
Towards a Mathematical Foundation of

Immunology and Amino Acid Chains∗

Wen-Jun Shen1, Hau-San Wong1, Quan-Wu Xiao2, Xin Guo2, and
Stephen Smale2

1Department of Computer Sciences, City University of Hong Kong
2Department of Mathematics, City University of Hong Kong

May 25, 2012

Abstract

We attempt to set a mathematical foundation of immunology and amino
acid chains. To measure the similarities of these chains, a kernel on strings is
defined using only the sequence of the chains and a good amino acid substi-
tution matrix (e.g. BLOSUM62). The kernel is used in learning machines
to predict binding affinities of peptides to human leukocyte antigens DR
(HLA-DR) molecules. On both fixed allele [24] and pan-allele [23] bench-
mark databases, our algorithm achieves the state-of-the-art performance.
The kernel is also used to define a distance on an HLA-DR allele set based
on which a clustering analysis precisely recovers the serotype classifications
assigned by WHO [14, 22]. These results suggest that our kernel relates
well the chain structure of both peptides and HLA-DR molecules to their
biological functions, and that it offers a simple, powerful and promising
methodology to immunology and amino acid chain studies.

1 Introduction

Large scientific and industrial enterprises are engaged in efforts to produce new
vaccines from synthetic peptides. The study of peptide binding to appropriate
alleles is a major part of this effort. Our goal here is to support the use of a
certain “string kernel” for peptide binding prediction as well for the classification
of supertypes of the major histocompatibility complex (MHC, in humans which is
also called HLA) alleles.

Our point of view, and our results imply, that some key biological information
is contained in just two places: First in a similarity kernel (or substitution matrix)
on the set of the fundamental amino acids; and second on a good representation
of the relevant alleles as strings of these amino acids.

∗The work described in this paper is supported by GRF grant [Project No.
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qwxiao@live.com (Q.W. Xiao), xinguo2@cityu.edu.hk (X. Guo), and smale@cityu.edu.hk
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This is achieved with great simplicity and predictive power. Along the way we
find that gaps and their penalties in the string kernels don’t help, and that empha-
sizing peptide binding as a real-valued function rather than a binding/non-binding
dichotomy clarifies the issues. We use a modification of BLOSUM62 followed by
a Hadamard power. We also use regularized least squares in contrast to support
vector machines as is consistent with our regression emphasis.

The construction (details later) of our main kernel K̂3 on amino acid chains,
inspired by local alignment kernels (see e.g. [30]) as well as an analogous kernel in
vision (see [38]) begins.

For purposes of this paper, a kernel K is a symmetric function K : X×X → R

where X is a finite set. Given an order on X , K may be represented as a matrix
(think of X as the set of indices of the matrix elements). Then it is assumed that
K is positive definite (in such a representation).

Let A be the set of the 20 basic (for life) amino acids. Every protein has a
representation as a string of elements of A .

Step 1. Definition of a kernel K1 : A × A → R.

BLOSUM62 is a similarity (or substitution) matrix on A frequently used in
immunology [13]. In the formulation of BLOSUM62, a kernel Q : A ×A →
R is defined using blocks of aligned strings of amino acids representing pro-
teins. One can think Q as the “raw data” of BLOSUM621. It is symmetric,
positive-valued, and a probability measure on A × A . (We have checked
that it is positive definite.)

Let p be the marginal probability defined on A by Q. Thus

p(x) =
∑

y∈A

Q(x, y).

Next, we define the BLOSUM62-2 matrix, indexed by the set A , as

[BLOSUM62-2](x, y) =
Q(x, y)

p(x)p(y)
.

We list the BLOSUM62-2 matrix in Appendix A. Suppose β > 0 is a pa-
rameter, usually chosen about 1

8
or 1

10
(still mysterious). Then a kernel

K1 : A × A → R is given by

K1(x, y) = ([BLOSUM62-2](x, y))β . (1)

Note that the power in (1) is of the matrix entries, not of the matrix.

Step 2. Let A 1 = A and define A k+1 = A k ×A recursively for any k ∈ N. We
say s is an amino acid chain (or string) if s ∈ ∪∞

k=1A
k, and s = (s1, . . . , sk)

is a k-mer if s ∈ A k for some k ∈ N with si ∈ A . Consider

K2
k(u, v) =

k
∏

i=1

K1(ui, vi)

where u, v are amino acid strings of the same length k, u = (u1, . . . , uk),
v = (v1, . . . , vk); u, v are k-mers. K2

k is a kernel on the set of all k-mers.

1See Appendix A for the data.
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Step 3. Let f = (f1, · · · , fm) be an amino acid chain. Denote |f | as the length of f
(so here |f | = m). Write u ⊂ f whenever u is of the form u = (fi+1, · · · , fi+k)
for some 1 ≤ i + 1 ≤ i + k ≤ m. Let g be another amino acid chain, then
define

K3(f, g) =
∑

u⊂f,v⊂g
|u|=|v|=k
all k=1,2,...

K2
k(u, v).

Here and in all of this paper we abuse the notation a little bit to let the
sum count each occurrence of u in f (and of v in g). While u and v need to
have same length, not so for f and g. Replacing the sum by average gives a
different but related kernel.

We define the correlation kernel K̂ normalized from any kernel K by

K̂(x, y) =
K(x, y)

√

K(x, x)K(y, y)
.

In particular, let K̂3 be the correlation kernel of K3.

Remark 1. K̂3 is a kernel (see Section 2.2). It is symmetric, positive definite,
positive-valued; it is basic for the results and development of this paper. We some-
times say string kernel. The construction works for any kernel (at the place of
K1) on any finite alphabet (replacing A ).

Remark 2. Comparison with the literature: See [12, 29, 31, 17]. But we use no
gap penalty or even gaps, no logarithms, no implied round-offs, and no alignments
(except the BLOSUM62-2 matrix which indirectly contains some alignment infor-
mation). Our numerical experiments indicate that these don’t help in our context,
(at least!).

Remark 3. For complexity reasons one may limit the values of k in Step 3 with
a small loss of accuracy, or even choose the k-mers at random.

Remark 4. The chains we use are proteins, peptides, and alleles. Peptides are
short chain fragments of proteins, especially viruses and bacteria. Alleles are real-
izations of genes in living organisms varying with the individual; as proteins they
have representations as amino acid chains.

MHCII and MHCI are sets of alleles which are associated with immunological
responses to viruses, bacteria, peptides and related. See [20, 10] for good introduc-
tions. In this paper we only study HLAII, the MHCII in human beings. HLA-DRB
(or simply DRB) describes a subset of HLAII alleles which play a central role in
immunology.

1.1 First Application: Binding Affinity Prediction

Peptide binding to a fixed HLAII (and HLAI as well) molecule (or an allele) a
is a crucial step in the immune response of the human body to a pathogen or a
peptide-based vaccine. Its prediction is computed from data of the form (xi, yi)

m
i=1,

xi ∈ Pa and yi ∈ [0, 1] where Pa is a set of peptides (i.e. chains of amino acids, in
this paper we study peptides of length 9 to 37, usually about 15) associated to an
HLAII allele a. The peptide binding problem occupies much research. We may use

3



our kernel K̂3 described above for this problem since peptides are represented as
strings of amino acids. Our prediction thus uses only the amino acid chains of the
peptides, a substitution matrix, and some existing binding affinities (as “data”).

Following regularized least squares (RLS) supervised learning, the main con-
struction is to compute

fa = arg min
f∈H

K̂3

m
∑

i=1

(f(xi)− yi)
2 + λ‖f‖2

K̂3. (2)

Here λ > 0 and the index β > 0 in K̂3 are chosen by a procedure called leave-one-
out cross validation. Also HK̂3 is the space of functions spanned by {K̂3

x : x ∈ P}

(where K̂3
x(y) := K̂3(x, y)) on a finite set P of peptides containing Pa. An inner

product on HK̂3 is defined on the basis vectors by
〈

K̂3
x, K̂

3
y

〉

H
K̂3

= K̂3(x, y) by

K̂3 above, then in general by linear extension. The norm of f ∈ HK̂3 is denoted
by ‖f‖K̂3. fa is the predicted peptide binding function. We refer to the algorithm
as “KernelRLS”.

For the set of alleles, with the best data available we have Table 1. The
area under the receiver operating characteristic curve (area under the ROC curve,
AUC) is the main measure of accuracy used in the peptide binding literature. NN-
W refers to the algorithm which up to now has achieved the most accurate results
for this problem, although there are many previous contributions as [41, 18, 8]. In
Section 2 there is more detail.
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List of alleles, a #Pa
KernelRLS NN-W in [24]

RMSE AUC AUC
DRB1*0101 5166 0.18660 0.85707 0.836
DRB1*0301 1020 0.18497 0.82813 0.816
DRB1*0401 1024 0.24055 0.78431 0.771
DRB1*0404 663 0.20702 0.81425 0.818

DRB1*0405 630 0.20069 0.79296 0.781
DRB1*0701 853 0.21944 0.83440 0.841

DRB1*0802 420 0.19666 0.83538 0.832
DRB1*0901 530 0.25398 0.66591 0.616
DRB1*1101 950 0.20776 0.83703 0.823
DRB1*1302 498 0.22569 0.80410 0.831

DRB1*1501 934 0.23268 0.76436 0.758
DRB3*0101 549 0.15945 0.80228 0.844

DRB4*0101 446 0.20809 0.81057 0.811

DRB5*0101 924 0.23038 0.80568 0.797
Average 0.21100 0.80260 0.798

Weighted Average 0.20451 0.82059 0.810

Table 1: The predicted performance of RLS on each fixed allele in the benchmark
[24]. If a is the allele in column 1, then the number of peptides in Pa is given
in column 2. The root-mean-square deviation (RMSE) scores are listed. The
AUC scores of the RLS and the NN-W algorithm are listed for comparison, where
a common threshold θ = 0.4256 is used [24] in the final thresholding step into
binding and non-binding (see Section 2.3 for the details). The weighted average
scores are given by the weighting on the size #Pa of the corresponding peptide
sets Pa. The best AUC in each row is marked in bold.

We remark on the simplicity and universality of the algorithm that is based on
K̂3, which itself has this simplicity with the contributions from the substitution
matrix (i.e. BLOSUM62-2) and the sequential representation of the peptides.
There is an important generalization of the peptide binding problem where the
allele is allowed to vary. Our results on this problem are detailed in Section 3.

1.2 Second Application: Clustering and Supertypes

We consider the classification problem of DRB (HLA-DR β chain) alleles into
groups call supertypes as follows. The understanding of DRB similarities is very
important for the designation of high population coverage vaccines. An HLA gene
can generate a large number of allelic variants and this polymorphism guarantees
a population from being eradicated by an individual pathogen. Furthermore, there
are no more than twelve HLA II alleles in each individual [16] and each HLA II
allele binds only to specific peptides [33, 43]. As a result, its difficult to design
an effective vaccine for a large population. It has been demonstrated that many
HLA molecules have overlapping peptide binding sets and there have been several
attempts to group them into supertypes accordingly [36, 34, 37, 26, 19, 2, 4]. The
supertypes are designed so that the HLA molecules in the same supertype will
have a similar peptide binding specificity.

The Nomenclature Committee of the World Health Organization [22] has given
extensive tables on serological type assignments to DRB alleles which are based
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on the work of many organizations and labs throughout the world. In particular
the HLA dictionary 2008 by Holdsworth et al. [14] acknowledges especially data
from the World Health Organization Nomenclature Committee for Factors of the
HLA system, the International Cell Exchange and the National Marrow Donor
Program. The text in Holdsworth et al., 2008 [14] indicates also the ambiguities
of such assignments especially in certain serological types.

We define a set N of DRB alleles as follows. We downloaded 820 DRB allele
sequences from the IMGT/HLA Sequence Database [27] 2. And then 14 non-
expressed alleles were excluded and there remain 806 alleles. For each allele, we
only consider the amino acids located between the markers ”RFL” (the location
of the first occurrence of ”RFL”) and ”TVQ” (the location of the last occurrence
of ”TVQ”). One reason is the majority of polymorphic positions occur in exon 2
of the HLA class II genes [11], and the amino acids located between the markers
”RFL” and ”TVQ” constitute the whole exon 2 [40]. The DRB alleles are encoded
by 6 exons. Exon 2 is the most important component constituting an HLA II-
peptide binding site. The other reason is in the HLA pseudo-sequences used in
the NetMHCIIpan[25], all positions of the allele contacting with the peptide occur
in this range. Thus each allele is transformed into a normal form. We should note
that two different alleles may have the same normal form. For those alleles with
the same normal form, we only consider the first one. The order is according to
the official names of WHO. We collect the remaining 786 alleles with no duplicate
normal forms into a set, call N . This set not only includes all alleles listed in the
tables of [14], but also contains some new alleles since 2008.

Thus N may be identified with a set of amino acid sequences. Next impose
the kernel K̂3 above on N where β = 0.06, we call the kernel K̂3

N
.

On N we design a distance derived from K̂3
N

by

DL2(a, b) =

(

1

|N |

∑

c∈N

(

K̂3
N (a, c)− K̂3

N (b, c)
)2
)1/2

, ∀a, b ∈ N . (3)

The DRB1*11 and DRB1*13 families of alleles have been the most difficult
to deal with by the World Health Organization and for us as well. Therefore we
will exclude the DRB1*11 and DRB1*13 families of alleles in the following cluster
tree construction with the evidence that clustering of these 2 groups is ineffective.
They are left to be analyzed separately.3

The set M consists of all DRB alleles except for the DRB1*11 and DRB1*13
families of alleles. M is a subset of the set N . We produce a clustering of M based
on the L2 distance DL2 restricted to M , and use the OWA (Ordered Weighted
Averaging) [42] based linkage instead of the ”single” linkage in the hierarchical
clustering algorithm.

This clustering uses no previous serological type information and no alignments.
We have assigned supertypes labeled ST1, ST2, ST3, ST4, ST5, ST6, ST7, ST8,
ST9, ST10, ST51, ST52 and ST53 to certain clusters in the Tree shown in Figure
1 based on contents of the bins described in Table 5. Peptides have played no
role in our model. Differing from the artificial neural network method [21, 14], no
training data” of any previously classified alleles are used in our clustering. We

2ftp://ftp.ebi.ac.uk/pub/databases/imgt/mhc/hla/DRB prot.fasta
3We have found from a number of different experiments that “they do not cluster”. Perhaps

the geometric phenomenon here is in the higher dimensional scaled topology, i.e. the betti
numbers bi > 0, for i > 0.
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make use of the DRB amino acid sequences to build the cluster tree. Only making
use of these amino acid sequences, our supertypes are in exact agreement with the
WHO assigned serological types [14], as can be seen by checking the supertypes
against the bins.
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Figure 1: Cluster tree on 559 DRB alleles. The diameters of the leaf nodes are
given at the bottom of the figure. The numbers given in the figure are the diameters
of the corresponding unions of clusters.

This second application is given in some detail in Section 4.

2 Kernel Method for Binding Affinity Prediction

In this section we describe in detail the construction of our string kernel. The
motivation is to relate the sequence information of strings (peptides or alleles)
to their biological functions (binding affinities). A kernel works as a measure of
similarity and supports the application of powerful machine learning algorithms
such as regularized least squares (RLS) which we use in this paper. For a fixed
allele, binding affinity is a function on peptides with values in [0, 1]. The function
values on some peptides are available as the data, according to which RLS outputs
a function that predicts for a new peptide the binding affinity to the allele. The
method is generalized in the next section to the pan-allele kernel algorithm that
takes also the allele structure into account.

2.1 Kernels

Suppose throughout the paper X is a finite set. We now give the definition of a
kernel, of which an important example is our string kernel.
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Definition 1. A symmetric function K : X × X → R is called a kernel on X

if it is positive definite, in the sense that by choosing an order on X, K can be
represented as a positive definite matrix (K(x, y))x,y∈X .

Kernels have the following properties [5, 35, 1].

Lemma 1. (i) If K is a kernel on X then it is also a kernel on any subset X1 of
X.

(ii) If K1 and K2 are kernels on X, then K : X ×X → R defined by

K(x, x′) = K1(x, x
′) +K2(x, x

′)

is also a kernel.
(iii) If K1 is a kernel on X1 and K2 is a kernel on X2, then K : (X1 ×X2)×

(X1 ×X2) → R defined by

K((x1, x2), (x
′
1, x

′
2)) = K1(x1, x

′
1) ·K2(x2, x

′
2)

is a kernel on X1 ×X2.
(iv) If K is a kernel on X, and f is a real-valued function on X that maps no

point to zero, then K ′ : X ×X defined by

K ′(x, x′) = f(x)K(x, x′)f(x′)

is also a kernel.
(v) If K(x, x) > 0 for all x ∈ X, then the correlation normalization of K given

by

K̂(x, x′) =
K(x, x′)

√

K(x, x)K(x′, x′)
(4)

is also a kernel.

Proof. (i), (ii) and (iv) follows the definition directly. (ii) follows the fact that the
Kronecker product of two positive definite matrices is positive definite; see [15] for
details. The positive definiteness of a kernel K guarantees that K(x, x) > 0 for
any x in X , so (v) follows (iii).

Remark 5. Notice that with correlation normalization we have K̂(x, x) = 1 for
all x ∈ X. This is a desired property because the kernel function is usually used as
a similarity measure, and with K̂ we can say that each x ∈ X is similar to itself.

Define the real-valued function on X , Kx, by Kx(y) = K(x, y). The function
space HK = span{Kx : x ∈ X} is a Euclidean space with inner product 〈Kx, Ky〉 =
K(x, y), extended linearly to HK . The norm of functions in HK is denoted as ‖·‖K.

Remark 6. The kernel can be defined even without assuming X is finite; in this
general case the kernel is referred to as reproducing kernel [1]. If X is finite then a
reproducing kernel is equivalent to our “kernel”. The theory of reproducing kernel
Hilbert spaces plays an important role in learning [5].

On a finite set X there are two notions of distance derived from a kernel K.
The first one is the usual distance in HK, that is

DK(x, x
′) = ‖Kx −Kx′‖K ,
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for two points x, x′ ∈ X . The second one is the L2 distance defined by

DL2(x, x′) =

(

1

|X|

∑

t∈X

(K(x, t)−K(x′, t))
2

)
1
2

.

Important examples of the kernels discussed above are our kernel K3 and its
normalization K̂3.

2.2 Kernel on Strings

We start with a finite set A called the alphabet. In the work here A is the set
of 20 amino acids, while the theory in this section applies to any other finite set.
For example, as the name suggests, it can work on text for semantic analysis with
a similar setting. See also [38] for the framework in vision.

To measure a similarity among the 20 amino acids, Henikoff and Henikoff [13]
collect families of related proteins, align them and find conserved regions (i.e. re-
gions that do not mutate frequently or greatly) as blocks in the families. The
occurrence of each pair of amino acids in each column of every block is counted.
A large number of occurrence indicates that in the conserved regions the corre-
sponding pair of amino acids substitute each other frequently, or in another way
of saying, they are similar. A symmetric matrix Q indexed by A × A is even-
tually obtained by normalizing the occurrences, so that

∑

x,y∈A
Q(x, y) = 1 and

Q(x, y) indicates the frequency of occurrences. See [13] for details, where the ma-
trix Q is found from SCOP in this way, and the BLOSUM62 matrix is constructed
accordingly.

Define K1 : A × A → R as

K1(x, y) =

(

Q(x, y)

p(x)p(y)

)β

, depending on some β > 0,

where

p(x) =
∑

y∈A

Q(x, y), ∀x ∈ A ,

is the marginal probability distribution on A . When β = 1, we name the matrix
(K1(x, y))x,y∈A as BLOSUM62-2 (one takes logarithm with base 2, scales it with
factor 2, and rounds the obtained matrix to integers to obtain the BLOSUM62
matrix). Notice that if one chooses simply Q = 1

m
Im×m, then one obtains the

matrix Im×m as the analogue of the BLOSUM62-2, and the corresponding K3 of
the introduction is call the spectral kernel [17].

In the matrix languageK1 is the Hadamard power of the BLOSUM62-2 matrix,
where for a matrixM = (Mi,j) with positive entries and a number β > 0, we denote
M◦β as the β’th Hadamard power of M and log◦M as the Hadamard logarithm
of M , and their (i, j) entries are respectively,

(M◦β)i,j := (Mi,j)
β, (log◦M)i,j := log(Mi,j).

Theorem 1 (Horn and Johnson[15]). Let A be an m×m positive-valued symmetric
matrix. The Hadamard power A◦β is positive definite for any β > 0 if and only
if the Hadamard logarithm log◦A is conditionally positive definite (i.e. positive
definite on the space V = {v = (v1, · · · , vm) ∈ R

m :
∑m

i=1 vi = 0}).
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Proposition 1. Every positive Hadamard power of BLOSUM62-2 is positive def-
inite. Thus the above defined K1 is a kernel.

Proof. One just shows the eigenvalues of the Hadamard logarithm on V are all
positive. One checks this by computer.

Theorem 2. Based on any kernel K1, the functions K2
k , K

3, and K̂3 defined as
in the introduction are all kernels.

Proof. The fact K2
k is a kernel for k ≥ 1 follows Lemma 1 (iii). We now prove

that K3 is positive definite on any finite set X of strings, which then implies the
positive definiteness of K̂3 by Lemma 1 (v). From Lemma 1 (i) it suffices to verify
the cases that X = Xk = ∪k

i=1A
i for k ≥ 1. When k = 1, K3 is just K1 and hence

positive definite. We assume now that K3 is positive definite on Xk with k = n.
We claim that the matrices indexed by Xn+1,

K3
i,Xn+1

(f, g) =

{ ∑

u⊂f,v⊂g
|u|=|v|=i

K2(u, v) if |f |, |g| ≥ i,

0 if |f | < i or |g| < i,

are all positive semi-definite. In fact, for any 1 ≤ i ≤ n,

K3
i,Xn+1

= PiK
2
i P

T
i , (5)

where K2
i is the matrix (K2

i (u, v))u,v∈A i, and Pi is a matrix with Xn+1 as the row
index set and A i as the column index set, and for any f ∈ Xn+1 and u ∈ A i,
Pi(f, u) counts the times u occurs in f . Let us explain equation (5) a little more.
For f and g in Xn+1, from the definition of Pi we have

(PiK
2
i P

T
i )(f, g) =

∑

u,v∈A i

Pi(f, u)Pi(g, v)K
2
i (u, v) =

∑

u⊂f,v⊂g
|u|=|v|=i

K2
i (u, v), ∀i. (6)

Summing the equation (6) above over i gives the definition of K3(f, g).
For i = n+ 1, we have

K3
n+1,Xn+1

(f, g) =

{

0 f 6∈ A n+1 or g 6∈ A n+1,

K2
n+1(f, g) otherwise.

Therefore K3
n+1,Xn+1

is positive definite on A n+1, and is zero elsewhere. Since

K3(f, g) =
n
∑

i=1

K3
i,Xn+1

(f, g), ∀f, g ∈ Xn,

we know that the sum of K3
i,Xn+1

with i = 1, · · · , n are positive definite on Xn,
and positive semi-definite on Xn+1. Because

K3(f, g) =
n+1
∑

i=1

K3
i,Xn+1

(f, g), ∀f, g ∈ Xn+1,

we see that K3 is positive definite on Xn+1.

Corollary 1. Our kernels K2
k , K

3 and K̂3 are discriminative, that is, given any
two strings f, g in the domain of K, as long as f 6= g, DK(f, g) > 0. Here K
stands for the three kernels.
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2.3 First Application: Peptide Affinities Prediction

We first briefly review the RLS algorithm inspired by learning theory. Let K be a
kernel on a finite set X . Write HK to denote the inner product space of functions
on X defined by K. Suppose z̄ = {(xi, yi)}

m
i=1 is a sample set with xi ∈ X and

yi ∈ R for each i. The RLS uses a positive parameter λ > 0 and z̄ to generate the
output function fz̄,λ : X → R,

fz̄,λ = arg min
f∈HK







1

#z̄

∑

(xi,yi)∈z̄

(f(xi)− yi)
2 + λ‖f‖2K







. (7)

Since HK is of finite dimension, one solves (7) by representing f linearly by func-
tions Kx with x ∈ X and finding the coefficients. See [5, 32] for details.

Remark 7. The RLS algorithm (7) is independent of the choice of the underlying
space X where the function space HK is defined, in the sense that the predicted
values fz̄,λ(x) at x ∈ X will not be changed if we extend K onto a large set X ′ ⊃ X

and re-run (7) with the same z̄ and λ. This is guaranteed by the construction of
the solution. See, e.g. [5, 32].

Leave-one-out cross validation is employed to find the parameter λ in this
paper. First, one gives a candidate set Λ of λ. For each (xi, yi) ∈ z̄, one denotes
z̄i as the new dataset obtained by removing (xi, yi) from z̄. One applies RLS on
λ ∈ Λ and z̄i to obtain the predicted value fz̄i,λ(xi) on xi. The parameter λ ∈ Λ

is chosen so that the predicted error
∑m

i=1

(

fz̄i,λ(xi)− yi
)2

is minimized.
Binding affinity measures the strength that a peptide binds to an allele with,

and is represented by IC50 score. Usually an IC50 score lies between 0 and 50,000
(nano molar). A widely used IC50 threshold determining binding and non-binding
is 500 (“binding” if the IC50 value is less than 500). The bioinformatics community
usually normalize the scores by the function ψb : (0,+∞) → [0, 1] with a base
b > 1,

ψb(x) :=







0 x > b,

1− logb x 1 ≤ x ≤ b,

1 x ≤ 1.
(8)

Without introducing any ambiguity we will in the sequel refer to the normalized
IC50 value as the biding affinity.

We test the kernel with RLS on the IEDB benchmark data set published on
[25]. The data set covers 14 DRB alleles, each allele a with a set Pa of peptides.
For any p ∈ Pa, its sequence representation and the [0, 1]-valued binding affinity
ya,p to the allele a are both given. On the data set we compare our algorithm with
the state-of-the-art NN-align algorithm [24]. In [24] for each allele a, the peptide
set Pa was divided into 5 parts for validating the performance4.

Now fix an allele a. Set X = P ⊃ Pa (Remark 7 shows that one may select
any finite P that contains Pa here). Define the kernel K̂3 on X through the
steps in the Introduction (leaving the power index β to be fixed). We use the
same 5-fold partition Pa = ∪5

t=1Pa,t as in [25], and test five times the algorithm

(7) with K = K̂3. In the t’th test (t = 1, · · · , 5) four parts of Pa are merged to

4Both the data set and the 5-fold partition are available at http://www.cbs.dtu.dk/suppl/
immunology/NetMHCII-2.0.php.
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be the training data, denoted as P
(t)
a = Pa\Pa,t, and Pa,t is left as the testing

data. We determine the parameter β in K̂3 and the regularization parameter λ
in (7) by leave-one-out cross validation with z̄ = P

(t)
a . Every pair of β in the

geometric sequence {0.001, · · · , 10} of length 30 and λ in the geometric sequence

{e−17, · · · , e−3} of length 15 is tested. With the optimal pair (β
(t)
a , λ

(t)
a ), we train

the RLS (7) once more on P
(t)
a to give the predicted binding function f

P
(t)
a ,λ

(t)
a ,β

(t)
a

on P. After the five times of testing on allele a, we denote ỹa,p = f
P

(t)
a ,λ

(t)
a ,β

(t)
a

(p)

for each p ∈ Pa,t and t = 1, · · · , 5.
The RMSE score is evaluated as

RMSEa =

√

1

#Pa

∑

p∈Pa

(ỹa,p − ya,p)
2
.

A smaller RMSE score indicates a better predicting performance. Since the affinity
labels in this data set are transformed with ψb=50,000, there is a threshold θ =
ψ50,000(500) ≈ 0.4256 in [24] dividing a peptide p ∈ Pa into “binding” if ya,p > θ

and “non-binding” otherwise, to the allele a. Denote Pa,B = {p ∈ Pa : ya,p > θ}
and Pa,N = Pa\Pa,B, then the AUC index is evaluated as

AUCa =
#{(p, p′) : p ∈ Pa,B, p

′ ∈ Pa,N , ỹa,p > ỹa,p′}

(#Pa,B) (#Pa,N)
. (9)

The sequence of ideas for each allele a leads to Table 1 The computation also
suggests a weighted optimal index

β∗
peptide :=

1
∑

a #Pa

∑

a

{

(#Pa)

(

1

5

5
∑

t=1

β(t)
a

)}

= 0.11387. (10)

We will use this value in the next section.

Remark 8. We take the point of view that peptide binding is a matter of degree
and hence is better measured by a real number, rather than the binding–non-binding
dichotomy. Thus RMSE is a better measure than AUC. The results in Table 1 also
demonstrate that the regression-base learning model works well on the real-valued
data.

Remark 9. Our philosophy is that there is a metric structure on the set of amino
acid sequences related to their biological functions (e.g. the distances on peptides
related to their affinities to for each allele). The metric should not depend heavily
on the alignment information, which is possibly a big source of noise. The perfor-
mance of our kernel K̂3 is reflected by the modulus of continuity of the prediction
values, namely,

Ωa := max
p,p′∈Pa

|ỹa,p − ỹa,p′|

d(p, p′)
,

where

d(p, p′) = ‖K̂3
p − K̂3

p′‖K̂3 =

√

2− 2K̂3(p, p′),

which is the distance in the space HK̂3 on peptides, and the kernel K̂3 is defined
with β = β∗

peptide. We list the values of Ωa for the 14 alleles in Table 2.
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Allele a Ωa Allele a Ωa Allele a Ωa

DRB1*0101 1.2222 DRB1*0301 1.0307 DRB1*0401 0.9249
DRB1*0404 0.9726 DRB1*0405 0.8394 DRB1*0701 1.1317
DRB1*0802 0.9368 DRB1*0901 0.8004 DRB1*1101 0.9795
DRB1*1302 0.7745 DRB1*1501 0.9843 DRB3*0101 0.7395
DRB4*0101 0.8587 DRB5*0101 1.0011

Table 2: The module of continuity of the prediction values.

The modulus of continuity can be extended to a bigger peptide set P ′ which
contains the neighbourhood of each peptide p ∈ P with respect to the metric d.

3 Kernel Algorithm for pan-Allele Binding Pre-

diction

We now define a pan-allele kernel on the product space of alleles and peptides. The
binding affinity data is thus a subset of this product space. The main motivation
is that by the pan-allele kernel we predict affinities to those alleles with few or no
binding data available: this is often the case because the MHCII alleles form a huge
set (the phenomenon is often referred to as MHCII polymorphism), and the job
determining experimentally peptide affinities to all the alleles is immense. Also,
in the pan-allele setting, one puts the binding data to different alleles together to
train the RLS. This makes the training data set larger than that was available
in the fixed allele setting, and thus helps to improve the prediction performance.
This is verified in Table 4.

Let L be a finite set of amino acid sequences representing the MHC2 alleles.
Using a positive parameter βallele we define a kernel K̂3

L
on L following the steps

in the Introduction. Let P be a set of peptides. In the sequel we denote by
βpeptide specifically the parameter used to define the kernel K̂3

P
on P. We define

the pan-allele kernel on L × P as

K̂3
pan((a, p), (a

′, p′)) = K̂3
L (a, a′)K̂3

P(p, p′). (11)

Let be given a set of data {(pi, ai, ri)}
m
i=1. Then for each i, ai ∈ L , pi ∈ P, and

ri ∈ [0, 1] is the binding affinity of pi to ai. The RLS is applied as in Section 2.
The output function F : L × P → R is the predicted the binding affinity.

Remark 10. When we choose L = {a} for a certain allele a, the setting and the
algorithm reduce to the fixed-allele version studied in Section 2.

We test the pan-allele kernel with RLS (we call the algorithm “KernelRLSpan”)
on Nielsen’s NetMHCIIpan-2.0 data set (we also denote by the name the algorithm
published on [23] with the data set), which contains 33,931 peptide-allele pairs.
For peptides, amino acid sequences are given, and for alleles, DRB names are given
so that we can find out the sequence representation in N as defined in Section
1.2. Each pair is labeled with a [0, 1]-valued binding affinity. These peptide-allele
pairs cover 24 alleles in N and 8083 peptides. The whole data set is divided into
5 parts in [23]5

5Both the data set and the 5-part partition are available at http://www.cbs.dtu.dk/

suppl/immunology/NetMHCIIpan-2.0.
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We choose this setting. Let L = N and P be a peptide set large enough to
contain all the peptides in the data set. We use β∗

peptide = 0.11387 as suggested in

(10) to construct K̂3
P

and leave the power index βallele for K̂3
N

to be fixed later.

This defines K̂3
pan. We test the RLS algorithm 5 times according to the 5-part

division in [23]. In each test we merge 4 parts of the samples as the training
data and leave the other part as the testing data. Leave-one-out cross validation
is employed in each test and we choose a pair (βallele, λ) from the product of
{0.02× n : n = 1, 2, · · · , 8} and {en : n = −17,−16, · · · ,−9}. The procedures are
the same as used in Section 2.3 except we now do cross validation for the peptide-
allele pairs. In all the tests, the pair βallele = 0.06 and λ = e−13 achieves the best
performance in the training data. We now use the threshold θ = ψ15,000(500) ≈
0.3537 to evaluate the AUC score, because the affinity values in the data set is
obtained by the transform ψ15,000. the ideas lead to Table 3

allele, a #Pa
KernelRLS NetMHCIIpan-2.0

RMSE AUC AUC

DRB1*0101 7685 0.20575 0.84308 0.846

DRB1*0301 2505 0.18154 0.85095 0.864

DRB1*0302 148 0.21957 0.71176 0.757

DRB1*0401 3116 0.19860 0.84294 0.848

DRB1*0404 577 0.21887 0.80931 0.818

DRB1*0405 1582 0.17459 0.86862 0.858
DRB1*0701 1745 0.17769 0.87664 0.864
DRB1*0802 1520 0.18732 0.78937 0.780
DRB1*0806 118 0.23091 0.89214 0.924

DRB1*0813 1370 0.18132 0.88803 0.885
DRB1*0819 116 0.18823 0.82706 0.808
DRB1*0901 1520 0.19741 0.82220 0.818
DRB1*1101 1794 0.16022 0.88610 0.883
DRB1*1201 117 0.22740 0.87380 0.892

DRB1*1202 117 0.23322 0.89440 0.900

DRB1*1302 1580 0.19953 0.82298 0.825

DRB1*1402 118 0.20715 0.86474 0.860
DRB1*1404 30 0.18705 0.64732 0.737

DRB1*1412 116 0.26671 0.89967 0.894
DRB1*1501 1769 0.19609 0.82858 0.819
DRB3*0101 1501 0.15271 0.82921 0.85

DRB3*0301 160 0.26467 0.86857 0.853
DRB4*0101 1521 0.16355 0.87138 0.837
DRB5*0101 3106 0.18833 0.87720 0.882

Average 0.20035 0.84109 0.846

W. Average 0.19015 0.84887 0.849

Table 3: The performance of KernelRLSpan. For comparison we list the AUC
scores of NetMHCIIpan-2.0 [23]. The weighted average values are given by the
weighting on the size of the corresponding peptide sets. The best AUC in each
row are marked in bold.

We implement KernelRLSpan on the fixed allele data set used in Table 1. Recall
that the data set is normalized with ψ50,000 and has the 5-fold division defined by
[25]. The performance is listed in Table 4, which is better than that of KernelRLS
as listed in Table 1.
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allele, a RMSE AUC allele, a RMSE AUC

DRB1*0101 0.17650 0.86961 DRB1*0301 0.16984 0.85601
DRB1*0401 0.20970 0.82359 DRB1*0404 0.17240 0.88193
DRB1*0405 0.18425 0.84078 DRB1*0701 0.17998 0.90231
DRB1*0802 0.16734 0.88496 DRB1*0901 0.23562 0.71057
DRB1*1101 0.17073 0.91022 DRB1*1302 0.23261 0.75960
DRB1*1501 0.21266 0.80724 DRB3*0101 0.16011 0.79778
DRB4*0101 0.18751 0.84754 DRB5*0101 0.18904 0.89585

Average: RMSE 0.18916, AUC 0.84200
Weighted Average: RMSE 0.18496, AUC 0.85452

Table 4: The performance of KernelRLSpan on the fixed allele data. For defining
AUC, the transform ψ50,000 is used as in Table 1.

Next, we use the whole NetMHCIIpan-2.0 data set for training, and test the
prediction performance on a new data set. A set of 64798 pieces of peptide affinity
data is downloaded from IEDB6. We pick from the set the data that are about DRB
alleles, having IC50 scores, and having explicit allele name and peptide sequence.
Those pieces also appear in the NetMHCIIpan-2.0 data set are deleted. For the
duplicated pieces (same peptide-allele pair and same affinity) only one of them are
kept. All the pieces of the same peptide-allele pair yet gave different affinities are
deleted. We deleted those with peptide length less than 9. (The KernelRLSpan
itself can handle these peptides, while the NetMHCIIpan-2.0 cannot. The short
peptides are deleted to make the two algorithms comparable.) For some alleles the
data in the set is insificient to define the AUC score (i.e. the denominator in (9)
is made zero), so we delete all the pieces related to them. Eventually we obtained
11334 peptide-allele pairs labelled with IC50 binding affinities, which are further
normalized by ψ15,000 as in the NetMHCIIpan-2.0 data set. Now define K̂3

pan on
N × P as in (11) with βallele = 0.06 as suggested by the above computation and
βpeptide = 0.11387 as suggested in (10). We train on the NetMHCIIpan-2.0 data
set both KernelRLSpan and NetMHCIIpan-2.07. In the KernelRLSpan, leave-one-
out cross validation is used to select λ from {e−18, · · · , e−8} (the result shows that
λ = e−13 performs the best). The prediction performance of the two algorithms
are compared on Table 5.

6 The data set was downloaded from http://www.immuneepitope.org/list page.php?

list type=mhc&measured response=&total rows=64797&queryType=true, on May 23, 2012.
7 The code is published on http://www.cbs.dtu.dk/cgi-bin/nph-sw request?netMHCIIpan.
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allele, a #Pa
kernelRLSpan NetMHCIIpan-2.0

RMSE AUC RMSE AUC
DRB1*0101 1024 0.25519 0.79717 0.24726 0.82988

DRB1*0102 7 0.39748 0.58333 0.62935 0.58333

DRB1*0103 41 0.33159 0.83333 0.32204 0.83333

DRB1*0301 883 0.21760 0.80276 0.23975 0.82384

DRB1*0401 1122 0.19610 0.79930 0.19363 0.82456

DRB1*0402 48 0.23912 0.67321 0.27352 0.65714
DRB1*0403 43 0.16381 0.70443 0.15868 0.66995
DRB1*0404 494 0.21689 0.79344 0.20219 0.82517

DRB1*0405 462 0.19617 0.78941 0.19387 0.80611

DRB1*0406 14 0.19516 0.53846 0.19497 0.61538

DRB1*0701 724 0.20853 0.80876 0.20039 0.84786

DRB1*0801 24 0.37281 0.72500 0.34767 0.71250
DRB1*0802 404 0.17403 0.80407 0.17181 0.81085

DRB1*0901 335 0.21204 0.79524 0.21029 0.80489

DRB1*1001 20 0.28082 0.74000 0.24335 0.92000

DRB1*1101 811 0.24195 0.83219 0.23838 0.85071

DRB1*1104 10 0.43717 0.76190 0.57082 0.57143
DRB1*1201 795 0.25786 0.83178 0.24984 0.82685
DRB1*1301 147 0.27014 0.65077 0.30202 0.70722

DRB1*1302 499 0.22194 0.82118 0.21284 0.84258

DRB1*1501 856 0.21580 0.83563 0.20869 0.84902

DRB1*1502 3 0.13186 1.00000 0.20061 1.00000

DRB1*1601 16 0.19556 0.84615 0.18740 0.76923
DRB1*1602 12 0.32238 0.68571 0.30431 0.60000
DRB3*0101 437 0.16568 0.74058 0.17860 0.77182

DRB3*0202 750 0.16021 0.82543 0.16453 0.84191

DRB4*0101 563 0.20594 0.80575 0.21383 0.78734
DRB5*0101 774 0.25934 0.78701 0.25849 0.81950

DRB5*0202 16 0.23013 0.71429 0.40554 0.57143
Average 0.24046 0.76987 0.25947 0.77151

Wtd. Ave. 0.21853 0.80309 0.21816 0.82216

Table 5: The performance of KernelRLSpan and NetMHCIIpan-2.0 trained on the
NetMHCIIpan-2.0 benchmark data set, tested on a new dataset downloaded from
the IEDB. The best performance of both AUC and RMSE scores of each row is
marked in bold.

In this section KernelRLSpan is tested. The results suggests that compared
with KernelRLS, KernelRLSpan performs much better. Also, the kernel method
uses only the substitution matrix and the sequence representations without direct
alignment information but yields comparable performance with the state-of-the-art
NetMHCIIpan-2.0 algorithm.

4 Clustering and Supertypes

In this section, we describe in detail the construction of our cluster tree and our
classification of DRB alleles into supertypes. We compare the supertypes identified
by our model with the serotypes designated by WHO (World Health Organization)
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and analyze the comparison results in detail.

4.1 Identification of DRB Supertypes

We classify DRB alleles into disjoint subsets by the use of DRB amino acid se-
quences and the BLOSUM62 substitution matrix. No peptide binding data or
X-ray 3D structure data are used in our clustering. We obtain a classification in
this way into subsets (a partition) which we call supertypes.

In section 3, we have defined the allele kernel on N as K̂3
N
; the L2 distance

derived from K̂3
N

is defined as

DL2(x, y) =

(

1

|N |

∑

z∈N

(

K̂3(x, z)− K̂3(y, z)
)2
)1/2

, ∀x, y ∈ N .

The OWA-based linkage is used to measure the proximity between clusters X
and Y 8. Let U = (dxy)x∈X,y∈Y , where dxy = DL2(x, y). After ordering the elements
of U in descending order, we obtain an ordered vector V = (d′1, . . . , d

′
n), n = |U |.

A weighting vector W = (w1, · · · , wn) is associated with V , and the proximity
between clusters X and Y is defined as

DOWA(X, Y ) =

n
∑

i=1

wid
′
i.

Here the OWA weights W are defined as follows [28]:

w′
i =

ei/µ

µ
, i = 1, 2, · · · , n,

wi =
w′

i
∑n

j=1w
′
j

, i = 1, 2, · · · , n,

where µ = γ(1 + n), γ is chosen appropriately as 0.1. This weighting gives more
importance to pairs (x, y) which have smaller distance.

Hierarchical clustering [6] is applied to build a cluster tree. A cluster tree is
a tree and every node in a cluster tree represents a cluster as the set of all leaves
descended from that node. The L2 distance DL2 is used to measure the distance
between alleles x and y, x, y ∈ M and OWA-based linkage is used to measure the
proximity between clusters X and Y , X, Y ⊆ M instead of ”single” linkage. This
algorithm is a bottom-up approach. At the beginning, each allele is treated as a
singleton cluster, and then successively merge two nearest clusters X and Y into
a union cluster, this process will stop until all unions of clusters have been merged
into a single cluster.

This cluster tree, associated to M , has thus 559 leaves. The upper part of this
tree is shown in Figure 1. We assign supertypes to certain clusters in the cluster
tree based on contents of the bins described in Table 5. Thirteen supertypes are
defined in this way, which we name ST1, ST2, ST3, ST4, ST5, ST6, ST7, ST8,
ST9, ST10, ST51, ST52 and ST53. The corresponding cluster diameters are 0.11,
0.13, 0.15, 0.14, 0.11, 0.18, 0.08, 0.14, 0.08, 0.02, 0.09, 0.13 and 0.05, respectively.

The diameter of a cluster Z is defined as

diameter(Z) = max
x,y∈Z

DL2(x, y). (12)

8Another good way of measuring distance between clusters is the Hausdorff distance.
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The DRB alleles in the first ten supertypes are gathered at the DRB1 locus.
The DRB alleles in the ST51, ST52 and ST53 supertypes are gathered at the
DRB5 , DRB3 and DRB4 locus, respectively.

4.2 Serotype designation of HLA-DRB alleles

There is a historically developed classification, based on extensive work of medical
labs and organizations, called serotypes. This classification is oriented to immunol-
ogy and diseases associated to gene variation in humans. It uses peptide binding
data, 3D structure, X-ray diffraction and all tools available. When the confidence
level is sufficiently high, WHO assigns a serotype to an allele as in Table 5 where
a number prefixed by DR follows the name of that allele.

There are four expressed DRB genes (DRB1/DRB3/DRB4/DRB5) in the HLA-
DRB region [16]. The DRB1 gene/locus is much more polymorphic than the
DRB3/DRB4/DRB5 genes/loci [3]. More than 800 allelic variants are derived
from the exon 2 of the DRB genes in humans [9]. The WHO Nomenclature Com-
mittee for Factors of the HLA System assigns an official name for each identified
allele sequence, e.g. DRB1*01:01. The characters before the separator * describe
the name of the gene, the first two digits correspond to the allele family and the
third and fourth digits correspond to a specific HLA protein. See Table 5 for ex-
amples of how the alleles are named. If two HLA alleles belong to the same family,
they often correspond to the same serological antigen, and thus the first two digits
are meant to suggest serological types.

4.3 Comparison of identified supertypes to designated sero-

types

In section 4.1, we have identified thirteen supertypes and in section 4.2 we have
introduced the WHO assigned serotypes. In the following, we compare our clas-
sification results, the supertypes, with the WHO designated classification, the
serotypes.

We have numbered our supertypes with prefix ”ST” parallel to the serotype
numbering using the cluster tree. The detail information of DRB alleles and sero-
logical types for these 13 supertypes are given in Table 5. Our supertype clustering
recovers the WHO serotype classification and provides further insight into the clas-
sification of DRB alleles which are not assigned serotypes. There are 559 DRB
alleles in Table 5, and only 138 DRB alleles have WHO assigned serotypes. Table
6 gives the relationship between the broad serological type and the split serological
type. As shown in Table 5 and Table 6, our supertypes assigned to these 138 DRB
alleles are in exact agreement with the WHO assigned broad serological types.
Extensive medical/biological information was used by WHO to assign serological
type whereas solely DRB amino acid sequences was used in our supertype clus-
tering. All alleles with WHO assigned DR52, DR3, DR6, DR8, DR4, DR2, DR5,
DR53, DR9, DR7, DR51, DR10 and DR1-serotype are classified, respectively, into
the ST52, ST3, ST6, ST8, ST4, ST2, ST5, ST53, ST9, ST7, ST51, ST10 and ST1-
supertype. For the other 461 alleles in the bins, they are not assigned serotypes by
WHO in the HLA dictionary 2008, however, WHO have suggested their serotypes
according to their official names or allele families, that is if two DRB alleles are
in the same family, they are suggested to be assigned the same serotype. And our
clustering confirms that this suggestion is reasonable which can be checked from
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the bins.
We make some remarks on Figure 1 and Table 5 as follows.
ST52: This supertype consists of exactly the DRB3 alleles with the exception

of DRB1*0338 (a new allele and unassigned by WHO [14]).
ST3: This supertype consists of cluster 2 and cluster 3 in the cluster tree and

contains 63 DRB1*03 alleles with two exceptions of DRB3*0115 and DRB1*1525.
The DRB3*0115 is grouped with the DRB1*03 alleles in a number of different
experiments done by us, and the DRB1*1525 is a new allele and unassigned by
WHO. Here, the DR3-serotype is a broad serotype which consists of three split
serotypes, DR3, DR17 and DR18 (see Table 6).

ST6: This supertype consists of cluster 4 and cluster 5 and consists of exactly
103 DRB1*14 alleles. Here, the DR6-serotype is a broad serotype which consists
of five split serotypes, DR6, DR13, DR14, DR1403 and DR1404.

ST8: This supertype consists of cluster 6 and cluster 7 and mainly contains
46 DRB1*08 alleles (The serological designation of DRB1*1415 is DR8 by WHO.).
The unassigned alleles DRB1*1425, DRB1*1440, DRB1*1442, DRB1*1469, DRB1*1477
and DRB1*1484 are DRB1*14 alleles, but they are classified into the ST8 super-
type. Both DRB1*14116 and DRB1*14102 are new allele sequences that do not
exist in the tables of [14, 22] and they are classified into the ST8 supertype too.

Supertypes 52, 4, 2, 5, 53, 9, 7, 51, 10 and 1 correspond, respectively, to cluster
1, 8, 9, 10, 11, 12, 13, 14, 15 and 16 in the cluster tree.

ST4: This supertype consists of exactly 99 DRB1*04 alleles.
ST2: This supertype consists of 53 DRB1*15 alleles and 16 DRB1*16 alleles.

Here, the DR2-serotype is a broad serotype which consists of three split serotypes,
DR2, DR15 and DR16.

ST5: This supertype contains exactly 29 DRB1*12 alleles. The DRB1*0832 is
undefined by experts in [14], but its serological designation by the neural network
algorithm [21] is DR8 or DR12. We classify it into the ST5 supertype. The
DR5-serotype is a broad serotype which consists of two split serotypes, DR11 and
DR12.

ST53: This supertype consists of exactly the DRB4 alleles.
ST9: This supertype contains exactly the DRB1*09 alleles with the exception

of DRB5*0112. The DRB5*0112 is undefined by experts in [14]. And from a
number of different experiments done by us, DRB5*0112 is clustered with the
DRB1*09 family of alleles.

ST7: This supertype consists of exactly 19 DRB1*07 alleles.
ST51: This supertype consists of exactly 15 DRB5 alleles.
ST10: This supertype is the smallest supertype and consists of exactly 3

DRB1*10 alleles.
ST1: This supertype consists of exactly 36 DRB1*01 alleles. Here, the DR1-

serotype is a broad serotype which consists of two split serotypes, DR1 and DR103.
For the DRB alleles, there are thirteen broad serotypes given by WHO, and

our clustering classifies all alleles which are assigned the same broad serotype to
the same supertype. And for the alleles which are not assigned serotypes, our
supertypes confirm the nomenclature of WHO.

As can be seen from Figure 1, the ST52 supertype is closest to the ST3 super-
type. The ST53 supertype is closest to the ST9 and ST7 supertypes. The ST51
supertype is closest to the ST10 and ST1 supertypes.
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4.4 Previous work in perspective

In 1999, Sette and Sidney asserted that all HLA I alleles can be classified into
nine supertypes [34, 37]. This classification is defined based on the structural mo-
tifs derived from experimentally determine binding data. The alleles in the same
supertype comprise the same peptide binding motifs and bind to largely overlap-
ping set of peptides. Essentially, the supertype classification problem is to identify
peptides that can bind to a group of HLA molecules. Besides many works on
HLA class I supertype classification, some works have been proposed to identify
supertypes for HLA class II. In 1998, through analyzing a large set of biochemi-
cal synthetic peptides and a panel of HLA-DR binding assays, Southwood et al.
[39] asserted that seven common HLA-DR alleles, e.g. DRB1*0101, DRB1*0401,
DRB1*0701, DRB1*0901, DRB1*1302, DRB1*1501 and DRB5*0101 had similar
peptide binding specificity and should be grouped in one supertype. By the use
of HLA ligands, Lund et al. [19] clustered 50 DRB alleles into nine supertypes by
a Gibbs Sampling algorithm. Both of them used peptide binding data and this
resulted in the limited number of DRB alleles available for classification. The work
of Doytchinova and Flower [7], classified 347 DRB alleles into 5 supertypes by the
use of both protein sequence and 3D structural data. Ou et al. [26]. defined seven
supertypes based on the similarity of function rather than sequence or structure.
To our knowledge, our study is the first to identify HLA-DR supertypes solely
based on DRB amino acid sequence data.

Super- Allele Sero- Allele Sero- Allele Sero-

type type type type

ST52 Cluster 1

DRB3*0101(2) DR52 DRB3*0108(U.) - DRB3*0212(U.) -
DRB3*0106(s.s.) DR52 DRB3*0102(s.s.) - DRB3*0226 -
DRB3*0110(s.s.) DR52 DRB3*0112 - DRB3*0222(U.) -
DRB3*0301 DR52 DRB3*0105(U.) - DRB3*0204(U.) -
DRB3*0209 DR52 DRB3*0103(s.s.)(U.) - DRB3*0213(U.) -
DRB3*0302(s.s.) DR52 DRB3*0113 - DRB3*0215(U.) -
DRB3*0107(s.s.) DR52 DRB3*0111(U.) - DRB3*0218(U.) -
DRB3*0203(s.s.) DR52 DRB3*0114 - DRB3*0205(U.) -
DRB3*0211 DR52 DRB3*0303 - DRB3*0225 -
DRB3*0201(2) DR52 DRB3*0109(U.) - DRB3*0219(U.) -
DRB3*0202(2) DR52 DRB3*0206(s.s.) - DRB3*0216(U.) -
DRB3*0210 DR52 DRB3*0220(U.) - DRB3*0221(U.) -
DRB3*0208(s.s.) DR52 DRB3*0223 - DRB3*0227 -
DRB3*0207(s.s.) DR52 DRB3*0217(U.) -
DRB1*0338 - DRB3*0214(U.) -

ST3 Cluster 2

DRB1*0323 DR3 DRB1*0334 - DRB1*0358 -
DRB1*0301(2) DR17 DRB1*0364 - DRB1*0308 -
DRB1*0305 DR3 DRB1*0361 - DRB1*0326 -
DRB1*0311 DR17 DRB1*0332 - DRB1*0313 -
DRB1*0304 DR17 DRB1*0328 - DRB1*0360 -
DRB1*0306 DR3 DRB1*0362 - DRB1*0324 -
DRB1*0307 DR3 DRB1*0346 - DRB1*0352 -
DRB1*0314 DR3 DRB1*0336 - DRB1*0365 -
DRB1*0315 DR3 DRB1*0357 - DRB1*0329 -
DRB1*0312(s.s.) DR3 DRB1*0339 - DRB1*0327 -
DRB1*0302 DR18 DRB1*0333 - DRB1*0353 -
DRB1*0303 DR18 DRB1*0319 - DRB1*0321 -
DRB1*0310 DR17 DRB1*0348 - DRB1*0343 -
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DRB1*0342 - DRB1*0363 - DRB1*0330 -
DRB1*0345 - DRB1*0322 - DRB1*0325 -
DRB1*0355 - DRB1*0309 - DRB1*0344 -
DRB1*0359 - DRB1*0337 - DRB1*0331 -
DRB1*0354 - DRB1*0351 - DRB1*0335 -
DRB1*0320 - DRB1*0347 - DRB3*0115 -
DRB1*0356 - DRB1*0318 - DRB1*0316(s.s.) -
Cluster 3

DRB1*1525 - DRB1*0340 - DRB1*0317 -
DRB1*0349 - DRB1*0341 -

ST6 Cluster 4

DRB1*1410 DR14 DRB1*1482 - DRB1*1472 -
DRB1*1401(4) DR14 DRB1*1462 - DRB1*14101 -
DRB1*1426 DR14 DRB1*1470 - DRB1*1434 -
DRB1*1407 DR14 DRB1*1438 - DRB1*1423 -
DRB1*1460 DR14 DRB1*14112 - DRB1*1445 -
DRB1*1450 DR14 DRB1*1490 - DRB1*1443 -
DRB1*1404 DR1404 DRB1*1486 - DRB1*1456 -
DRB1*1449 DR14 DRB1*1497 - DRB1*14103 -
DRB1*1411 DR14 DRB1*1435 - DRB1*1444 -
DRB1*1408 DR14 DRB1*1455 - DRB1*1496 -
DRB1*1414 DR14 DRB1*1431 - DRB1*14100 -
DRB1*1405 DR14 DRB1*1493 - DRB1*1436 -
DRB1*1420 DR14 DRB1*1428 - DRB1*1465 -
DRB1*1422 DR14 DRB1*1471 - DRB1*1464 -
DRB1*1416 DR6 DRB1*1468 - DRB1*1495 -
DRB1*1439 - DRB1*1432 - DRB1*1459 -
DRB1*1499 - DRB1*14111 - DRB1*1491 -
DRB1*1461 - DRB1*14104 - DRB1*1441 -
DRB1*14117 - DRB1*1458 - DRB1*1437 -
DRB1*1487 - DRB1*1473 - DRB1*1457 -
DRB1*1475 - DRB1*1479 - DRB1*14105 -
DRB1*1488 - DRB1*14107 - DRB1*1474 -
DRB1*14110 - DRB1*1476 -
Cluster 5

DRB1*1419 DR14 DRB1*1452 - DRB1*1433 -
DRB1*1402 DR14 DRB1*14108 - DRB1*1424 -
DRB1*1429 DR14 DRB1*1483 - DRB1*14109 -
DRB1*1406 DR14 DRB1*1481 - DRB1*14115 -
DRB1*1418 DR6 DRB1*1494 - DRB1*1467 -
DRB1*1413 DR14 DRB1*1447 - DRB1*1498 -
DRB1*1421 DR14 DRB1*1451 - DRB1*1463 -
DRB1*1417 DR6 DRB1*14106 - DRB1*1485 -
DRB1*1427 DR14 DRB1*1489 - DRB1*1478 -
DRB1*1403 DR1403 DRB1*1430 - DRB1*1448 -
DRB1*1412 DR14 DRB1*1409 -
DRB1*1446 - DRB1*1480 -

ST8 Cluster 6

DRB1*1442(U.) -
Cluster 7

DRB1*0809 DR8 DRB1*1477 - DRB1*0808 -
DRB1*1415 DR8 DRB1*1440 - DRB1*0844 -
DRB1*0814 DR8 DRB1*1484 - DRB1*0835 -
DRB1*0812 DR8 DRB1*0846 - DRB1*0836 -
DRB1*0803 DR8 DRB1*0848 - DRB1*0847 -
DRB1*0810 DR8 DRB1*0819 - DRB1*0825 -
DRB1*0817 DR8 DRB1*0827 - DRB1*0834 -
DRB1*0811 DR8 DRB1*0829 - DRB1*0828 -
DRB1*0801 DR8 DRB1*0837 - DRB1*0845 -
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DRB1*0807 DR8 DRB1*0839 - DRB1*0830 -
DRB1*0806 DR8 DRB1*0822 - DRB1*0824 -
DRB1*0805 DR8 DRB1*0815 - DRB1*0820(U.) -
DRB1*0818 DR8 DRB1*0840 - DRB1*14116 -
DRB1*0816 DR8 DRB1*0838 - DRB1*14102 -
DRB1*0802 DR8 DRB1*0826 - DRB1*0842 -
DRB1*0804 DR8 DRB1*0843 - DRB1*0841 -
DRB1*0813 DR8 DRB1*0833 - DRB1*1425 -
DRB1*0821 - DRB1*0823 - DRB1*1469 -

ST4 Cluster 8

DRB1*0420(s.s.) DR4 DRB1*0438 - DRB1*0490 -
DRB1*0401 DR4 DRB1*0434 - DRB1*0487 -
DRB1*0464 DR4 DRB1*0475 - DRB1*0430 -
DRB1*0408 DR4 DRB1*0476 - DRB1*0448 -
DRB1*0416 DR4 DRB1*0472 - DRB1*0467 -
DRB1*0426 DR4 DRB1*0435 - DRB1*0483 -
DRB1*0442 DR4 DRB1*0443 - DRB1*0480 -
DRB1*0432(s.s.) DR4 DRB1*0479 - DRB1*0462 -
DRB1*0423 DR4 DRB1*0440 - DRB1*0457 -
DRB1*0404 DR4 DRB1*0470 - DRB1*0497 -
DRB1*0413 DR4 DRB1*0444 - DRB1*0463 -
DRB1*0431 DR4 DRB1*0456 - DRB1*0498 -
DRB1*0403 DR4 DRB1*0455 - DRB1*0449 -
DRB1*0407(2) DR4 DRB1*0433 - DRB1*04102 -
DRB1*0429 DR4 DRB1*0439 - DRB1*0441 -
DRB1*0424 DR4 DRB1*0460 - DRB1*0446 -
DRB1*0409 DR4 DRB1*0450 - DRB1*0485 -
DRB1*0405 DR4 DRB1*0496 - DRB1*0478 -
DRB1*0410 DR4 DRB1*0451 - DRB1*0465 -
DRB1*0428 DR4 DRB1*0471 - DRB1*0491 -
DRB1*0417 DR4 DRB1*04100 - DRB1*0468 -
DRB1*0411 DR4 DRB1*0488 - DRB1*0477 -
DRB1*0422 DR4 DRB1*0493 - DRB1*0484 -
DRB1*0406 DR4 DRB1*0427 - DRB1*0447 -
DRB1*0421 DR4 DRB1*0452 - DRB1*0436 -
DRB1*0419 DR4 DRB1*04101 - DRB1*0454 -
DRB1*0425(s.s.) DR4 DRB1*0474 - DRB1*0437 -
DRB1*0414 DR4 DRB1*0495 - DRB1*0453 -
DRB1*0402 DR4 DRB1*0459 - DRB1*0418 -
DRB1*0415 DR4 DRB1*0473 - DRB1*0458 -
DRB1*0499 - DRB1*0461 - DRB1*0486 -
DRB1*0482 - DRB1*0445 - DRB1*0412 -
DRB1*0466 - DRB1*0489 - DRB1*0469 -

ST2 Cluster 9

DRB1*1501(2) DR15 DRB1*1533 - DRB1*1548 -
DRB1*1505 DR15 DRB1*1553 - DRB1*1512 -
DRB1*1506 DR15 DRB1*1524 - DRB1*1515 -
DRB1*1503 DR15 DRB1*1509 - DRB1*1557 -
DRB1*1508 DR2 DRB1*1549 - DRB1*1511 -
DRB1*1502(2) DR15 DRB1*1541 - DRB1*1538 -
DRB1*1504 DR15 DRB1*1540 - DRB1*1529 -
DRB1*1507 DR15 DRB1*1523 - DRB1*1545 -
DRB1*1602 DR16 DRB1*1518 - DRB1*1554 -
DRB1*1605(s.s.) DR16 DRB1*1537 - DRB1*1510 -
DRB1*1601 DR16 DRB1*1514 - DRB1*1521 -
DRB1*1609 DR16 DRB1*1544 - DRB1*1612 -
DRB1*1603 DR2 DRB1*1526 - DRB1*1617 -
DRB1*1604 DR16 DRB1*1539 - DRB1*1611 -
DRB1*1528 - DRB1*1530 - DRB1*1614 -
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DRB1*1535 - DRB1*1531 - DRB1*1618 -
DRB1*1532 - DRB1*1556 - DRB1*1610 -
DRB1*1542 - DRB1*1555 - DRB1*1608 -
DRB1*1551 - DRB1*1516 - DRB1*1615 -
DRB1*1552 - DRB1*1522 - DRB1*1607 -
DRB1*1536 - DRB1*1546 - DRB1*1616 -
DRB1*1520 - DRB1*1547 - DRB1*1527 -
DRB1*1543 - DRB1*1558 - DRB1*1534 -

ST5 Cluster 10

DRB1*1202 DR12 DRB1*1215 - DRB1*1230 -
DRB1*1201(4) DR12 DRB1*1219 - DRB1*1207 -
DRB1*1203 DR12 DRB1*1216 - DRB1*1229 -
DRB1*1205 DR12 DRB1*1221 - DRB1*1234 -
DRB1*1220 - DRB1*1208 - DRB1*1222 -
DRB1*1233 - DRB1*1212 - DRB1*1223 -
DRB1*1218 - DRB1*1225 - DRB1*1227 -
DRB1*1213 - DRB1*1211 - DRB1*1209 -
DRB1*1232 - DRB1*1228 - DRB1*1204 -
DRB1*1226 - DRB1*1214 - DRB1*0832(U.) -

ST53 Cluster 11

DRB4*0101(3) DR53 DRB4*0104(U.) - DRB4*0107(U.) -
DRB4*0105(s.s.) DR53 DRB4*0102(s.s.)(U.) - DRB4*0108 -

ST9 Cluster 12

DRB1*0901 DR9 DRB1*0912 - DRB1*0915 -
DRB1*0905 DR9 DRB1*0906 - DRB1*0911 -
DRB1*0910 - DRB1*0908 - DRB1*0914 -
DRB1*0916 - DRB1*0904 - DRB5*0112(U.) -
DRB1*0907 - DRB1*0903 - DRB1*0902 -
DRB1*0909 - DRB1*0913 -

ST7 Cluster 13

DRB1*0703 DR7 DRB1*0721 - DRB1*0708 -
DRB1*0701 DR7 DRB1*0716 - DRB1*0711 -
DRB1*0709 DR7 DRB1*0713 - DRB1*0717 -
DRB1*0704 DR7 DRB1*0714 - DRB1*0707 -
DRB1*0715 - DRB1*0712 - DRB1*0706 -
DRB1*0719 - DRB1*0720 -
DRB1*0705 - DRB1*0718 -

ST51 Cluster 14

DRB5*0101 DR51 DRB5*0104(U.) - DRB5*0106(U.) -
DRB5*0102 DR51 DRB5*0103(U.) - DRB5*0111(U.) -
DRB5*0107(s.s.) DR51 DRB5*0113(U.) - DRB5*0204(U.) -
DRB5*0202 DR51 DRB5*0109(s.s.)(U.) - DRB5*0203(U.) -
DRB5*0105(U.) - DRB5*0114 - DRB5*0205(U.) -

ST10 Cluster 15

DRB1*1001 DR10 DRB1*1003 - DRB1*1002 -

ST1 Cluster 16

DRB1*0107 DR1 DRB1*0120 - DRB1*0135 -
DRB1*0101 DR1 DRB1*0127 - DRB1*0111 -
DRB1*0102 DR1 DRB1*0112 - DRB1*0117 -
DRB1*0104 DR1 DRB1*0128 - DRB1*0118 -
DRB1*0109 DR1 DRB1*0136 - DRB1*0115 -
DRB1*0103 DR103 DRB1*0131 - DRB1*0106 -
DRB1*0113 DR1 DRB1*0132 - DRB1*0126 -
DRB1*0122 - DRB1*0119 - DRB1*0137 -
DRB1*0124 - DRB1*0130 - DRB1*0123 -
DRB1*0110 - DRB1*0121 - DRB1*0108 -
DRB1*0129 - DRB1*0105 - DRB1*0114 -

23



DRB1*0134 - DRB1*0125 - DRB1*0116 -

Table 6: Bins of HLA-DR alleles with split serological types as-
signed by the World Health Organization.

The split serological types are obtained from [14]. The left column indicates the
supertypes defined by the cluster tree. Remark on the labels for the alleles: WHO
labeled split serological type is marked in square bracket; “(U.)” stands for “un-
defined” marked by the experts in [14]; “(s.s.)” indicates that the normal forms
of the allele is shorter than 81 amino acids; “(n)” with n = 1, 2, · · · indicates that
the normal form is shared by n alleles.

HLA-DRB1 serological families

Broad Serotype Split serotype Alleles

DR1 DR1 DRB1*01
DR103 DRB1*0103

DR2 DR2 DRB1*1508, *1603
DR15 DRB1*15
DR16 DRB1*16

DR3 DR3 DRB1*0305, *0306, *0307, *0312, *0314, *0315, *0323
DR17 DRB1*0301, *0304, *0310, *0311
DR18 DRB1*0302, *0303

DR4 DR4 DRB1*04

DR5 DR11 DRB1*11
DR12 DRB1*12

DR6 DR6 DRB1*1416, *1417, *1418
DR13 DRB1*13, *1453
DR14 DRB1*14, *1354

DR1403 DRB1*1403
DR1404 DRB1*1404

DR7 DR7 DRB1*07

DR8 DR8 DRB1*08, *1415

DR9 DR9 DRB1*09

DR10 DR10 DRB1*10

DRB3/4/5 serological families

Serotype Alleles

DR51 DRB5*01,02

DR52 DRB3*01,02,03

DR53 DRB4*01

Table 7: Overview of the broad serological types in connection with the split
serological types assigned by the World Health Organization. The serological type
information listed in this table was extracted from the tables 4 and 5 given in [14].
This table summarizes the allele and serotype information given in the first and
third columns of tables 4 and 5.
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Appendix

A The BLOSUM62-2 Matrix

We list the whole BLOSUM62-2 matrix in Table 8. Table 9 explains the amino
acids denoted by the capital letters.

A R N D C Q E G H I

A 3.903 0.613 0.588 0.545 0.868 0.757 0.741 1.057 0.569 0.632
R 0.613 6.666 0.859 0.573 0.309 1.406 0.961 0.450 0.917 0.355
N 0.588 0.859 7.094 1.554 0.398 1.001 0.911 0.864 1.222 0.328
D 0.545 0.573 1.554 7.398 0.301 0.897 1.688 0.634 0.679 0.339
C 0.868 0.309 0.398 0.301 19.577 0.366 0.286 0.420 0.355 0.653
Q 0.757 1.406 1.001 0.897 0.366 6.244 1.902 0.539 1.168 0.383
E 0.741 0.961 0.911 1.688 0.286 1.902 5.470 0.481 0.960 0.331
G 1.057 0.450 0.864 0.634 0.420 0.539 0.481 6.876 0.493 0.275
H 0.569 0.917 1.222 0.679 0.355 1.168 0.960 0.493 13.506 0.326
I 0.632 0.355 0.328 0.339 0.653 0.383 0.331 0.275 0.326 3.998
L 0.602 0.474 0.310 0.287 0.642 0.477 0.373 0.285 0.381 1.694
K 0.775 2.077 0.940 0.784 0.349 1.554 1.308 0.589 0.779 0.396
M 0.723 0.623 0.475 0.346 0.611 0.864 0.500 0.395 0.584 1.478
F 0.465 0.381 0.354 0.299 0.439 0.334 0.331 0.341 0.652 0.946
P 0.754 0.482 0.500 0.599 0.380 0.641 0.679 0.477 0.473 0.385
S 1.472 0.767 1.232 0.914 0.738 0.966 0.950 0.904 0.737 0.443
T 0.984 0.678 0.984 0.695 0.741 0.791 0.741 0.579 0.558 0.780
W 0.417 0.395 0.278 0.232 0.450 0.509 0.374 0.422 0.444 0.409
Y 0.543 0.556 0.486 0.346 0.434 0.611 0.496 0.349 1.798 0.630
V 0.936 0.420 0.369 0.337 0.756 0.467 0.429 0.337 0.339 2.418

L K M F P S T W Y V

A 0.602 0.775 0.723 0.465 0.754 1.472 0.984 0.417 0.543 0.936
R 0.474 2.077 0.623 0.381 0.482 0.767 0.678 0.395 0.556 0.420
N 0.310 0.940 0.475 0.354 0.500 1.232 0.984 0.278 0.486 0.369
D 0.287 0.784 0.346 0.299 0.599 0.914 0.695 0.232 0.346 0.337
C 0.642 0.349 0.611 0.439 0.380 0.738 0.741 0.450 0.434 0.756
Q 0.477 1.554 0.864 0.334 0.641 0.966 0.791 0.509 0.611 0.467
E 0.373 1.308 0.500 0.331 0.679 0.950 0.741 0.374 0.496 0.429
G 0.285 0.589 0.395 0.341 0.477 0.904 0.579 0.422 0.349 0.337
H 0.381 0.779 0.584 0.652 0.473 0.737 0.558 0.444 1.798 0.339
I 1.694 0.396 1.478 0.946 0.385 0.443 0.780 0.409 0.630 2.418
L 3.797 0.428 1.994 1.155 0.371 0.429 0.660 0.568 0.692 1.314
K 0.428 4.764 0.625 0.344 0.704 0.932 0.793 0.359 0.532 0.457
M 1.994 0.625 6.481 1.004 0.424 0.599 0.794 0.610 0.708 1.269
F 1.155 0.344 1.004 8.129 0.287 0.440 0.482 1.374 2.769 0.745
P 0.371 0.704 0.424 0.287 12.838 0.756 0.689 0.282 0.364 0.443
S 0.429 0.932 0.599 0.440 0.756 3.843 1.614 0.385 0.558 0.565
T 0.660 0.793 0.794 0.482 0.689 1.614 4.832 0.431 0.573 0.981
W 0.568 0.359 0.610 1.374 0.282 0.385 0.431 38.108 2.110 0.374
Y 0.692 0.532 0.708 2.769 0.364 0.558 0.573 2.110 9.832 0.658
V 1.314 0.457 1.269 0.745 0.443 0.565 0.981 0.374 0.658 3.692

Table 8: The BLOSUM62-2 matrix.
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A Alanine L Leucine
R Arginine K Lysine
N Asparagine M Methionine
D Aspartic acid F Phenylalanine
C Cysteine P Proline
Q Glutamine S Serine
E Glutamic acid T Threonine
G Glycine W Tryptophan
H Histidine Y Tyrosine
I Isoleucine V Valine

Table 9: The list of the amino acids.

From the Introduction, we see that the matrix Q can be recovered from the
BLOSUM62-2 once the marginal probability vector p is available. The latter vector
is obtained by

p = ([BLOSUM62-2])−1v1,

where v1 = (1, · · · , 1) ∈ R
20 is a vector with all its coordinate being 1. The matrix

Q can be obtained precisely from http://www.ncbi.nlm.nih.gov/IEB/ToolBox/

CPP DOC/lxr/source/src/algo/blast/composition adjustment/

matrix frequency data.c#L391.
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