MATEMATICA 2 - Verano de 2015

Práctica 3 - Transformaciones lineales

Ejercicio 1. Determinar cuáles de las siguientes funciones son transformaciones lineales:

i)
$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
, $f(x_1, x_2) = (x_1 - x_2, 2.x_2, 1 + x_1)$

ii) $f: \mathbb{C} \to \mathbb{C}, \ f(z) = \overline{z}$ (considerando a \mathbb{C} como \mathbb{R} -espacio vectorial y como \mathbb{C} -espacio vectorial).

iii)
$$f: \mathbb{R}^{2 \times 2} \to \mathbb{R}$$
, $f\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$

iv)
$$f: \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 3}$$
, $f\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a_{22} & 0 & a_{12} + a_{21} \\ 0 & a_{11} & a_{22} - a_{11} \end{pmatrix}$

v)
$$f: \mathbb{R}[X] \to \mathbb{R}^3$$
, $f(p) = (p(0), p'(0), p''(0))$

Ejercicio 2. Interpretar geométricamente las siguientes transformaciones lineales $f: \mathbb{R}^2 \to \mathbb{R}^2$.

i)
$$f(x,y) = (x,0)$$

ii)
$$f(x,y) = (x, -y)$$

iii)
$$f(x,y) = (x \cdot \cos t - y \cdot \sin t, x \cdot \sin t + y \cdot \cos t)$$
 con $t \in \mathbb{R}$ fijo.

Ejercicio 3. Probar que las siguientes funciones son transformaciones lineales:

i)
$$tr: K^{n \times n} \to K$$

ii)
$$t: K^{n \times m} \to K^{m \times n}, \ t(A) = A^t$$

iii)
$$f: K^{n \times m} \to K^{r \times m}$$
, $f(A) = B.A$ donde $B \in K^{r \times n}$

iv)
$$\delta: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R}), \ \delta(f) = f'$$

v)
$$\Phi: C([0,1]) \to C([0,1]), \ \Phi(f)(x) = \int_0^x f(t) \ dt$$

vi)
$$\epsilon_{\alpha}: K[X] \to K$$
, $\epsilon_{\alpha}(f) = f(\alpha)$ donde $\alpha \in K$

Ejercicio 4.

- i) Mostrar que existe una única transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que f(1,1) = (-5,3) y f(-1,1) = (5,2). Para dicha f, determinar f(5,3) y f(-1,2).
- ii) ¿Existe una transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que f(1,1)=(2,6); f(-1,1)=(2,1) y f(2,7)=(5,3)?
- iii) Hallar todos los $a \in \mathbb{R}$ para los cuales existe una transformación lineal $f : \mathbb{R}^3 \to \mathbb{R}^3$ tal que $f(1,-1,1) = (2,a,-1), f(1,-1,2) = (a^2,-1,1)$ y f(1,-1,-2) = (5,-1,-7).

Ejercicio 5.

- i) Calcular el núcleo y la imagen de cada una de las tranformaciones lineales de los Ejercicios 1 y 2. Decidir, en cada caso, si f es epimorfismo, monomorfismo o isomorfismo. En el caso que sea isomorfismo, calcular f^{-1} .
- ii) Clasificar las transformaciones lineales tr, t y ϵ_{α} del Ejercicio 3 en epimorfismos, monomorfismos e isomorfismos.

Ejercicio 6.

i) En cada uno de los siguientes casos probar que no existe una transformación lineal que verifique las condiciones pedidas.

- a) $f: \mathbb{R}^2 \to \mathbb{R}^4$ tal que $\{(1,0,1,0), (1,1,1,0), (1,1,1,1)\} \subseteq \operatorname{Im}(f)$
- b) $f: \mathbb{R}^2 \to \mathbb{R}^3$ epimorfismo
- c) $f: \mathbb{R}^3 \to \mathbb{R}^2$ monomorfismo
- d) $f: \mathbb{R}^4 \to \mathbb{R}^4$ isomorfismo tal que f(S) = T, siendo $S \neq T \subset \mathbb{R}^4$ los subespacios $S = \{(x_1, x_2, x_3, x_4) \mid x_1 + x_2 + x_3 = 0\}$ y $T = \{(x_1, x_2, x_3, x_4) \mid 2.x_1 + x_4 = 0, x_2 x_3 = 0\}$.
- ii) Determinar si existe (y en caso afirmativo hallar) una transformación lineal $f: \mathbb{R}^3 \to \mathbb{R}^4$ que verifique Im(f) = S y Nu(f) = T en los siguientes casos:
 - a) $S = \{(x_1, x_2, x_3, x_4) \mid x_1 + x_2 x_3 + 2.x_4 = 0\}, T = \langle (1, 2, 1) \rangle$
 - b) $S = \{(x_1, x_2, x_3, x_4) \mid x_1 + x_2 = 0, x_3 + x_4 = 0\}, T = \langle (1, -2, 1) \rangle$

Ejercicio 7. Sean $f: \mathbb{R}^3 \to \mathbb{R}^4$ definida por $f(x_1, x_2, x_3) = (x_1 + x_2, x_1 + x_3, 0, 0)$ y $g: \mathbb{R}^4 \to \mathbb{R}^2$, $g(x_1, x_2, x_3, x_4) = (x_1 - x_2, 2x_1 - x_2)$. Calcular el núcleo y la imagen de f, de g y de $g \circ f$. Decidir si son monomorfismos, epimorfismos o isomorfismos.

Ejercicio 8. Sean $g: V \to V'$ y $f: V' \to V''$ transformaciones lineales. Probar:

- i) $Nu(g) \subseteq Nu(f \circ g)$
- ii) Si $Nu(f) \cap Im(g) = \{0\}$, entonces $Nu(g) = Nu(f \circ g)$
- iii) $\operatorname{Im}(f \circ g) \subseteq \operatorname{Im}(f)$
- iv) Si Im(g) = V', entonces $\text{Im}(f \circ g) = \text{Im}(f)$

Ejercicio 9. En cada uno de los siguientes casos definir una transformación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$ que verifique lo pedido.

- i) $(1,1,0) \in \text{Nu}(f) \text{ v dim}(\text{Im}(f)) = 1$
- ii) $Nu(f) \cap Im(f) = \langle (1, 1, 2) \rangle$
- iii) $\text{Nu}(f) \neq \{0\}, \text{Im}(f) \neq \{0\} \text{ y } \text{Nu}(f) \cap \text{Im}(f) = \{0\}$
- iv) $f \neq 0$ y Nu $(f) \subseteq \text{Im}(f)$
- v) $f \neq 0$ y $f \circ f = 0$
- vi) $f \neq Id$ v $f \circ f = Id$

Ejercicio 10. Sea V un K-espacio vectorial. Una transformación lineal $f:V\to V$ se llama un proyector si y sólo si $f\circ f=f$.

- i) Probar que $f: V \to V$ es un proyector $\iff f(v) = v \quad \forall v \in \text{Im}(f)$.
- ii) En cada uno de los siguientes casos construir, si es posible, un proyector $f: \mathbb{R}^3 \to \mathbb{R}^3$ que cumpla lo pedido.
 - a) $\operatorname{Im}(f) = \{(x_1, x_2, x_3) \mid x_1 + x_2 + x_3 = 0\}$
 - b) $\operatorname{Nu}(f) = \{(x_1, x_2, x_3) \mid x_1 + x_2 + x_3 = 0\} \text{ e } \operatorname{Im}(f) = <(-2, 1, 1) > 0\}$
 - c) Nu(f) = $\{(x_1, x_2, x_3) \mid 3.x_1 x_3 = 0\}$ e Im(f) = < (1, 1, 1) >
- iii) Sea $f: V \to V$ un proyector. Probar que:
 - a) $V = \operatorname{Nu}(f) \oplus \operatorname{Im}(f)$
 - b) $q = id_V f$ es un provector con Nu(q) = Im(f) e Im(q) = Nu(f)

iv) Probar que si S y T son subespacios de V tales que $V = S \oplus T$, existe un único proyector $f: V \to V$ tal que $\operatorname{Nu}(f) = S$ e $\operatorname{Im}(f) = T$.

Ejercicio 11. Dada $f: V \to V$, calcular $|f|_{BB'}$ en cada uno de los siguientes casos:

i)
$$V = \mathbb{R}^3$$
, $f(x_1, x_2, x_3) = (3.x_1 - 2.x_2 + x_3, 5.x_1 + x_2 - x_3, x_1 + 3.x_2 + 4.x_3)$

- a) B = B' la base canónica de \mathbb{R}^3 .
- b) $B = \{(1,2,1), (-1,1,3), (2,1,1)\}$ y $B' = \{(1,1,0), (1,2,3), (2,3,4)\}$.
- ii) $V = \mathbb{C}^2$, $f(x_1, x_2) = (2.x_1 i.x_2, x_1 + x_2)$
 - a) B = B' la base canónica de \mathbb{C}^2 como \mathbb{C} -espacio vectorial.
 - b) $B = B' = \{(1,0), (0,1), (i,0), (0,i)\}$ considerando a \mathbb{C}^2 como \mathbb{R} -espacio vectorial.
- iii) $V = \mathbb{R}_4[X], f(P) = P'$
 - a) $B = B' = \{1, X, X^2, X^3, X^4\}.$
 - b) $B = \{1, X, X^2, X^3, X^4\}, B' = \{X^4, X^3, X^2, X, 1\}.$
- iv) $V = \mathbb{R}^{2 \times 2}$, $f(A) = A^t$, $B = B' = \{E^{11}, E^{12}, E^{21}, E^{22}\}$.

Ejercicio 12. Sean $B = \{v_1, v_2, v_3\}$ una base de \mathbb{R}^3 y $B' = \{w_1, w_2, w_3, w_4\}$ una base de \mathbb{R}^4 . Sea $f : \mathbb{R}^3 \to \mathbb{R}^4$ la transformación lineal tal que

$$|f|_{BB'} = \begin{pmatrix} 1 & -2 & 1\\ -1 & 1 & -1\\ 2 & 1 & 4\\ 3 & -2 & 5 \end{pmatrix}$$

- i) Hallar $f(3.v_1 + 2.v_2 v_3)$. ¿Cuáles son sus coordenadas en la base B'?
- ii) Hallar una base de Nu(f) y una base de Im(f).
- iii) Describir el conjunto $f^{-1}(w_1 3.w_3 w_4)$.

Ejercicio 13.

i) En cada uno de los siguientes casos, hallar una matriz $A \in \mathbb{R}^{3\times 3}$ que verifique:

a)
$$A \neq I_3 \text{ y } A^3 = I_3$$

b)
$$A \neq 0, A \neq I_3 \text{ y } A^2 = A$$

ii) Hallar matrices no nulas $A, B \in \mathbb{R}^{3\times 3}$ tales que:

a)
$$A.B = 0 \text{ v } B.A \neq 0$$

b)
$$A.B = 0 \text{ y } B.A = 0$$

Ejercicio 14. En cada uno de los siguientes casos, exhibir una matriz A con coeficientes reales de manera que el sistema A.x = b cumpla:

- i) No tiene solución o tiene solución única, dependiendo del valor de b.
- ii) Tiene infinitas soluciones, independientemente del valor de b.
- iii) No tiene solución o tiene infinitas soluciones, dependiendo del valor de b.
- iv) Tiene solución única, independientemente del valor de b.

Ejercicio 15. Sea V un K-espacio vectorial de dimensión n y sea $f:V\to V$ un proyector. Probar que existe una base B de V tal que

$$(|f|_B)_{ij} = \begin{cases} 1 & \text{si } i = j; \ i \le \dim(\operatorname{Im}(f)) \\ 0 & \text{en otro caso} \end{cases}$$

Ejercicio 16. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f(x_1, x_2, x_3) = (x_1 + x_2 - x_3, 2.x_1 - 3.x_2 + 2.x_3, 3.x_1 - 2.x_2 + x_3)$.

- i) Determinar bases B y B' de \mathbb{R}^3 tales que $|f|_{BB'} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
- ii) Si A es la matriz de f en la base canónica, encontrar matrices inversibles C y D tales que

$$C.A.D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Ejercicio 17. Calcular el rango de las siguientes matrices:

i)
$$A = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$
 ii) $A = \begin{pmatrix} 1 & -k & -1 \\ -1 & 1 & k^2 \\ 1 & k & k-2 \end{pmatrix}$ para cada $k \in \mathbb{R}$

Ejercicio 18

- i) Sean $A \in K^{m \times n}$ y $B \in K^{n \times r}$. Probar que $\operatorname{rg}(A.B) \leq \operatorname{rg}(A)$ y $\operatorname{rg}(A.B) \leq \operatorname{rg}(B)$.
- ii) Sean $A, B \in K^{m \times n}$. Probar que $\operatorname{rg}(A + B) \leq \operatorname{rg}(A) + \operatorname{rg}(B)$.

Ejercicio 19.

- i) Sea $A \in K^{m \times n}$ y sea $S = \{x \in K^n \mid A.x = 0\}$. Probar que $\operatorname{rg}(A) + \dim(S) = n$. (Esto significa que la dimensión del espacio de soluciones es igual a la cantidad de incógnitas menos la cantidad de ecuaciones independientes).
- ii) Sean $A \in K^{m \times n}$ y $b \in K^m$. Se considera el sistema A.x = b y sea $(A \mid b)$ su matriz ampliada. Probar que A.x = b tiene solución \iff $\operatorname{rg}(A) = \operatorname{rg}(A \mid b)$.