MATEMATICA 2 - Verano de 2015

Práctica 1 - Sistemas de ecuaciones lineales y matrices

A lo largo de esta práctica, K simbolizará el conjunto de los números reales o el conjunto de los números complejos, indistintamente.

Ejercicio 1. Resolver sobre $K = \mathbb{R}$ los siguientes sistemas de ecuaciones lineales no homogéneos y los sistemas homogéneos asociados. ¿Cambia algo si $K = \mathbb{C}$?

i)
$$\begin{cases} x_1 - x_2 + x_3 &= 2 \\ -x_1 + 2x_2 + x_3 &= -1 \\ -x_1 + 4x_2 + 5x_3 &= 1 \end{cases}$$
 iv)
$$\begin{cases} x_1 + x_2 + x_3 + x_4 &= 2 \\ x_1 + 3x_2 + 2x_3 + 4x_4 &= 0 \\ 2x_1 + x_3 - x_4 &= 6 \end{cases}$$
 ii)
$$\begin{cases} x_1 - x_2 + x_3 &= 1 \\ -x_1 + 2x_2 + x_3 &= 1 \\ -x_1 + 4x_2 + 5x_3 &= 4 \end{cases}$$
 v)
$$\begin{cases} x_1 + x_2 + x_3 - 2x_4 &= 1 \\ x_1 - 3x_2 + x_3 + x_4 &= 0 \\ 3x_1 - 5x_2 + 3x_3 &= 0 \end{cases}$$
 iii)
$$\begin{cases} x_1 + x_2 - 2x_3 + x_4 &= -2 \\ 3x_1 - 2x_2 + x_3 + 5x_4 &= 3 \\ x_1 - x_2 + x_3 + 2x_4 &= 2 \end{cases}$$
 vi)
$$\begin{cases} x_1 - x_2 - x_3 &= 2 \\ 2x_1 + x_2 - 2x_3 &= 1 \\ x_1 + 4x_2 + x_3 &= 1 \\ x_2 + x_3 &= 1 \end{cases}$$

Ejercicio 2. Sea H un sistema lineal homogéneo de n ecuaciones con m incógnitas. Probar que:

- i) Si n < m, entonces H tiene alguna solución no nula.
- ii) Si m < n, entonces existe un sistema lineal homogéneo H' de m ecuaciones con m incógnitas cuyo conjunto de soluciones coincide con el conjunto de soluciones de H.

Ejercicio 3. Sea H un sistema lineal no homogéneo y sea p una solución de H. Sea H_0 el sistema lineal homogéneo asociado a H. Probar que si S y S_0 son los conjuntos de soluciones de H y H_0 respectivamente, entonces $S = S_0 + p = \{s + p \mid s \in S_0\}$.

Ejercicio 4. Resolver el siguiente sistema en \mathbb{C}^3 :

$$\begin{cases} i x_1 - (1+i)x_2 &= 0 \\ x_1 - 2x_2 + x_3 &= 0 \\ x_1 + 2i x_2 - x_3 &= 0 \end{cases}$$

Ejercicio 5. Para cada uno de los siguientes sistemas lineales homogéneos, determinar todos los $k \in \mathbb{R}$ para los cuales el sistema tiene alguna solución no trivial:

i)
$$\begin{cases} x_1 + kx_2 + x_3 &= 0 \\ (k+1)x_2 + x_3 &= 0 \\ (k^2 - 4)x_3 &= 0 \end{cases}$$
 ii)
$$\begin{cases} x_1 + kx_2 + x_3 &= 0 \\ 2x_1 + x_3 &= 0 \\ 2x_1 + kx_2 + kx_3 &= 0 \end{cases}$$

Ejercicio 6. Determinar los valores de α_1 , α_2 , $\alpha_3 \in \mathbb{R}$ para los cuales el siguiente sistema admite solución:

$$\begin{cases} 2x_1 - x_2 + x_3 &= \alpha_1 \\ 3x_1 + x_2 + 4x_3 &= \alpha_2 \\ -x_1 + 3x_2 + 2x_3 &= \alpha_3 \end{cases}$$

Ejercicio 7. Determinar para qué valores de a y b en \mathbb{R} cada uno de los siguientes sistemas tiene solución única, no tiene solución o tiene infinitas soluciones:

i)
$$\begin{cases} ax_1 + x_2 + x_3 &= b \\ x_1 + ax_2 + x_3 &= 1 \\ x_1 + x_2 + ax_3 &= -1 \end{cases}$$
 ii)
$$\begin{cases} ax_1 + 2x_2 + ax_3 &= 1 \\ ax_1 + (a+4)x_2 + 3ax_3 &= -2 \\ -ax_1 - 2x_2 + x_3 &= 1 \\ (a+2)x_2 + (3a+1)x_3 &= b \end{cases}$$

Ejercicio 8. Encontrar los coeficientes de la parábola $y = ax^2 + bx + c$ que pasa por los puntos (1,1), (2,2) y (3,0).

Ejercicio 9.

- i) Probar que, $\forall n \in \mathbb{N}, n \geq 2$, el producto de matrices en $K^{n \times n}$ no es conmutativo.
- ii) Caracterizar el conjunto $\{A \in K^{3\times3} / A.B = B.A \ \forall B \in K^{3\times3} \}.$

Ejercicio 10.

- i) Exhibir una matriz $A \in \mathbb{R}^{2 \times 2}$ tal que $A^2 = -I$.
- ii) Sean A, B y $C \in K^{n \times n}$. Mostrar la falsedad de las siguientes afirmaciones $\forall n \geq 2$:

(a)
$$(A.B)^2 = A^2 B^2$$
 (d) $A.B = 0 \Rightarrow B.A = 0$
(b) $A.B = 0 \Rightarrow A = 0$ ó $B = 0$ (e) $A^j = 0 \Rightarrow A = 0$

(b)
$$A.B = 0 \Rightarrow A = 0$$
 ó $B = 0$
(c) $A.B = A.C$ y $A \neq 0 \Rightarrow B = C$
(e) $A^{j} = 0 \Rightarrow A = 0$
(f) $A^{2} = A \Rightarrow A = 0$ ó $A = I_{n}$

iii) Dar condiciones necesarias y suficientes sobre A y $B \in K^{n \times n}$ para que:

(a)
$$(A+B)^2 = A^2 + 2AB + B^2$$
 (b) $A^2 - B^2 = (A-B).(A+B)$

Ejercicio 11. Probar que si $A, B \in K^{m \times n}$ y $A.x = B.x \ \forall x \in K^n$, entonces A = B.

Ejercicio 12. Decidir si las siguientes matrices son inversibles y, en caso afirmativo, exhibir sus inversas:

Ejercicio 13. Sea $A \in K^{n \times n}$ una matriz inversible y sean $B, C \in K^{n \times m}$. Probar:

i)
$$A.B = A.C \Rightarrow B = C$$
 ii) $A.B = 0 \Rightarrow B = 0$

Ejercicio 14. Decidir si cada una de las siguientes afirmaciones es verdadera o falsa para matrices $A, B \in K^{n \times n}$. Justificar:

- i) A, B inversibles $\Rightarrow A + B$ inversible
- ii) A inversible $\iff A^t$ inversible Definición: Dada $A \in K^{n \times n}$, se llama matriz transpuesta de A a la matriz $A^t \in K^{n \times n}$ que cumple que $(A^t)_{ij} = (A)_{ji}, \ \forall 1 \leq i, j \leq n.$
- iii) A nilpotente (es decir, $\exists j \in \mathbb{N} / A^j = 0$) $\Rightarrow A$ no es inversible.

Ejercicio 15. Sea $A \in K^{n \times n}$ y sea $b \in K^n$. Probar que el sistema A.x = b tiene solución única si y sólo si A es inversible.