑

F :F⊆H+

(−1)rank(F ) F .

Theorem. θH is an idempotent in the monoid algebra kΣ(A).
Moreover,

θHkΓ(A) = Lie(A).

(Topology of lunes ∩ halfspaces enters in the proof.)

Corollary. The set {θHC | C ⊆ H−} is a basis of Lie(A).
This is the Dynkin basis.



Restriction and contraction

Let X be a flat of A.
The restriction AX consists of the hyperplanes H in A which
contain X . The ambient space remains the same.

1.5. CONTRACTION AND RESTRICTION OF ARRANGEMENTS 13

1.5.1. Contraction. Let X be any fixed flat of A. The contraction of A to X is
another hyperplane arrangement AX defined as follows. Its ambient space is X and
hyperplanes are codimension-one subspaces of X obtained by intersecting X with
hyperplanes in A not containing X.

Faces of AX can be canonically identified with faces of A with support smaller
than X, and chambers can be identified with faces of A with support X. We denote
the set of faces of AX by Σ[AX] and the set of chambers by Γ[AX].

For any face K, let AK := As(K).

Contraction of a rank-three arrangement to a rank-two flat is illustrated above. It
has eight vertices, four of which are visible in the picture.

1.5.2. Restriction. Let Y be any fixed flat of A. The restriction of A to Y is
another hyperplane arrangement AY consisting of those hyperplanes which contain
Y. The ambient space remains the same. Let Σ[AY] and Γ[AY] denote the set of
faces and chambers of AY.

Restriction of a rank-three arrangement to a rank-one flat is illustrated above. The
three thick lines belong to the restriction.

1.5.3. Stars and top-stars. For a face F , let Σ[A]F denote the set of faces of A
which are greater than F . This is the star of F . For clarity, we denote elements of
Σ[A]F by K/F , where K is some face greater than F . Let Γ[A]F denote the set of
chambers of A which are greater than F . This is the top-star of F . The top-star
of a chamber is a singleton consisting of the chamber itself, while the top-star of
the central face is the set of all chambers.

l:two-stars Lemma 1.21. When F and G have the same support, we have bijections

Σ[A]F
∼=−→ Σ[A]G, K/F #→ GK/G

and

Γ[A]F
∼=−→ Γ[A]G, C/F #→ GC/G.

The first map is also a poset isomorphism.

This is straightforward to check.

l:star-cont Lemma 1.22. Let X be a flat. Then for any face F with support X, there is a
bijection

Σ[A]F
∼=−→ Σ[AX].

The contraction AX consists of the intersections H ∩ X where H is
in A and does not contain X . The ambient space is X .
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Faces under restriction and contraction

Π(AX ) = {Y ∈ Π(A) | Y ≥ X}.
Given a face F with suppF = X , there are canonical bijections

Σ(AX ) ∼= {G ∈ Σ(A) | G ≥ F},
Γ(AX ) ∼= {C ∈ Γ(A) | C ≥ F}.

Let GF be the face of AX corresponding to G ⊇ F .

Π(AX ) = {Y ∈ Π(A) | Y ≤ X},
Σ(AX ) = {F ∈ Σ(A) | suppF ≤ X},
Γ(AX ) = {C ∈ Γ(A) | suppF = X}.
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Operads
Let arr× denote the groupoid of real hyperplane arrangements and
their isomorphisms.
A generalized species is a functor

P : arr× → Vec .

Thus, P is a collection of vector spaces P(A), one space for each
isomorphism class of real hyperplane arrangement A.

The category of species is monoidal under substitution:

(P ◦Q)(A) =
⊕

X∈Π(A)

P(AX )⊗Q(AX ).

A generalized operad is a monoid in this category.

This parallels Joyal’s approach to classical operads:

(Bn)X ∼= B|X | and (Bn)X ∼=
∏
S∈X
B|X |.



The trinity of operads

The generalized associative operad is As := kΓ:
for any flat X , let

As(AX )⊗ As(AX )→ As(A), F ⊗ CF 7→ C .

Lie is the generalized Lie operad. It is a suboperad of As:

As(AX )⊗ As(AX ) // As(A)

Lie(AX )⊗ Lie(AX ) //

OO

Lie(A)

OO

For any arrangement A, let Com(A) = k.
For any flat X , let

Com(AX )⊗ Com(AX )→ Com(A), k⊗ k ∼= k.

Com is the generalized commutative operad.



Koszul duality

Theorem.

I As, Lie and Com are Koszul operads.

I As! ∼= As, Lie! ∼= Com.

Notes.

I JKS is a consequence of Koszul duality between Lie and Com.
(Classical case: Fresse.)

I Another is the fact that the Tits algebra kΣ(A) is (quadratic
and) Koszul, with Koszul dual equal to the incidence algebra
of the poset Π(A). (Facts known from work of Polo, Saliola).



Associative and commutative

Let P be a generalized species.
An associative structure on P is a collection of maps

µF : P(AX )→ P(A) where X = suppF ,

one for each A and each F ∈ Σ(A), subject to:

P(AO)
µO // P(A)

P(A)

id

::
and

P(AX )
µF // P(A)

P(AY )

µGF

OO

µG

::

whenever F ≤ G . Here X = suppF and Y = suppG .

A commutative structure is an associative structure such that

µF = µG whenever suppF = suppG .



Hopf and Lie

Let H be a generalized species.
A Hopf structure on H consists of two collections of maps

H(AX )
µF //

H(A)
∆F

oo

that are associative and coassociative, subject to

H(AX )
µF //

∆(FG)F &&

H(A)
∆G // H(AY )

H(AX∨Y ) = H(AY∨X )

µ(GF )G

88

for every pair of faces F and G of A.
Here X = suppF and Y = suppG .

Lie structures can also be defined.



Primitives

Let H be a Hopf monoid.
Its primitive part is the generalized species P(H) defined by

P(H)(A) =
⋂

F∈Σ(A)
F 6=O

ker
(
∆F : H(A)→ H(AsuppF )

)
.

Proposition. P(H) is a Lie monoid.



The Hopf monoid of chambers

Consider the generalized species kΓ(A) (underlying As).
For each face F of A, define

µF : kΓ(AX )→ kΓ(A) ∆F : kΓ(A)→ kΓ(AX )

CF 7→ C C 7→ (FC )F .

Proposition.

I kΓ is a Hopf monoid.

I Lie = P(kΓ).

This generalizes a criterion of Friedrichs for the free Lie algebra:

L(V ) = P(T (V )).



Cartier-Milnor-Moore

Let k be a field of characteristic 0.
Theorem. Let H be a cocommutative Hopf monoid. Then

H ∼= Com ◦P(H).

In other words,

H(A) ∼=
⊕

X∈Π(A)

P(H)(AX ).

I Follow Cartier’s proof of the classical result.

I Generalize the classical Eulerian idempotents.

I Understand the structure of the algebra kΣ(A) and its
semisimple quotient kΠ(A).

I Employ results of Brown-Diaconis and Saliola.



Zaslavsky’s formula

This may be obtained as a consequence of CMM.

Friedrichs: Lie = P(kΓ)

CMM: kΓ(A) ∼=
⊕

X∈Π(A)

Lie(AX )

=⇒ dimkΓ(A) =
∑

X∈Π(A)

dim Lie(AX )

JKS: #Γ(A) =
∑

X∈Π(A)

(−1)corankXµ(Π(AX )).

The number of chambers is determined by the lattice of flats.
(Zaslavsky)



Thank you.


