Polinomios

1. Estructuras algebraicas.

Sea G un conjunto y sea * una operación en G, es decir, una función de $G \times G$ en G que a cada par de elementos $g, h \in G$ le asigna un elemento de G al que denotaremos g*h. Diremos que (G,*) es un grupo si se satisfacen:

- i) $g*(h*p) = (g*h)*p \ \forall g, h, p \in G \ (* \text{ es asociativa})$
- ii) Existe $g_0 \in G$ tal que $h*g_0 = g_0*h = h$ para todo $h \in G$ (hay un elemento neutro)
- iii) Para todo $g \in G$ existe $h \in G$ tal que $g*h = h*g = g_0$ (todo elemento tiene inverso)

Es fácil ver que si (G, *) es un grupo entonces el elemento neutro y el inverso de cada $g \in G$ son únicos.

Diremos que un grupo (G, *) es abeliano (o conmutativo) si * es conmutativa, es decir, $g*h = h*g \ \forall g, h \in G$.

Ejemplos.

- 1) $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$ $(\mathbb{R}, +)$ y $(\mathbb{C}, +)$ son grupos abelianos
- 2) $(\mathbb{N}, +)$ no es un grupo (no hay elemento neutro)
- 3) $(\mathbb{N} \cup \{0\}, +)$ no es un grupo (no todo elemento tiene inverso: el único elemento inversible es 0).
- 4) $(\mathbb{Q} \{0\}, .), (\mathbb{R} \{0\}, .)$ y $(\mathbb{C} \{0\}, .)$ son grupos abelianos
- 5) ($\mathbb{Z} \{0\}$,.) no es un grupo (no todo elemento tiene inverso: los únicos elementos inversibles son 1 y -1).
- 6) $(G_n, .)$ es un grupo abeliano

Sea A un conjunto y sean + y . dos operaciones en A. Diremos que (A, +, .) es un anillo (con identidad) si se satisfacen:

- i) (A, +) es un grupo abeliano
- ii) . es asociativa
- iii)
. tiene un elemento neutro y 1 \neq 0, donde 1 denota el elemento neutro de
. y 0 denota el elemento neutro de +
- iv) a.(b+c) = a.b + a.c y (a+b).c = a.c + b.c, $\forall a,b,c \in A$ (propiedades distributivas)

Ejercicio. Sea (A, +, .) un anillo. Probar que a.0 = 0 para todo $a \in A$.

Diremos que un anillo (A, +, .) es *conmutativo* si . es conmutativa, es decir, a.b = b.a $\forall a, b \in A$.

Ejemplo. Si A es el conjunto de matrices de 2×2 con coeficientes reales y + y, son la suma y el producto de matrices respectivamente, entonces (A, +, .) es un anillo no conmutativo.

Diremos que un anillo (A, +, .) es *integro* si $\forall a, b \in A$ vale: $a.b = 0 \iff a = 0$ o b = 0. Notar que esto es equivalente a decir que si $a \neq 0$ y $b \neq 0$ entonces $a.b \neq 0$.

Sea (A, +, .) un anillo. Diremos que $a \in A$ es una unidad si a es inversible respecto del producto, es decir, si existe $b \in A$ tal que a.b = b.a = 1. Si a es inversible respecto del producto entonces el inverso de a es único. Denotaremos por $\mathcal{U}(A)$ al conjunto de las unidades de A, es decir, al conjunto de todos los elementos de A que son inversibles respecto del producto.

Si (A, +, .) es un anillo y $a \in A$, denotaremos por -a al inverso de a respecto de + y por a^{-1} al inverso de a respecto de . cuando $a \in \mathcal{U}(A)$.

Ejemplos. (\mathbb{Z} , +, .), (\mathbb{Q} , +, .) (\mathbb{R} , +, .) y (\mathbb{C} , +, .) son anillos conmutativos e íntegros. Sus unidades son $\mathcal{U}(\mathbb{Z}) = \{1, -1\}$, $\mathcal{U}(\mathbb{Q}) = \mathbb{Q} - \{0\}$, $\mathcal{U}(\mathbb{R}) = \mathbb{R} - \{0\}$, y $\mathcal{U}(\mathbb{C}) = \mathbb{C} - \{0\}$.

Sea $n \in \mathbb{N}$, n > 1. Si consideramos el conjunto de los posibles restos en la división por n

$$\mathbb{Z}_n = \{0, 1, 2, 3, \dots, n-1\}$$

y definimos la suma $+_n$ y el producto \cdot_n de dos elementos de \mathbb{Z}_n en la forma

$$a +_n b = r_n(a+b)$$
$$a \cdot_n b = r_n(a \cdot_n b)$$

entonces $(\mathbb{Z}_n, +_n, \cdot_n)$ es un anillo conmutativo.

Ejemplos.

1) Calculemos las tablas de suma y producto para \mathbb{Z}_4

$+_{4}$	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

•4	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

Como se observa en la tabla del producto, \mathbb{Z}_4 no es íntegro. Además, las unidades de \mathbb{Z}_4 son $\mathcal{U}(\mathbb{Z}_4) = \{1, 3\}$.

2) Calculemos las tablas de suma y producto para \mathbb{Z}_5

+5	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

•5	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Como se observa en la tabla del producto, \mathbb{Z}_5 es íntegro. Además, las unidades de \mathbb{Z}_5 son $\mathcal{U}(\mathbb{Z}_5) = \{1, 2, 3, 4\}.$

3) \mathbb{Z}_{15} no es íntegro pues $3 \neq 0$, $5 \neq 0$ y $3._{15}5 = r_{15}(3.5) = 0$. Dejamos como ejercicio verificar que $\mathcal{U}(\mathbb{Z}_{15}) = \{1, 2, 4, 7, 8, 11, 13, 14\}$.

Proposición. Sea n un número natural mayor que 1. Entonces $a \in \mathbb{Z}_n$ es una unidad si y sólo si a y n son coprimos, es decir, $\mathcal{U}(\mathbb{Z}_n) = \{a \in \mathbb{Z}_n / (a:n) = 1\}$.

Demostración: $a \in \mathcal{U}(\mathbb{Z}_n)$ si y sólo si $\exists b \in \mathbb{Z}_n$ tal que $a \cdot b = 1$ si y sólo si $\exists b \in \mathbb{Z}_n$ tal que $a \cdot b = 1$ si y sólo si $\exists b \in \mathbb{Z}_n$ tal que $a \cdot b = 1$ (n) si y sólo si la ecuación de congruencia $ax \equiv 1$ (n) tiene solución, si y sólo si $(a : n) \mid 1$ si y sólo si (a : n) = 1.

Sea IK un conjunto y sean + y . dos operaciones en IK. Diremos que (IK, +, .) es un *cuerpo* si se satisfacen:

- i) (IK, +, .) es un anillo conmutativo
- ii) Todo $a \in \mathbb{K}$ no nulo es inversible respecto del producto, es decir, si $\mathcal{U}(\mathbb{K}) = \mathbb{K} \{0\}$.

Ejemplos.

- 1) $(\mathbb{Q}, +, .)$ $(\mathbb{R}, +, .)$ y $(\mathbb{C}, +, .)$ son cuerpos
- 2) $(\mathbb{Z}, +, .)$ no es un cuerpo

Ejercicio. 1) Probar que si $(\mathbb{K}, +, .)$ es un cuerpo entonces es un anillo íntegro.

- 2) Probar que \mathbb{Z}_n es íntegro si y sólo si n es primo.
- 3) Probar que \mathbb{Z}_n es un cuerpo si y sólo si n es primo.

Sea ($\mathbb{K},+,.$) un cuerpo. Diremos que \mathbb{K} tiene característica cero si $\underbrace{1+1+\cdots+1}_{n \text{ sumandos}} \neq 0$ para todo $n \in \mathbb{N}$.

Ejemplos.

- 1) $(\mathbb{Q}, +, .)$ $(\mathbb{R}, +, .)$ y $(\mathbb{C}, +, .)$ son cuerpos de característica cero
- 2) $(\mathbb{Z}_p, +, .)$ (p primo) no es un cuerpo de característica cero pues $\underbrace{1+1+\cdots+1}_{p \text{ sumandos}} = 0$

2. El anillo de polinomios.

Sea (A, +, .) un anillo commutativo (por ejemplo, $A = \mathbb{Z}, \mathbb{Z}_n, \mathbb{Q}, \mathbb{R}$ o \mathbb{C}) y sea X una indeterminada sobre A, es decir, X satisface

$$a_0 + a_1 X + \dots + a_n X^n = b_0 + b_1 X + \dots + b_m X^m \iff a_0 = b_0, a_1 = b_1, a_2 = b_2, \dots$$

(Por ejemplo, si $A = \mathbb{Q}$ entonces los números reales $e y \pi$ satisfacen esta propiedad).

Definimos el anillo de polinomios con coeficientes en A, al que denotaremos por A[X], en la forma

$$A[X] = \{a_0 + a_1 X + \dots + a_n X^n / n \in \mathbb{N}_0 \text{ y } a_i \in A \ (0 \le i \le n)\}$$

con las operaciones + y . definidas por

$$\sum_{i=0}^{n} a_i X^i + \sum_{i=0}^{m} b_i X^i = \sum_{i=0}^{\max\{n,m\}} (a_i + b_i) X^i$$
$$\left(\sum_{i=0}^{n} a_i X^i\right) \cdot \left(\sum_{i=0}^{m} b_i X^i\right) = \sum_{k=0}^{n+m} \left(\sum_{i+j=k}^{m} a_i b_j\right) X^k$$

donde $a_i = 0$ para i > n y $b_i = 0$ para i > m y, por convención, $X^0 = 1$. A los elementos de A[X] los llamaremos polinomios con coeficientes en A.

Ejercicio. Probar que (A[X], +, .) es un anillo conmutativo.

Si $f \in A[X]$ es el polinomio $f = \sum_{i=0}^{n} a_i X^i$, el elemento $a_i \in A$ se llama el coeficiente de X^i de f.

Observación. $A \subseteq A[X]$ ya que si $a \in A$ entonces $a = \sum_{i=0}^{n} a_i X^i$ donde $a_0 = a$ y n = 0. Además, la suma y el producto de elementos de A es la misma vistos como elementos de A o como elementos de A[X].

Observación. Sean $f, g \in A[X]$. Si $f = \sum_{i=0}^{n} a_i X^i$ y $g = \sum_{i=0}^{m} b_i X^i$ entonces f = g si y sólo si $a_i = b_i$ para todo i. En particular, f = 0 si y sólo si $a_i = 0$ para todo i.

Ejemplos.

1) Sean $f, g \in \mathbb{Z}[X]$ los polinomios

$$f = X^4 + 2X^3 + 3X^2 - 2X + 1$$
$$g = 3X^2 + 5X - 7$$

Entonces

$$f + g = X^{4} + 2X^{3} + 6X^{2} + 3X - 6$$

$$f \cdot g = 3X^{6} + (1.5 + 2.3)X^{5} + (1.(-7) + 2.5 + 3.3)X^{4} + (2.(-7) + 3.5 + (-2).3)X^{3} + (3.(-7) + (-2).5 + 1.3)X^{2} + ((-2).(-7) + 1.5)X + 1.(-7) =$$

$$= 3X^{6} + 11X^{5} + 12X^{4} - 5X^{3} - 28X^{2} + 19X - 7$$

2) Sean $f, g \in \mathbb{Z}_{30}[X]$ los polinomios

$$f = 21X^2 + 9$$
$$g = 20X^4 + 10X$$

Entonces

$$f.g = 21._{30}20X_6 + 9._{30}20X^4 + 21._{30}10X^3 + 9._{30}10X =$$

$$= r_{30}(21.20)X^6 + r_{30}(9.20)X^4 + r_{30}(21.10)X^3 + r_{30}(9.10)X =$$

$$= 0X^6 + 0X^4 + 0X^3 + 0X = 0$$

Como vemos, en $\mathbb{Z}_{30}[X]$ el producto de dos polinomios no nulos puede ser el polinomio nulo. Luego, $\mathbb{Z}_{30}[X]$ no es íntegro.

Proposición. A[X] es íntegro si y sólo si A es íntegro.

 $Demostraci\'on: (\Longrightarrow)$ Sean $a, b \in A$ tales que $a \neq 0$ y $b \neq 0$. Como $a, b \in A[X]$ y A[X] es íntegro entonces $a, b \neq 0$.

(\iff) Sean $f, g \in A[X]$ tales que $f \neq 0$ y $g \neq 0$. Entonces, $f = a_n X^n + \cdots + a_1 X + a_0$ con $a_n \neq 0$ y $g = b_m X^m + \cdots + b_1 X + b_0$ con $b_m \neq 0$. Como A es integro entonces $a_n.b_m \neq 0$. Luego

$$f.g = \sum_{k=0}^{n+m} \left(\sum_{i+j=k} a_i b_j \right) X^k = a_n.b_m X^{n+m} + \sum_{k=0}^{n+m-1} \left(\sum_{i+j=k} a_i b_j \right) X^k$$

Por lo tanto, $f.g \neq 0$ pues el coeficiente de X^{n+m} es $a_n.b_m \neq 0$. \square

Corolario. Si $A = \mathbb{Z}$, \mathbb{Q} , \mathbb{R} , \mathbb{C} o \mathbb{Z}_p (p primo) y $f, g \in A[X]$ son no nulos entonces $f, g \neq 0$.

Ejercicio. Sea A un anillo íntegro y sean $f, g, h \in A[X]$. Probar que si $f \cdot g = f \cdot h$ y $f \neq 0$ entonces g = h.

Sea A un anillo conmutativo y sea $f \in A[X]$. Si $f = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_1 X + a_0$, donde $a_n \neq 0$ entonces decimos que n es el grado de f y escribimos grf = n. Además diremos que a_n es el coeficiente principal de f y, diremos que f es mónico si $a_n = 1$.

Proposición. Sea A un anillo íntegro (por ejemplo, $A = \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ o \mathbb{Z}_p con p primo). Si $f, g \in A[X]$ son no nulos entonces

- i) $f \cdot g \neq 0$ y gr $(f \cdot g) = \operatorname{gr} f + \operatorname{gr} g$.
- ii) Para todo $k \in \mathbb{N}$ vale $f^k \neq 0$ y gr $(f^k) = k$.grf
- iii) Si $f + g \neq 0$ entonces gr $(f + g) \leq \max\{\operatorname{gr} f, \operatorname{gr} g\}$
- iv) Si gr $f \neq \operatorname{gr} g$ entonces $f + g \neq 0$ y gr $(f + g) = \max\{\operatorname{gr} f, \operatorname{gr} g\}$

Dejamos la demostración como ejercicio.

Observación. Si A no es íntegro entonces dados $f, g \in A[X]$ no nulos puede ocurrir que f.g = 0 y también que $f.g \neq 0$ pero gr(f.g) < gr f + gr g. Por ejemplo, si $A = \mathbb{Z}_{14}$ y $f, g \in A[X]$ son los polinomios $f = 2X^5 + 3$ y $g = 7X^3 + X$ entonces $f.g = 2X^6 + 7X^3 + 3X$, que tiene grado 6 < 8.

Ejemplo. Hallemos todos los $f \in \mathbb{C}[X]$ tales que $Xf^2 - X^3 = (2X - 1)f + 1$.

Sea $f \in \mathbb{C}[X]$, tal que $Xf^2 - X^3 = (2X - 1)f + 1$ y sea $n = \operatorname{gr} f$ (notar que $f \neq 0$). Entonces, tomando grado en ambos miembros de la igualdad, $\operatorname{gr}(Xf^2 - X^3) = \operatorname{gr}((2X - 1)f + 1)$. Si n > 1 entonces, por i) y ii), $\operatorname{gr}(Xf^2) = \operatorname{gr} X + 2 \cdot \operatorname{gr} f = 1 + 2n > 3$. Luego, por iv), $\operatorname{gr}(Xf^2 - X^3) = 1 + 2n$. Además, como $\operatorname{gr}((2X - 1)f) = 1 + n > 0$, entonces $\operatorname{gr}((2X - 1)f + 1) = \operatorname{gr}((2X + 1)f = 1 + n \operatorname{por iv})$.

Por lo tanto, $1 + 2n = \operatorname{gr}(Xf^2 - X^3) = \operatorname{gr}((2X - 1)f + 1) = 1 + n$, pero esto no puede ocurrir pues n > 1. Hemos probado entonces que $\operatorname{gr} f \leq 1$, es decir, f = aX + b para ciertos $a, b \in \mathbb{C}$. Ahora determinemos $a, b \in \mathbb{C}$.

$$Xf^{2} - X^{3} = (2X - 1)f + 1 \iff X(aX + b)^{2} - X^{3} = (2X - 1)(aX + b) + 1 \iff (a^{2} - 1)X^{3} + 2abX^{2} + b^{2}X = 2aX^{2} + (2b - a)X - b + 1 \iff \Rightarrow a^{2} - 1 = 0, \ 2ab = 2a, \ b^{2} = 2b - a \ y - b + 1 = 0 \iff a = 1 = b$$

Luego, el único polinomio que satisface lo pedido es f = X + 1.

Proposición. Sea A un anillo íntegro (por ejemplo, $A = \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ o \mathbb{Z}_p con p primo). Entonces $\mathcal{U}(A[X]) = \mathcal{U}(A)$.

Demostración: Es trivial que $\mathcal{U}(A) \subseteq \mathcal{U}(A[X])$. Veamos la otra inclusión: sea $f \in \mathcal{U}(A[X])$. Entonces existe $g \in A[X]$ tal que f.g = 1. De esta igualdad resulta que $f,g \neq 0$ y $\operatorname{gr}(f.g) = 0$. Luego, por la proposición anterior, $\operatorname{gr} f + \operatorname{gr} g = 0$ de donde resulta que $\operatorname{gr} f = 0 = \operatorname{gr} g$. Luego, $f,g \in A$ y f.g = 1, por lo tanto $f \in \mathcal{U}(A)$. \square

Ejemplos.

- 1) $\mathcal{U}(\mathbb{Z}[X]) = \{1, -1\}$
- 2) Si \mathbb{K} es un cuerpo (por ejemplo, $\mathbb{K} = \mathbb{Q}$, \mathbb{R} , \mathbb{C} o \mathbb{Z}_p) entonces $\mathcal{U}(\mathbb{K}[X]) = \mathbb{K} \{0\}$, es decir, las unidades de $\mathbb{K}[X]$ son los polinomios no nulos de grado cero.
- 3) $2X^n + 1 \in \mathcal{U}(\mathbb{Z}_4[X])$ para todo $n \in \mathbb{N}$ pues $(2X^n + 1)(2X^n + 1) = 1$. Luego, si $A = \mathbb{Z}_4$ entonces en A[X] hay unidades de grado tan grande como se quiera. Esto se debe a que $A = \mathbb{Z}_4$ no es íntegro. En general, si A no es íntegro, hallar $\mathcal{U}(A[X])$ no es un problema fácil.

3. Aritmética en $\mathbb{K}[X]$.

Sea IK un cuerpo (por ejemplo, $\mathbb{K} = \mathbb{Q}$, \mathbb{R} , \mathbb{C} o \mathbb{Z}_p con p primo). Veremos en esta sección nociones de aritmética análogas a las que vimos para los enteros, que también pueden definirse en $\mathbb{K}[X]$ tales como divisibilidad, congruencia, máximo común divisor, etc.

Divisibilidad. Dados $f, g \in \mathbb{K}[X]$ decimos que f divide a g (y escribimos $f \mid g$) si existe $h \in \mathbb{K}[X]$ tal que g = f.h.

Ejemplos.

1) Si
$$\mathbb{K} = \mathbb{Q}$$
 entonces $X - 1 \mid X^3 - 1$ pues $X^3 - 1 = (X - 1)(X^2 + X + 1)$

2) Si
$$\mathbb{K} = \mathbb{Q}$$
, \mathbb{R} o \mathbb{C} entonces $2X^2 + 1 \mid X^3 - 2X^2 + \frac{1}{2}X - 1$ pues

$$X^{3} - 2X^{2} + \frac{1}{2}X - 1 = (2X^{2} + 1)(\frac{1}{2}X - 1)$$

3) Si $\mathbb{K} = \mathbb{Z}_5$ entonces $3X^2 + 2X + 1 \mid X^5 + 4X^4 + X^3 + X^2 + 3X$ pues

$$X^{5} + 4X^{4} + X^{3} + X^{2} + 3X = (3X^{2} + 2X + 1)(2X^{3} + 3X)$$

A continuación veremos que las propiedades de la divisibilidad en $\mathbb{K}[X]$ son semejantes a las propiedades de la divisibilidad en \mathbb{Z} , teniendo en cuenta que ahora $\mathbb{K} - \{0\}$ (los polinomios no nulos de grado cero) juegan el papel que en \mathbb{Z} jugaban 1 y -1. Esto se debe a que $\{1, -1\} = \mathcal{U}(\mathbb{Z})$ y $\mathbb{K} - \{0\} = \mathcal{U}(\mathbb{K}[X])$. Además, |a| para $a \in \mathbb{Z}$ se traduce en gr f para $f \in \mathbb{K}[X]$.

Propiedades de la divisibilidad.

 $\operatorname{En} \mathbf{Z}$

i)
$$\pm a \mid a \quad \forall a \in \mathbb{Z}$$

ii)
$$a \mid b \ y \ b \mid c \Longrightarrow a \mid c$$

iii)
$$a \mid b \Longrightarrow a \mid b.c \quad \forall c \in \mathbb{Z}$$

iv)
$$a \mid b$$
 y $a \mid c \Longrightarrow a \mid b + c$

$$\mathbf{v}) \pm 1 \mid a \quad \forall a \in \mathbf{Z}$$

vi)
$$a \mid \pm 1 \Longrightarrow a = \pm 1$$

vii)
$$a \mid 0 \quad \forall a \in \mathbb{Z}$$

viii)
$$0 \mid a \iff a = 0$$

ix) Si
$$b \neq 0$$
 y $a \mid b$ entonces $|a| \leq |b|$

x)
$$a \mid b$$
 y $b \mid a \iff a = \pm b$

xi)
$$a \mid b \iff -a \mid b \iff$$

 $\iff a \mid -b \iff -a \mid -b$

i')
$$c.f \mid f \quad \forall f \in \mathbb{K}[X], c \in \mathbb{K} - \{0\}$$

ii')
$$f \mid g \vee g \mid h \Longrightarrow f \mid h$$

 $\operatorname{En} \mathbb{K}[X]$

iii')
$$f \mid g \Longrightarrow f \mid g.h \quad \forall h \in \mathbb{K}[X]$$

iv')
$$f \mid g \ y \ f \mid h \Longrightarrow f \mid g + h$$

v')
$$c \mid f \quad \forall c \in \mathbb{K} - \{0\}, f \in \mathbb{K}[X]$$

vi')
$$f \mid c \text{ con } c \in \mathbb{K} - \{0\} \Longrightarrow f \in \mathbb{K} - \{0\}$$

vii')
$$f \mid 0 \quad \forall f \in \mathbb{K}[X]$$

viii')
$$0 \mid f \iff f = 0$$

ix') Si
$$g \neq 0$$
 y $f \mid g$ entonces gr $f \leq \operatorname{gr} g$

$$\mathbf{x}'$$
) $f \mid g \vee g \mid f \iff \exists c \in \mathbb{K} - \{0\} / f = c.g$

xi')
$$f \mid g \iff c.f \mid g \iff f \mid d.g \iff \Leftrightarrow c.f \mid d.g \quad \forall c, d \in \mathbb{K} - \{0\}$$

Dejamos las demostraciones como ejercicio.

Irreducibles. Sean $f, g \in \mathbb{K}[X]$. Diremos que f y g son asociados si $\exists c \in \mathbb{K} - \{0\}$ (es decir, una unidad de $\mathbb{K}[X]$) tal que f = c.g (notar que si $f = c.g \iff g = c^{-1}.f$, donde $c^{-1} \in \mathbb{K} - \{0\}$). Observemos que f y g son asociados si y sólo si $f \mid g$ y $g \mid f$.

Observación. Así como todo entero a siempre es divisible por 1, -1, a y -a, todo polinomio en $f \in \mathbb{K}[X]$ siempre es divisible por las unidades de $\mathbb{K}[X]$ y por los asociados de f (propiedades i') y v')).

Sea $f \in \mathbb{K}[X]$. Diremos que f es irreducible si $f \neq 0$, f no es una unidad y f es divisible sólo por unidades de $\mathbb{K}[X]$ y asociados de f. Notemos que la noción de irreducible en $\mathbb{K}[X]$ es análoga a la noción de primo en \mathbb{Z} : $p \in \mathbb{Z}$ es primo si y sólo si $p \neq 0, 1, -1$ y p es divisible sólo por 1, -1, $p \in \mathbb{Z}$ es primo si y sólo si $p \neq 0, 1, -1$ y $p \in \mathbb{Z}$ es primo si y sólo si $p \neq 0, 1, -1$ y $p \in \mathbb{Z}$ es primo si y sólo si $p \neq 0, 1, -1$ y $p \in \mathbb{Z}$ es primo si y sólo si $p \neq 0, 1, -1$ y $p \in \mathbb{Z}$ es primo si y sólo si $p \neq 0, 1, -1$ y $p \in \mathbb{Z}$ es primo si y sólo si $p \neq 0, 1, -1$ y $p \in \mathbb{Z}$ es primo si y sólo si $p \neq 0, 1, -1$ y $p \in \mathbb{Z}$ es primo si y sólo si $p \neq 0, 1, -1$ y $p \in \mathbb{Z}$ es primo si y sólo si $p \neq 0, 1, -1$ y $p \in \mathbb{Z}$ es primo si y sólo si $p \neq 0, 1, -1$ y $p \in \mathbb{Z}$ es primo si y sólo si $p \neq 0, 1, -1$ y $p \in \mathbb{Z}$ es primo si y sólo si $p \neq 0, 1, -1$ y $p \in \mathbb{Z}$ es primo si y sólo si $p \neq 0, 1, -1$ y $p \in \mathbb{Z}$ es primo si y sólo si $p \neq 0, 1, -1$ y $p \in \mathbb{Z}$ es primo si y sólo si $p \neq 0, 1, -1$ y $p \in \mathbb{Z}$ es primo si y sólo si $p \neq 0, 1, -1$ y $p \in \mathbb{Z}$ es primo si y sólo si $p \neq 0, 1, -1$ y $p \in \mathbb{Z}$ es primo si y sólo si $p \neq 0, 1, -1$ y $p \in \mathbb{Z}$ es primo si y sólo si $p \neq 0, 1, -1$ y $p \in \mathbb{Z}$ es primo si y sólo si $p \neq 0, 1, -1$ y $p \in \mathbb{Z}$ es primo si y sólo si $p \neq 0, 1, -1$ y $p \in \mathbb{Z}$ es primo si y sólo si $p \neq 0, 1, -1$ y $p \in \mathbb{Z}$ es primo si y sólo si $p \neq 0, 1, -1$ y $p \in \mathbb{Z}$ es primo si y sólo si $p \in \mathbb{Z}$ es primo si y sólo si $p \in \mathbb{Z}$ es primo si y sólo si $p \in \mathbb{Z}$ es primo si y sólo si $p \in \mathbb{Z}$ es primo si y sólo si $p \in \mathbb{Z}$ es primo si y sólo si $p \in \mathbb{Z}$ es primo si y sólo si $p \in \mathbb{Z}$

Proposición. Sea $f \in \mathbb{K}[X]$, $f \neq 0$. Si grf = 1 entonces f es irreducible.

Demostración: Sabemos que $f \neq 0$ y, como grf = 1 entonces f no es una unidad. Veamos cuáles son los divisores de f: sea $g \in \mathbb{K}[X]$ tal que $g \mid f$. Entonces f = g.h para algún $h \in \mathbb{K}[X]$. Ahora, tomando grado en esta igualdad, resulta que $1 = \operatorname{gr} f = \operatorname{gr} g + \operatorname{gr} h$. Luego grg = 0 o grg = 1. Si grg = 0 entonces g es una unidad. Y si grg = 1 entonces grg = 0 de donde resulta que g = 0 entonces grg = 0 de donde resulta que g = 0 entonces grg = 0

Ejercicio. Probar que f es irreducible si y sólo si se verifican las dos siguientes condiciones:

- i) $f \neq 0$ y gr $f \geq 1$
- ii) Dado $g \in \mathbb{K}[X]$, si $g \mid f$ entonces $\operatorname{gr} g = 0$ o $\operatorname{gr} g = \operatorname{gr} f$

Recordemos que todo entero $a \neq 0, 1, -1$ es divisible por algún primo. La siguiente proposición es el resultado análogo para $\mathbb{K}[X]$.

Proposición. Sea $f \in \mathbb{K}[X]$ tal que $f \neq 0$ y grf > 0 (es decir, si f no es cero ni una unidad). Entonces existe $h \in \mathbb{K}[X]$ irreducible tal que $h \mid f$.

Demostración: Notemos que si $g \mid f$ entonces $g \neq 0$ pues $f \neq 0$. Por lo tanto, para todo g que divide a f está definido grg. Sea

$$S = \{\operatorname{gr} g \, / \, g \in \mathbb{K}[X], \ g \mid f \ \operatorname{y} \ \operatorname{gr} g \geq 1\}$$

Entonces S es un subconjunto no vacío de \mathbb{N} pues gr $f \in S$ y por lo tanto, por el principio de buena ordenación, posee un primer elemento n. Es decir, $n \in S$ y $n \leq m$ para todo $m \in S$.

Como $n \in S$ entonces $n = \operatorname{gr} h$ para algún $h \in \mathbb{K}[X]$ tal que $h \mid f$ y $\operatorname{gr} h \geq 1$. Veremos que h es irreducible.

Es trivial que h satisface la condición i) del ejercicio anterior, veamos que también satisface ii). Sea $g \in \mathbb{K}[X]$ tal que $g \mid h$. Debemos probar que si $\operatorname{gr} g \neq 0$ entonces $\operatorname{gr} g = \operatorname{gr} h$. Supongamos que $\operatorname{gr} g \neq 0$. Entonces, $\operatorname{gr} g \geq 1$ y como $g \mid h$ y $h \mid f$ entonces $g \mid f$. Luego,

 $m = \operatorname{gr} g \in S$ y por lo tanto $\operatorname{gr} h = n \leq m = \operatorname{gr} g$. Pero como $g \mid h$ entonces $\operatorname{gr} g \leq \operatorname{gr} h$, de donde $\operatorname{gr} g = \operatorname{gr} h$ como queríamos probar. Luego, h es irreducible y $h \mid f$. \square

Algoritmo de división. El algoritmo de división en \mathbb{Z} dice que dados $a, b \in \mathbb{Z}$, $b \neq 0$, existen únicos $q, r \in \mathbb{Z} / a = b.q + r$ y $0 \leq r < |b|$. Teniendo en cuenta que el valor absoluto de un número entero se traduce para los polinomios en la noción de grado, el resultado análogo para $\mathbb{K}[X]$ es el siguiente

Teorema. Sean $f, g \in \mathbb{K}[X]$, $g \neq 0$. Entonces existen únicos $q, r \in \mathbb{K}[X]$ tales que f = g.q + r y r = 0 o gr $r < \operatorname{gr} g$.

Demostración: Existencia: Si $g \mid f$ entonces existe $h \in \mathbb{K}[X]$ tal que f = g.h. En este caso basta tomar q = h y r = 0. Supongamos ahora que $g \not\mid f$. Entonces $f - g.q \neq 0$ para todo $q \in \mathbb{K}[X]$ y por lo tanto está definido gr(f - g.q) para todo $q \in \mathbb{K}[X]$. Sea

$$S = \{ \operatorname{gr}(f - g.q) / q \in \mathbb{K}[X] \}$$

Entonces S es un subconjunto no vacío de \mathbb{N}_0 pues gr $f \in S$ y por lo tanto posee un primer elemento n (si $0 \in S$ entonces 0 es el primer elemento de S y si $0 \notin S$ entonces S es un subconjunto no vacío de \mathbb{N} y por lo tanto posee un primer elemento). Luego $n \in S$ y $n \leq m$ para todo $m \in S$.

Como $n \in S$ entonces n = gr(f - g.q) para algún $q \in \mathbb{K}[X]$. Luego, tomando r = f - g.q se tiene grr = n y f = g.q + r. Debemos probar que $n < \operatorname{gr} g$. Sea $m = \operatorname{gr} g$, entonces

$$r = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0, \text{ con } a_n \neq 0$$

$$g = b_m X^m + b_{m-1} X^{m-1} + \dots + b_1 X + b_0, \text{ con } b_m \neq 0$$

Si fuese $n \ge m$ entonces $n - m \ge 0$ y tomando $r' = r - a_n b_m^{-1} X^{n-m} g$ se tiene que

$$\begin{split} r' &= r - a_n b_m^{-1} X^{n-m}.g = \\ &= a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0 - \\ &- a_n b_m^{-1} X^{n-m}.(b_m X^m + b_{m-1} X^{m-1} + \dots + b_1 X + b_0) = \\ &= a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0 - a_n X^n - a_n b_m^{-1} b_{m-1} X^{n-1} - \dots - \\ &- a_n b_m^{-1} b_1 X^{n-m+1} - a_n b_m^{-1} b_0 X^{n-m} = \\ &= a_{n-1} X^{n-1} + \dots + a_1 X + a_0 - a_n b_m^{-1} b_{m-1} X^{n-1} - \dots - \\ &- a_n b_m^{-1} b_1 X^{n-m+1} - a_n b_m^{-1} b_0 X^{n-m} \end{split}$$

de donde grr' < n. Pero esto no puede ocurrir pues n era el primer elemento de S y gr $r' \in S$ ya que

$$r' = r - a_n b_m^{-1} X^{n-m} \cdot g = f - g \cdot q - a_n b_m^{-1} X^{n-m} \cdot g = f - g \cdot [q + a_n b_m^{-1} X^{n-m}]$$

Por lo tanto gr $f = n < \operatorname{gr} g$.

<u>Unicidad</u>: Supongamos que $f = g.q_1 + r_1$, con $q_1, r_1 \in \mathbb{K}[X]$ y $r_1 = 0$ o gr $r_1 < \operatorname{gr} g$ y que $f = g.q_2 + r_2$, con $q_2, r_2 \in \mathbb{K}[X]$ y $r_2 = 0$ o gr $r_2 < \operatorname{gr} g$. Debemos ver que $r_1 = r_2$ y $q_1 = q_2$.

Si $r_1 = r_2$ entonces $g.q_1 = f = g.q_2$, de donde $g(q_1 - q_2) = 0$ y como $g \neq 0$ y $\mathbb{K}[X]$ es íntegro entonces resulta que $q_1 - q_2 = 0$, es decir, $q_1 = q_2$.

Supongamos ahora que $r_1 \neq r_2$. Como $g.q_1+r_1=g.q_2+r_2$ entonces $g(q_1-q_2)=r_2-r_1\neq 0$. Luego, tomando grado en esta igualdad, resulta que grg+gr $(q_1-q_2)=$ gr (r_1-r_2) . Como gr $(q_1-q_2)\geq 0$, gr $(r_1-r_2)\leq \max\{$ gr $r_1,$ gr $r_2\}$, gr $r_1<$ gr r_2 y gr $r_2<$ gr r_3 entonces

$$\operatorname{gr} g \leq \operatorname{gr} g + \operatorname{gr} (q_1 - q_2) = \operatorname{gr} (r_1 - r_2) \leq \max \{ \operatorname{gr} r_1, \operatorname{gr} r_2 \} < \operatorname{gr} g$$

Los polinomios q y r del teorema anterior se llaman el *cociente* y el *resto* de la división de f por g. Notar que por la unicidad del cociente y el resto, si f = g.q + r con r = 0 o gr r < gr g entonces necesariamente q y r son, respectivamente, el cociente y el resto de la división de f por g.

Ejemplos.

- 1) Sean $f, g \in \mathbb{R}[X]$, $f = 2X^4 + 3X^2 X + 5$ y $g = X^3 + X^2 + 1$. Entonces el cociente y el resto de la división de f por g son q = 2X 2 y $r = 5X^2 3X + 7$.
- 2) Sean $f, g \in \mathbb{Z}_7[X]$, $f = 2X^4 + 3X^3 + 2X + 4$, $g = 3X^2 + 5$. Entonces el cociente y el resto de la división de f por g son $q = 3X^2 + X + 2$ y r = 4X + 1.

Ejercicio. Sea $f \in \mathbb{C}[X]$, sea $g \in \mathbb{C}[X]$ tal que $g \neq 0$ y sean $q, r \in \mathbb{C}[X]$ el cociente y el resto de la división de f por g. Probar que

- i) Si $f, g \in \mathbb{R}[X]$ entonces $q, r \in \mathbb{R}[X]$
- ii) Si $f, g \in \mathbb{Q}[X]$ entonces $q, r \in \mathbb{Q}[X]$

Sea $f \in \mathbb{K}[X]$, $f = \sum_{i=0}^n a_i X^i$ y sea $c \in \mathbb{K}$. Llamaremos especialización de f en c al elemento de \mathbb{K}

$$f(c) = \sum_{i=0}^{n} a_i c^i$$

Propiedades de la especialización. Para todo $f,g \in \mathbb{K}[X], c \in \mathbb{K}$ se verifican

- i) (f+g)(c) = f(c) + g(c)
- ii) (f.g)(c) = f(c).g(c)

Dejamos la demostración como ejercicio.

Teorema del resto. Sea $f \in \mathbb{K}[X]$ y sea $a \in \mathbb{K}$. Entonces el resto de la división de f por X - a es f(a).

Demostración: Por el algoritmo de división, $\exists ! q, r \in \mathbb{I}K[X]$ tales que f = (X - a).q + r y r = 0 o grr < 1. Ahora, especializando en a resulta que f(a) = (a - a).q(a) + r(a) = r(a) y como r = 0 o grr = 0 entonces r(a) = r. Por lo tanto r = f(a). \square

Ejemplo. Sea $f \in \mathbb{Q}[X]$. Sabiendo que f(1) = 2, f(-1) = 1 y f(-2) = -1 podemos hallar el resto de la división de f por g = (X - 1)(X + 1)(X + 2). Notar que, por el teorema del resto, esto es lo mismo que decir que si conocemos el resto de la división de f por X - 1, por X + 1 y por X + 2 entonces podemos calcular el resto de la división de f por g = (X - 1)(X + 1)(X + 2). (¿Esto no le recuerda el teorema chino del resto?)

Por el algoritmo de división, f = g.q + r, con r = 0 o grr < 3. Luego, $r = aX^2 + bX + c$ donde $a, b, c \in \mathbb{Q}$. Como g(1) = g(-1) = g(-2) = 0 entonces, especializando en 1, -1 y -2 se tienen el sistema de 3 ecuaciones con 3 incógnitas

$$2 = a + b + c$$
$$1 = a - b + c$$
$$-1 = 4a - 2b + c$$

cuyas soluciones son $a=-\frac{1}{2}, b=\frac{1}{2}$ y c=2. Luego, el resto buscado es $-\frac{1}{2}X^2+\frac{1}{2}X+2$.

Congruencias. Dados $f, g, h \in \mathbb{K}[X]$ decimos que f es congruente a g módulo h, y escribimos $f \equiv g(h)$, si $h \mid g - f$. En tal caso escribimos $f \equiv g(h)$

Propiedades de la congruencia.

- 1) $f \equiv f(h)$ para todo $f, h \in \mathbb{K}[X]$
- 2) $f \equiv q(h) \Longrightarrow q \equiv f(h)$
- 3) $f \equiv g(h) \ y \ g \equiv p(h) \Longrightarrow f \equiv p(h)$
- 4) $f \equiv g(h) \Longrightarrow f + p \equiv g + p(h)$ para todo $p \in \mathbb{K}[X]$
- 5) $f \equiv g(h) \Longrightarrow f.p \equiv g.p(h)$ para todo $p \in \mathbb{K}[X]$
- 6) $f \equiv g(h) \text{ y } p \equiv g(h) \Longrightarrow f + p \equiv g + g(h) \text{ y } f.p \equiv g.g(h)$
- 7) $f \equiv g(h) \Longrightarrow f^n \equiv g^n(h)$ para todo $n \in \mathbb{N}$
- 8) Si $h \neq 0$ y r es el resto de la división de f por h entonces $f \equiv r(h)$
- 9) Si $h \neq 0$ y $f \equiv r$ (h) donde r = 0 o gr $r < \operatorname{gr} h$ entonces r es el resto de la división de f por h
- 10) $f \equiv 0 \ (h) \iff h \mid f$

- 11) $f \equiv f + hq(h)$ para todo $q \in \mathbb{K}[X]$
- 12) Sea $p \in \mathbb{K}[X]$. Entonces $f \equiv g(h) \iff f.p \equiv g.p(h.p)$

Dejamos las demostraciones de estas propiedades como ejercicio.

Ejemplo. Sea $f \in \mathbb{Q}[X]$, $f = 3X^{101} - 15X^{16} - 2X^7 - 5X^4 + 3X^3 + 2X^2 + 1$. Hallemos el resto de la división de f por $X^3 + 1$

Como $X^3 \equiv -1 (X^3 + 1)$ entonces

$$X^{101} = (X^3)^{33} X^2 \equiv (-1)^{33} X^2 = -X^2 \quad (X^3 + 1)$$

$$X^{16} = (X^3)^5 X \equiv (-1)^5 X = -X \quad (X^3 + 1)$$

$$X^7 = (X^3)^2 X \equiv (-1)^2 X = X \quad (X^3 + 1)$$

$$X^4 = X^3 X \equiv -X \quad (X^3 + 1)$$

Luego, módulo $X^3 + 1$,

$$f = 3X^{101} - 15X^{16} - 2X^7 - 5X^4 + 3X^3 + 2X^2 + 1 \equiv$$
$$\equiv -3X^2 + 15X - 2X + 5X - 3 + 2X^2 + 1 =$$
$$= -X^2 + 18X - 2$$

Como $f \equiv -X^2 + 18X - 2$ $(X^3 + 1)$ y gr $(-X^2 + 18X - 2) = 2 < 3 =$ gr $(X^3 + 1)$ entonces el resto de la división de f por $X^3 + 1$ es $-X^2 + 18X - 2$

Proposición. Sea $f \in \mathbb{K}[X]$ y sea $c \in \mathbb{K}$. Entonces existen únicos $a_0, a_1, \ldots, a_n \in \mathbb{K}$ tales que

$$f = \sum_{i=0}^{n} a_i (X - c)^i$$

Notemos que esta proposición es el resultado análogo al desarrollo en base s para números enteros.

Observación. La proposición anterior puede formularse de la siguiente manera: Sea $f \in IK[X]$ y sea $c \in IK$. Entonces existe un único $g \in IK[X]$ tal que f = g(X - c).

Ejemplo. Escribamos a $f = X^3 - 11X^2 + 19X + 20 \in \mathbb{Q}[X]$ en potencias de X - 3, es decir, hallemos $a_0, a_1, \ldots, a_n \in \mathbb{Q}$ tales que $f = \sum_{i=0}^n a_i (X - 3)^i$.

Tal como hacíamos para hallar el desarrollo en base s de un número entero, los a_i son los restos de divisiones sucesivas por X-3

$$X^{3} - 11X^{2} + 19X + 20 = (X - 3).(X^{2} - 8X - 5) + 5$$
$$X^{2} - 8X - 5 = (X - 3).(X - 5) + (-20)$$
$$X - 5 = (X - 3).1 + (-2)$$

de donde

$$f = X^{3} - 11X^{2} + 19X + 20 = (X - 3).(X^{2} - 8X - 5) + 5 =$$

$$= (X - 3).[(X - 3).(X - 5) - 20] + 5 =$$

$$= (X - 3)^{2}.(X - 5) - 20(X - 3) + 5 =$$

$$= (X - 3)^{2}.[(X - 3) - 2] - 20(X - 3) + 5 =$$

$$= (X - 3)^{3} - 2(X - 3)^{2} - 20(X - 3) + 5$$

Luego, tomando $a_0 = 5$, $a_1 = -20$, $a_2 = -2$ y $a_1 = 1$ se tiene que $f = \sum_{i=0}^{n} a_i (X - 3)^i$

Observación. Notemos que si $f \in \mathbb{Z}[X]$ y $c \in \mathbb{Z}$ entonces los cocientes y los restos de las sucesivas divisiones por X - c son polinomios con coeficientes enteros ya que X - c es mónico. Luego, los a_i así obtenidos son números enteros.

Máximo común divisor. Si $a, b \in \mathbb{Z}$, alguno de ellos no nulo, habíamos definido el máximo común divisor entre a y b como el único $d \in \mathbb{Z}$ tal que

- i) $d \in \mathbb{N}$
- ii) $d \mid a \vee d \mid b$
- iii) $c \mid a \ y \ c \mid b \Longrightarrow c \mid d$

Si queremos dar una definición análoga para dos polinomios $f, g \in \mathbb{K}[X]$, está claro que las dos últimas condiciones se traducirán en

- $2) d \mid f y d \mid g$
- 3) $h \mid f y h \mid g \Longrightarrow h \mid d$

pero necesitaremos reformular adecuadamente la condición i).

Si repasamos la demostración de la existencia y unicidad del máximo común divisor en \mathbb{Z} observamos que i) sólo se usa para demostrar la unicidad: probamos que si d y d' satisfacen ii) y iii) entonces $d \mid d'$ y $d' \mid d$ lo que implica que d = d' o d = -d', es decir, d = u.d' donde $u \in \mathcal{U}(\mathbb{Z})$. De la misma manera se ve que si $d, d' \in \mathbb{K}[X]$ satisfacen 2) y 3) entonces $d \mid d'$ y $d' \mid d$, de donde resulta que $\exists c \in \mathbb{K} - \{0\} = \mathcal{U}(\mathbb{K}[X])$ tal que d = c.d', es decir, d y d' son asociados. Para garantizar la unicidad pediremos entonces que d sea mónico, ya que si d = c.d' y ambos son mónicos entonces necesariamente c = 1 y por lo tanto d = d'.

Por lo tanto, dados dos polinomios $f, g \in \mathbb{K}[X]$, alguno de ellos no nulo, definimos el máximo común divisor entre f y g como el único $d \in \mathbb{K}[X]$ que es mónico y satisface las condiciones 2) y 3).

El siguiente teorema garantiza que un tal d existe y es único.

Teorema. Sean $f, g \in \mathbb{K}[X]$ tales que $f \neq 0$ o $g \neq 0$. Entonces $\exists! d \in \mathbb{K}[X]$ que satisface:

- 1) d es mónico
- $2) d \mid f y d \mid g$
- 3) $h \mid f y h \mid g \Longrightarrow h \mid d$

Dejamos la demostración como ejercicio. Para probar la existencia probar que el conjunto

$$H = \{ \operatorname{gr}(f.t + g.s) / t, s \in \mathbb{K}[X] \text{ y } f.t + g.s \text{ es mónico} \}$$

es un subconjunto no vacío de \mathbb{N}_0 y por lo tanto posee un primer elemento n. Luego, existen $t, s \in \mathbb{K}[X]$ tales que $n = \operatorname{gr}(f.t + g.s)$ y f.t + g.s es mónico. Probar que d = f.t + g.s satisface 1), 2) y 3).

Notación. Denotaremos por (f:g) al máximo común divisor entre f y g, es decir, al único $d \in \mathbb{K}[X]$ que satisface las condiciones 1), 2) y 3) del teorema.

Corolario. Sean $f, g \in \mathbb{K}[X]$ tales que $f \neq 0$ o $g \neq 0$. Entonces $\exists t, s \in \mathbb{K}[X]$ tales que $(f : g) = f \cdot t + g \cdot s$.

Observación. Los polinomios t y s del corolario no son únicos.

Diremos que f y g son coprimos si (f:g) = 1.

Ejercicio. Probar que f y g no son coprimos si y sólo si existe un irreducible mónico $p \in IK[X]$ tal que $p \mid f$ y $p \mid g$.

Los irreducibles mónicos en $\mathbb{K}[X]$ son análogos a los primos positivos en \mathbb{Z} .

Propiedades del máximo común divisor. Sean $f,g \in \text{IK}[X]$ tales que $f \neq 0$ o $g \neq 0$. Entonces valen

- 1) (f:g) = (g:f)
- 2) Si f y f' son asociados y g y g' también son asociados entonces (f:g)=(f':g')
- 3) Si p es un irreducible mónico entonces

$$(f:p) = \begin{cases} p & \text{si } p \mid f \\ 1 & \text{en otro caso} \end{cases}$$

- 4) Si $f \mid g$ entonces $(f : g) = a^{-1}.f$, donde a es el coeficiente principal de f. En particular, $(f : 0) = a^{-1}.f$, donde a es el coeficiente principal de f.
- 5) f y g son coprimos si y sólo si $\exists r, s \in \mathbb{K}[X]$ tales que 1 = rf + sg
- 6) Si d = (f:g) entonces $\frac{f}{d}, \frac{g}{d} \in \mathbb{IK}[X]$ y $\left(\frac{f}{d}: \frac{g}{d}\right) = 1$
- 7) Sean $a, b \in \mathbb{K}$. Si $a \neq b$ entonces los polinomios X a y X b son coprimos. Dejamos las demostraciones como ejercicio.

Proposición. Sean $f, g \in \mathbb{K}[X]$, $g \neq 0$. Si f = g.q + r, con $q, r \in \mathbb{K}[X]$, entonces (f:g) = (g:r).

Demostración: Es igual que la de la proposición análoga para los enteros.

Algoritmo de Euclides. Sean $f, g \in \mathbb{Q}[X]$, $f = X^4 + 2X^3 - X^2 - X + 1$ y $g = X^3 + 1$. Veamos cómo calcular (f : g) y escribirlo como combinación lineal de f y g.

$$f = g(X+2) + (-X^2 - 2X - 1)$$

$$g = (-X^2 - 2X - 1)(-X+2) + (3X+3)$$

$$-X^2 - 2X - 1 = (3X+3)\left(-\frac{1}{3}X - \frac{1}{3}\right) + 0$$

Luego, por la proposición anterior,

$$(f:g) = (g:-X^2 - 2X - 1) = (-X^2 - 2X - 1:3X + 3) = (3X + 3:0) = X + 1$$

En general, si h es el último resto no nulo y c es el coeficiente principal de h entonces $d = c^{-1}.h$. Ahora escribimos a 3X + 3 como combinación lineal de f y g

$$3X + 3 = g + (-X^{2} - 2X - 1)(X - 2) = g + [f - g(X + 2)](X - 2) =$$

$$= g[1 - (X + 2)(X - 2)] + f(X - 2) =$$

$$= g(-X^{2} + 5) + f((X - 2))$$

y finalmente escribimos a (f:g) = X + 1 como combinación lineal de f y g en la forma

$$(f:g) = X + 1 = g\left(-\frac{1}{3}X^2 + \frac{5}{3}\right) + f\left(\frac{1}{3}X - \frac{2}{3}\right)$$

Proposición. Sean $f, g, h \in \mathbb{K}[X]$. Si $f \mid g.h \text{ y } (f : g) = 1 \text{ entonces } f \mid h$

Corolario. Sean $f, g \in \mathbb{K}[X]$ y sea $p \in \mathbb{K}[X]$ irreducible. Si $p \mid f.g$ entonces $p \mid f$ o $p \mid g$. Ejercicio. Sean $a, b \in \mathbb{K}$, $a \neq b$ y sean $n, m \in \mathbb{N}$. Probar que $((X - a)^n : (X - b)^m) = 1$. Proposición. Sean $f, g, h \in \mathbb{K}[X]$ tales que (f : g) = 1. Si $f \mid h$ y $g \mid h$ entonces $f.g \mid h$

Teorema fundamental de la aritmética. Recordemos que dado $a \in \mathbb{Z}$, $a \neq 0, 1, -1$, entonces a puede escribirse, de manera única, en la forma

$$a = \delta \prod_{i=1}^{r} p_i^{n_i}$$

donde $p_1 < p_2 < \ldots < p_r$ son primos positivos, $n_1, n_2, \ldots, n_r \in \mathbb{N}$ y $\delta \in \{1, -1\} = \mathcal{U}(\mathbb{Z})$. El resultado análogo para $\mathbb{K}[X]$ es el siguiente

Teorema. Sea $f \in \mathbb{K}[X]$. Si $f \neq 0$ y gr f > 0 entonces existen $p_1, p_2, \ldots, p_r \in \mathbb{K}[X]$ irreducibles mónicos, $c \in \mathbb{K} - \{0\}$ y $n_1, n_2, \ldots, n_r \in \mathbb{N}$ tales que

$$f = c \prod_{i=1}^{r} p_i^{n_i}$$

Además, esta escritura es única salvo el orden de los factores.

4. Raíces.

Sea IK un cuerpo (por ejemplo, IK = \mathbb{Q} , IR, \mathbb{C} o \mathbb{Z}_p con p primo). Dado $f \in \mathbb{K}[X]$ diremos que $a \in \mathbb{K}$ es una raiz de f si f(a) = 0.

El hecho de conocer las raíces en \mathbb{K} de un polinomio $f \in \mathbb{K}[X]$ nos será luego de gran utilidad para poder factorizarlo como producto de irreducibles.

Observación. Si $f \in \mathbb{K}[X]$ tal que grf = 1 entonces f tiene una raíz en \mathbb{K} . En efecto, si f = aX + b, con $a, b \in \mathbb{K}$, $a \neq 0$, entonces $-a^{-1}b \in \mathbb{K}$ es raíz de f. Pero si grf > 1 entonces puede ocurrir que f no tenga ninguna raíz en \mathbb{K} . Por ejemplo, $X^n - 3 \in \mathbb{Q}[X]$ $(n \geq 2)$ no tiene ninguna raíz en \mathbb{Q} y $X^2 + 1 \in \mathbb{R}[X]$ no tiene ninguna raíz en \mathbb{R} .

Ejemplos.

- 1) Si $f = X^3 + 2X^2 X 2 \in \mathbb{Q}[X]$ entonces 1, -1 y -2 son raíces de f
- 2) Si p es primo y $f = X^p X \in \mathbb{Z}_p[X]$ entonces a es raíz de f para todo $a \in \mathbb{Z}_p$
- 3) Si $f=X^8-1\in \mathbb{C}[X]$ entonces $w\in \mathbb{C}$ es raíz de fsi y sólo si $w\in G_8$
- 4) Si $f = X^2 + 1 \in \mathbb{C}[X]$ entonces las raíces de f en \mathbb{C} son $i \neq -i$.
- 5) Sea $f = X^{1000} + 4X + 1 \in \mathbb{Z}_5[X]$. Hallemos las raíces de f en \mathbb{Z}_5 .

Si $a \in \mathbb{Z}_5$ es raíz de f entonces $a \neq 0$. Luego, $a^4 = 1$ y por lo tanto $a^{1000} = 1$. Entonces $a \in \mathbb{Z}_5$ es raíz de f si y sólo si 1 + 4a + 1 = 0, si y sólo si a = 2.

Criterio de Gauss. El siguiente teorema nos da un método para hallar las raíces racionales de un polinomio con coeficientes enteros.

Teorema. Sea $f \in \mathbb{Z}[X]$, $f = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_1 X + a_0$, con $a_n \neq 0$ y sean $p \in \mathbb{Z}$ y $q \in \mathbb{N}$ tales que (p:q) = 1.

Si $\frac{p}{q}$ es raíz de f entonces $p \mid a_0, q \mid a_n$ y $p - kq \mid f(k)$ para todo $k \in \mathbb{Z}$.

Demostración: Si $\frac{p}{q}$ es raíz de f entonces

$$0 = f\left(\frac{p}{q}\right) = a_n \left(\frac{p}{q}\right)^n + a_{n-1} \left(\frac{p}{q}\right)^{n-1} + \dots + a_1 \left(\frac{p}{q}\right) + a_0$$

Luego, $a_n p^n + a_{n-1} p^{n-1} q + a_{n-2} p^{n-2} q^2 + \dots + a_1 p q^{n-1} + a_0 q^n = 0$ de donde resulta que

$$a_0 q^n = -a_n p^n - a_{n-1} p^{n-1} q - a_{n-2} p^{n-2} q^2 - \dots - a_1 p q^{n-1}$$

у

$$a_n p^n = -a_{n-1} p^{n-1} q - a_{n-2} p^{n-2} q^2 - \dots - a_1 p q^{n-1} - a_0 q^n$$

Luego, $p \mid a_0 q^n y q \mid a_n p^n$. Por lo tanto, como p y q son enteros coprimos, $p \mid a_0 y q \mid a_n$. Además, dado $k \in \mathbb{Z}$,

$$q^{n} f(k) = q^{n} [a_{n}k^{n} + a_{n-1}k^{n-1} + a_{n-2}k^{n-2} + \dots + a_{1}k + a_{0}] =$$

$$= a_{n} q^{n}k^{n} + a_{n-1}q^{n}k^{n-1} + a_{n-2}q^{n}k^{n-2} + \dots + a_{1}q^{n}k + a_{0}q^{n} =$$

$$= a_{n} q^{n}k^{n} + a_{n-1}q^{n}k^{n-1} + a_{n-2}q^{n}k^{n-2} + \dots + a_{1}q^{n}k - a_{n}p^{n} - a_{n-1}p^{n-1}q -$$

$$- a_{n-2}p^{n-2}q^{2} - \dots - a_{2}p^{2}q^{n-2} - a_{1}pq^{n-1} =$$

$$= a_{n} (q^{n}k^{n} - p^{n}) + a_{n-1}q(q^{n-1}k^{n-1} - p^{n-1}) + a_{n-2}q^{2}(q^{n-2}k^{n-2} - p^{n-2}) +$$

$$+ \dots + a_{2}q^{n-2}(q^{2}k^{2} - p^{2}) + a_{1}q^{n-1}(qk - p)$$

y como $p-kq \mid (qk)^j-p^j$ para todo $j \in \mathbb{N}$ (recordar que si $a,b \in \mathbb{Z}$ entonces $a-b \mid a^m-b^m \forall m \in \mathbb{N}$) entonces resulta que $p-kq \mid q^n f(k)$. Luego, observando que p-kq y q^n son coprimos pues (p:q)=1 concluímos que $p-kq \mid f(k)$. \square

Corolario. Sea $f \in \mathbb{Z}[X]$, $f = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_1 X + a_0$, con $a_n \neq 0$ y sean $p \in \mathbb{Z}$ y $q \in \mathbb{N}$ tales que (p:q) = 1. Si $\frac{p}{q}$ es raíz de f entonces $p \mid a_0, q \mid a_n, p-q \mid f(1)$ y $p+q \mid f(-1)$.

Ejemplos.

1) Hallemos todas las raíces racionales de $f \in \mathbb{Z}[X], f = 2X^4 - 3X^3 - 3X - 2$

Si $\frac{p}{q}$ es raíz de f, con $p \in \mathbb{Z}$, $q \in \mathbb{N}$ y (p : q) = 1 entonces $p \mid 2$ y $q \mid 2$. Luego, $\frac{p}{q} = \pm 1, \pm 2, \pm \frac{1}{2}$. Veamos cuáles son raíces de f.

$$f(1) = -6 \neq 0$$

$$f(-1) = 6 \neq 0$$

$$f(2) = 32 - 24 - 6 - 2 = 0$$

$$f(-2) = 32 + 24 + 6 - 2 \neq 0$$

$$f(\frac{1}{2}) = \frac{1}{8} - \frac{3}{8} - \frac{3}{2} - 2 \neq 0$$
 y

$$f(-\frac{1}{2}) = \frac{1}{8} + \frac{3}{8} + \frac{3}{2} - 2 = 0$$

Luego, las raíces racionales de f son 2 y $-\frac{1}{2}$.

2) Hallemos todas las raíces racionales de $f \in \mathbb{Q}[X]$, $f = 2X^6 + \frac{1}{3}X^5 + \frac{2}{3}X^4 + \frac{1}{2}X - 1$ Notemos que $f \notin \mathbb{Z}[X]$ pero si consideramos g = 6f entonces f y g tienen las mismas raíces y $g = 12X^6 + 2X^5 + 4X^4 + 3X - 6 \in \mathbb{Z}[X]$. Luego, las raíces racionales de f son las raíces racionales de g y a éstas las podemos hallar aplicando el criterio de Gauss pues $g \in \mathbb{Z}[X]$.

Si $\frac{p}{q}$ es raíz de g, con $p \in \mathbb{Z}$, $q \in \mathbb{N}$ y (p:q) = 1 entonces $p \mid -6$ y $q \mid 12$. Además, $p-q \mid g(1)$ y $p+q \mid g(-1)$. Luego, las posibles raíces racionales son $\frac{p}{q} = \pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{4}, \pm \frac{1}{6}, \pm \frac{1}{12}, \pm \frac{2}{3}, \pm \frac{3}{4}$, y como g(1) = 15 y g(-1) = 5 entonces 1 y -1 no son raíces de g, $p-q \mid 15$ y $p+q \mid 5$.

Por otra parte, notando que si a > 1 entonces $12a^6 + 2a^5 + 4a^4 + 3a > 12 + 2 + 4 + 3$ resulta que $2, 3, 6y\frac{3}{2}$ no pueden ser raíces de g. Veamos qué ocurre con cada una de las restantes

posibles raíces:

$$-3 \text{ no satisface } p-q \mid 15 \text{ pues } p-q=-4$$

$$-6 \text{ no satisface } p-q \mid 15 \text{ pues } p-q=-7$$

$$\frac{1}{2} \text{ no satisface } p+q \mid 5 \text{ pues } p+q=3$$

$$\frac{1}{3} \text{ no satisface } p+q \mid 5 \text{ pues } p+q=4$$

$$\frac{1}{6} \text{ no satisface } p+q \mid 5 \text{ pues } p+q=7$$

$$-\frac{1}{3} \text{ no satisface } p-q \mid 15 \text{ pues } p-q=-4$$

$$-\frac{1}{6} \text{ no satisface } p-q \mid 15 \text{ pues } p-q=-7$$

$$\frac{3}{4} \text{ no satisface } p+q \mid 5 \text{ pues } p+q=-7$$

$$-\frac{3}{4} \text{ no satisface } p+q \mid 5 \text{ pues } p+q=-7$$

$$\frac{1}{12} \text{ no satisface } p+q \mid 5 \text{ pues } p+q=13$$

$$-\frac{1}{12} \text{ no satisface } p+q \mid 5 \text{ pues } p+q=11$$

Luego, falta ver si $g(\frac{p}{q})=0$ para $\frac{p}{q}=-2, -\frac{1}{2}, \frac{2}{3}, -\frac{2}{3}, \frac{1}{4}, -\frac{1}{4}$ $g(-2)=12.2^6-2.2^5+4.2^4-3.2-6=(12-1+1).2^6-12=12(2^6-1)\neq 0$ $g(-\frac{1}{2})=12\frac{1}{2^6}-2\frac{1}{2^5}+4\frac{1}{2^4}-\frac{3}{2}-6=\frac{3}{2^4}-\frac{1}{2^4}+\frac{4}{2^4}-\frac{3}{2}-6=\frac{6}{2^4}-\frac{3}{2}-6=\frac{3}{8}-\frac{12}{8}-6\neq 0$ $g(\frac{2}{3})=12\frac{2^6}{3^6}+2\frac{2^5}{3^5}+4\frac{2^4}{3^4}+3\frac{2}{3}-6=4\frac{2^6}{3^5}+\frac{2^6}{3^5}+3\frac{2^6}{3^5}+2-6=8\frac{2^6}{3^5}-4\neq 0$ $g(-\frac{2}{3})=12\frac{2^6}{3^6}-2\frac{2^5}{3^5}+4\frac{2^4}{3^4}-3\frac{2}{3}-6=4\frac{2^6}{3^5}-\frac{2^6}{3^5}+\frac{2^6}{3^4}-2-6=3\frac{2^6}{3^5}+\frac{2^6}{3^4}-8=2\frac{2^6}{3^4}-8\neq 0$ $g(-\frac{3}{2})=12\frac{3^6}{2^6}-2\frac{3^5}{2^5}+4\frac{3^4}{2^4}-3\frac{3}{2}-6=27\frac{3^4}{2^4}-3\frac{3^4}{2^4}+4\frac{3^4}{2^4}-\frac{9}{2}-6=28\frac{3^4}{2^4}-\frac{9}{2}-6=7\frac{3^4}{4}-\frac{21}{2}\neq 0$ Dejamos como tarea al lector verificar que $g(\frac{1}{4})<0$ y $g(-\frac{1}{4})<0$. Luego, g (y por lo tanto f) no tiene raíces en \mathbb{Q} .

Proposición. Sean $f \in \mathbb{R}[X]$ y $z \in \mathbb{C}$. Entonces z es raíz de f si y sólo si \overline{z} es raíz de f.

Demostración: Como $f \in \mathbb{R}[X]$ entonces $f = \sum_{i=0}^{n} a_i X^i$ donde $a_i \in \mathbb{R}$. Luego,

$$f(z) = 0 \iff \sum_{i=0}^{n} a_i z^i = 0 \iff \overline{\sum_{i=0}^{n} a_i z^i} = 0 \iff \sum_{i=0}^{n} \overline{a_i} \, \overline{z^i} = 0 \iff \sum_{i=0}^{n} a_i \overline{z^i} = 0 \iff f(\overline{z}) = 0$$

ya que $\overline{a_i} = a_i$ pues $a_i \in \mathbb{R}$. \square

Teorema fundamental del álgebra. Sea $f \in \mathbb{C}[X]$. Si gr $f \geq 1$ entonces f tiene al menos una raíz en \mathbb{C} .

No veremos la demostración de este teorema ya que excede los alcances del curso.

Proposición. Sea $f \in \mathbb{K}[X]$ y sea $a \in \mathbb{K}$. Entonces a es raíz de f si y sólo si $X - a \mid f$. Demostración: Es consecuencia inmediata del teorema del resto. \square

Corolario 1. Sea $f \in \mathbb{K}[X]$ un polinomio no nulo de grado n. Entonces f tiene a lo sumo n raíces distintas en \mathbb{K} .

Demostración: Sean a_1, a_2, \ldots, a_m las raíces distintas de f en IK. Entonces, por la proposición anteriror, $X-a_i \mid f$ $(1 \leq i \leq m)$ y, como $(X-a_i : X-a_j)=1$ para $i \neq j$ entonces

$$(X-a_1)(X-a_2)\dots(X-a_m)\mid f$$

Luego, $m = gr((X - a_1)(X - a_2)...(X - a_m)) \le gr f = n. \ \Box$

Corolario 2. Sea $f \in \mathbb{C}[X]$. Entonces f es irreducible en $\mathbb{C}[X]$ si y sólo si grf = 1.

Demostración: (\iff) Vimos antes que esta implicación vale.

 (\Longrightarrow) Si f es irreducible en $\mathbb{C}[X]$ entonces, por el teorema fundamental del álgebra, f tiene una raíz $a \in \mathbb{C}$. Luego, $X - a \mid f$ y, como f es irreducible entonces f y X - a deben ser asociados, de donde gr $f = \operatorname{gr}(X - a) = 1$. \square

Corolario 3. Sea $f \in \mathbb{C}[X]$ tal que gr $f \geq 1$. Entonces la factorización de f en $\mathbb{C}[X]$ es de la forma

$$f = c(X - a_1)(X - a_2) \dots (X - a_n)$$

donde $a_1, a_2, \ldots, a_n \in \mathbb{C}$ (no necesariamente distintos) y $c \in \mathbb{C}$, $c \neq 0$.

Demostración: Es consecuencia inmediata del teorema fundamental de la aritmética y el corolario 2.

—

Observación. Sea $f \in \mathbb{K}[X]$. Si $f = c(X-a_1)(X-a_2) \dots (X-a_n)$, con $a_1, a_2, \dots, a_n \in \mathbb{K}$ y $c \in \mathbb{K}$, $c \neq 0$, entonces c es el coeficiente principal de f, $n = \operatorname{gr} f$ y a_1, a_2, \dots, a_n son las raíces de f en \mathbb{K} .

Ejemplo. Sean $a, b, c \in \mathbb{C}$ las raíces de $f = 2X^3 - X^2 + 3X + 4$. Hallar a + b + c, $a^2 + b^2 + c^2$, $a^3 + b^3 + c^3$, $a^4 + b^4 + c^4$, $\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$ y $\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ac}$

Como a, b y c son las raíces de f y el coeficiente principal de f es 2 entonces

$$f = 2(X - a)(X - b)(X - c) = 2[X^{3} - (a + b + c)X^{2} + (ab + bc + ac)X - abc]$$

Luego, $2X^3 - X^2 + 3X + 4 = 2X^3 - 2(a+b+c)X^2 + 2(ab+bc+ac)X - 2abc$], de donde -1 = -2(a+b+c), 3 = 2(ab+bc+ac) y 4 = -2abc. Por lo tanto, $a+b+c = \frac{1}{2}$, $ab+bc+ac = \frac{3}{2}$ y abc = -2.

Luego,

$$a + b + c = \frac{1}{2}$$

$$a^{2} + b^{2} + c^{2} = (a + b + c)^{2} - 2(ab + bc + ac) = \frac{1}{4} - 3 = -\frac{11}{4}$$

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{bc + ac + ab}{abc} = \frac{\frac{3}{2}}{-2} = -\frac{3}{4}$$

Veamos cómo calcular $a^3 + b^3 + c^3$. Como a, b y c son raíces de f entonces

$$2a^{3} = a^{2} - 3a - 4$$
$$2b^{3} = b^{2} - 3b - 4$$
$$2c^{3} = c^{2} - 3c - 4$$

Por lo tanto $2(a^3 + b^3 + c^3) = a^2 + b^2 + c^2 - 3(a + b + c) - 12 = -\frac{11}{4} - \frac{3}{2} - 12$. Dejamos como ejercicio hallar $a^4 + b^4 + c^4$. Sugerencia:

$$2a^{3} = a^{2} - 3a - 4 \Longrightarrow 2a^{4} = a^{3} - 3a^{2} - 4a$$
$$2b^{3} = b^{2} - 3b - 4 \Longrightarrow 2b^{4} = b^{3} - 3b^{2} - 4b$$
$$2c^{3} = c^{2} - 3c - 4 \Longrightarrow 2c^{4} = c^{3} - 3c^{2} - 4c$$

de donde $2(a^4 + b^4 + c^4) = a^3 + b^3 + c^3 - 3(a^2 + b^2 + c^2) - 4(a + b + c)$.

Finalmente, calculemos $\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ac} = \frac{c+a+b}{abc} = \frac{\frac{1}{2}}{-2} = -\frac{1}{4}$

Corolario 4. Sea $f \in \mathbb{R}[X]$. Si gr f es impar entonces f tiene al menos una raíz en \mathbb{R} .

Demostración: Sea $n = \operatorname{gr} f$. Entonces n = 2k-1 para algún $k \in \mathbb{N}$. Demostraremos el corolario por inducción en k.

Si k=1 entonces grf=1. Luego f=aX+b, con $a,b\in\mathbb{R},$ $a\neq 0.$ En este caso $-a^{-1}b\in\mathbb{R}$ es raíz de f.

Supongamos ahora que el corolario vale para k y sea $f \in \mathbb{R}[X]$ un polinomio de grado 2(k+1)-1=2k+1. Sea $z \in \mathbb{C}$ una raíz de f (teorema fundamental del álgebra). Si $z \in \mathbb{R}$ entonces f tiene una raíz real. Supongamos entonces que $z \notin \mathbb{R}$. Entonces, como $f \in \mathbb{R}[X]$, \overline{z} es raíz de f y $\overline{z} \neq z$. Luego, $X-z \mid f$, $X-\overline{z} \mid f$ y $(X-z:X-\overline{z})=1$. Por lo tanto $(X-z)(X-\overline{z}) \mid f$, es decir, existe $h \in \mathbb{C}[X]$ tal que $f=(X-z)(X-\overline{z}).h$. Pero como $f \in \mathbb{R}[X]$ y $(x-z)(X-\overline{z})=X^2-(z+\overline{z})X+z\,\overline{z}=X^2-2\mathrm{Re}(z)+|z|^2\in \mathbb{R}[X]$, entonces $h \in \mathbb{R}[X]$.

Usando ahora la hipótesis inductiva para h, que tiene grado 2k-1, resulta que h tiene una raíz $a \in \mathbb{R}$, y por lo tanto f tiene una raíz en \mathbb{R} pues $f(a) = (a-z)(a-\overline{z}).h(a) = 0$.

Corolario 5. Sea $f \in \mathbb{K}[X]$ tal que gr $f \geq 2$. Si f es irreducible en $\mathbb{K}[X]$ entonces f no tiene raíces en \mathbb{K} .

Demostración: Sea f irreducible en $\mathbb{K}[X]$ y supongamos que f tiene una raíz $a \in \mathbb{K}$. Luego, $X - a \mid f$ en $\mathbb{K}[X]$ y, como f es irreducible entonces f y X - a deben ser asociados, de donde gr $f = \operatorname{gr}(X - a) = 1$. Luego esto no puede ocurrir cuando gr $f \geq 2$. \square

Observación. El polinomio $f = (X^2 + 1)(X^4 + 3) \in \mathbb{R}[X]$ no tiene raíces en \mathbb{R} pero no es irreducible en $\mathbb{R}[X]$.

Proposición. Sea $f \in \mathbb{K}[X]$. Si grf = 2 o 3 entonces f es irreducible en $\mathbb{K}[X]$ si y sólo si f no tiene raíces en \mathbb{K} .

Demostración: (\iii) Ya vimos que esta implicación vale (corolario 5).

(\Leftarrow) Supongamos que f no tiene raíces en \mathbb{K} . Sea $g \in \mathbb{K}[X]$ tal que $g \mid f$. Entonces $\operatorname{gr} g \leq \operatorname{gr} f$ y f = g.h para algún $h \in \mathbb{K}[X]$.

Supongamos primero que grf=2. Entonces grg=0,1,2. Si grg=0 entonces g es una unidad, si grg=1 entonces g (y por lo tanto f=g.h) tendría una raíz en IK, lo cual no puede ocurrir y si grg=2 entonces grh=0 y por lo tanto h es una unidad. Luego, f y g son asociados.

Supongamos ahora que grf=3. Entonces grg=0,1,2,3. Si grg=0 entonces g es una unidad y si grg=3 entonces f y g son asociados. Veamos que los casos grg=1,2 no pueden ocurrir. Si grg=1 entonces g, y por lo tanto f, tendría una raíz en IK. Finalmente, si grg=2, como f=g.h entonces grh=1 de donde h, y por lo tanto f, tendría una raíz en IK. \square

Corolario. Sea $f \in \mathbb{R}[X]$. Entonces f es irreducible en $\mathbb{R}[X]$ si y sólo si grf = 1 o grf = 2 y f no tiene raíces reales.

Demostración: Ya vimos que los polinomios de grado 1 son irreducibles y la proposición anterior garantiza que si grf = 2 entonces f es irreducible en $\mathbb{R}[X]$ si y sólo si f no tiene raíces reales.

Veamos ahora que no puede haber polinomios de grado mayor que 2 en $\mathbb{R}[X]$ que sean irreducibles.

Supongamos que f es irreducible en $\mathbb{R}[X]$. Sea $z \in \mathbb{C}$ una raíz de f. Si $z \in \mathbb{R}$ entonces $X-z \mid f$ en $\mathbb{R}[X]$ y como f es irreducible entonces gr f=1. Y si $z \notin \mathbb{R}$ entonces existe $h \in \mathbb{R}[X]$ tal que $f=(X^2-2\mathrm{Re}(z)X-|z|^2).h$ (ver demostración del corolario 4). Luego, $X^2-2\mathrm{Re}(z)X-|z|^2 \in \mathbb{R}[X]$ y divide a f. Como f es irreducible en $\mathbb{R}[X]$ entonces f y $X^2-2\mathrm{Re}(z)X-|z|^2$ deben ser asociados y por lo tanto gr f=2. \square

Observación. El corolario anterior no vale para $\mathbb{Q}[X]$. En $\mathbb{Q}[X]$ hay polinomios irreducibles de grado tan grande como se desee, por ejemplo el polinomio $X^n - 2$ es irreducible en $\mathbb{Q}[X]$ para todo $n \in \mathbb{N}$. No veremos la demostración de este hecho ya que excede los alcances de este curso.

Ejemplos.

1) Factoricemos en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$ el polinomio $f=2X^5+3X^4-X^2-2X+1$ sabiendo que $-\frac{1}{2}-\frac{\sqrt{3}}{2}i$ es raíz de f.

Sea $z=-\frac{1}{2}-\frac{\sqrt{3}}{2}i$. Como $f\in\mathbb{R}[X]$ y z es raíz de f entonces \overline{z} es raíz de f. Luego, $X^2+X+1=X^2-2\mathrm{Re}(z)X-|z|^2\mid f$. Dividiendo f por X^2+X+1 (cuyas raíces son $-\frac{1}{2}\pm\frac{\sqrt{3}}{2}i$) se tiene que

$$f = (X^2 + X + 1)(2X^3 + X^2 - 3X + 1)$$

Ahora buscamos las restantes raíces de f que son las raíces de $g=2X^3+X^2-3X+1$. Como $g\in \mathbb{Z}[X]$, aplicando el criterio de Gauss vemos que $\frac{1}{2}$ es raíz de g. Luego, $X-\frac{1}{2}\mid g$. Dividimos ahora g por $X-\frac{1}{2}$:

$$2X^{3} + X^{2} - 3X + 1 = g = (X - \frac{1}{2})(2X^{2} + 2X - 2)$$

Ahora buscamos las raíces de $2X^2 + 2X - 2$ que son $-\frac{1}{2} \pm \frac{\sqrt{5}}{2}$.

Por lo tanto las raíces de f en \mathbb{C} son $-\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$, $\frac{1}{2}$ y $-\frac{1}{2} \pm \frac{\sqrt{5}}{2}$ y la factorización de f en $\mathbb{C}[X]$ es

$$f = 2(X - (-\frac{1}{2} - \frac{\sqrt{3}}{2}i))(X - (-\frac{1}{2} + \frac{\sqrt{3}}{2}i))(X - (-\frac{1}{2} + \frac{\sqrt{5}}{2}))(X - (-\frac{1}{2} - \frac{\sqrt{5}}{2}))$$

Los factores son irreducibles en $\mathbb{C}[X]$ porque tienen grado 1. La factorización de f en $\mathbb{R}[X]$ es

$$f = 2(X^2 + X + 1)(X - \frac{1}{2})(X - (-\frac{1}{2} + \frac{\sqrt{5}}{2}))(X - (-\frac{1}{2} - \frac{\sqrt{5}}{2}))$$

Los factores son irreducibles en $\mathbb{R}[X]$ por ser polinomios de grado 1 o polinomios de grado 2 que no tienen raíces reales. La factorización en $\mathbb{Q}[X]$ es

$$f = 2(X^{2} + X + 1)(X - \frac{1}{2})(X^{2} + X - 1)$$

Los factores son irreducibles en $\mathbb{Q}[X]$ por ser polinomios de grado 1 o polinomios de grado 2 que no tienen raíces racionales.

2) Factoricemos en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$ el polinomio $f = X^4 - 3$.

Las raíces de f en \mathbb{C} son los $z \in \mathbb{C}$ tales que $z^4 = 3$, es decir, las raíces cuartas de 3 que son $\sqrt[4]{3}$, $-\sqrt[4]{3}$, $\sqrt[4]{3}$ i y $-\sqrt[4]{3}$ i. Luego, la factorización de f en $\mathbb{C}[X]$ es

$$f = (X - \sqrt[4]{3})(X + \sqrt[4]{3})(X - \sqrt[4]{3}i)(X + \sqrt[4]{3}i)$$

Los factores son irreducibles en $\mathbb{C}[X]$ porque tienen grado 1. La factorización de f en $\mathbb{R}[X]$ es $f = (X - \sqrt[4]{3})(X + \sqrt[4]{3})(X^2 + \sqrt{3})$. Los factores son irreducibles en $\mathbb{R}[X]$ por ser

polinomios de grado 1 o polinomios de grado 2 que no tienen raíces reales. La factorización en $\mathbb{Q}[X]$ es $f = X^4 - 3$. Veamos que el polinomio $X^4 - 3$ es irreducible en $\mathbb{Q}[X]$. Supongamos que existe $g \in \mathbb{Q}[X]$ tal que $g \mid X^4 - 3$, con grg = 1, 2 o 3. Entonces $X^4 - 3 = g.h$ para algún $h \in \mathbb{Q}[X]$. Si grg = 1 entonces g, y por lo tanto $X^4 - 3$, tendría una raíz en \mathbb{Q} y si grg = 3 entonces grh = 1 y por lo tanto h, y en consecuencia $X^4 - 3$, tendría una raíz en \mathbb{Q} . Luego, gr $g = 2 = \operatorname{gr} h$, g, $h \in \mathbb{R}[X]$ y $f = X^4 - 3 = g.h$. Pero como $X^2 + \sqrt{3}$ es irreducible en $\mathbb{R}[X]$ y divide a f entonces, en $\mathbb{R}[X]$, $X^2 + \sqrt{3} \mid g$ o $X^2 + \sqrt{3} \mid h$. Luego, como todos tienen grado 2, $X^2 + \sqrt{3}$ y g son asociados o $X^2 + \sqrt{3}$ y g lo son. Por lo tanto, $c(X^2 + \sqrt{3}) = g \in \mathbb{Q}[X]$ para algún $c \in \mathbb{R}$ no nulo o $c(X^2 + \sqrt{3}) = h \in \mathbb{Q}[X]$ para algún $c \in \mathbb{R}$ no nulo. Luego debe ser $c \in \mathbb{Q}$ y $c\sqrt{3} \in \mathbb{Q}$, lo que implica que $\sqrt{3} \in \mathbb{Q}$, cosa que no es verdadera.

Como se ve en el ejemplo anterior, probar que un polinomio $f \in \mathbb{Q}[X]$ es irreducible no es sencillo.

Proposición. Sean $f, g \in \mathbb{K}[X]$ y sea $a \in \mathbb{K}$. Entonces a es raíz de f y de g si y sólo si a es raíz de (f : g).

Demostración: Sea d=(f:g). Dado $a\in \mathbb{K}$, a es raíz de f y de g si y sólo si $X-a\mid f$ y $X-a\mid g$ si y sólo si $X-a\mid d$ si y sólo si a es raíz de a.

Corolario. Sean $f, g \in \mathbb{C}[X]$. Entonces f y g no tienen raíces comunes en \mathbb{C} si y sólo si (f:g)=1.

Demostración: (\Longrightarrow) Sea d=(f:g). Si $d\neq 1$ entonces gr $d\geq 1$. Luego, d tiene una raíz $a\in\mathbb{C}$ y por lo tanto a es raíz de f y de g.

 (\Leftarrow) Si (f:g)=1 entonces existen $s,t\in\mathbb{C}[X]$ tales que 1=fs+tg y por lo tanto no puede existir $a\in\mathbb{C}$ tal que f(a)=0=g(a). \square

Teorema de Wilson. Sea $p \in \mathbb{Z}$ un primo positivo. Entonces $(p-1)! \equiv -1$ (p).

Demostración: Consideremos el polinomio $f = X^{p-1} - 1 \in \mathbb{Z}_p[X]$. Por el teorema de Fermat, $1, 2, 3, \ldots, p-1 \in \mathbb{Z}_p$ son p-1 raíces distintas de f.

Luego, $(X-1)(X-2)(X-3)...(X-(p-1)) \mid f$ en $\mathbb{Z}_p[X]$ y, como f tiene grado p-1 y es mónico entonces

$$f = (X - 1)(X - 2)(X - 3)\dots(X - (p - 1))$$

Por lo tanto, especializando en cero y multiplicando ambos miembros por $(-1)^{p-1}$ se tiene que, en \mathbb{Z}_p

$$(-1)^p = (-1)^{p-1} f(0) = 1.2.3...(p-1) = (p-1)!$$

es decir, $(p-1)! \equiv (-1)^p$ (p). Notando que cuando p=2 entonces $(-1)^p=1 \equiv -1(p)$ y que cuando $p \neq 2$ entonces $(-1)^p=-1$ pues p es impar, resulta que $(p-1)! \equiv -1$ (p). \Box

5. Polinomio derivado y multiplicidad de raíces.

Sea \mathbb{K} un cuerpo. Dado $n \in \mathbb{N}$, podemos ver a n como el elemento de \mathbb{K} que se obtiene sumando n veces el elemento neutro del producto, es decir, el elemento $\underbrace{1+1+\cdots+1}_{n \text{ sumandos}} \in \mathbb{K}$.

Sea $f \in \mathbb{K}[X]$, $f = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_2 X^2 + a_1 X + a_0$. Definimos el derivado de f, al que denotaremos por f', como el polinomio en $\mathbb{K}[X]$

$$f' = n a_n X^{n-1} + (n-1) a_{n-1} X^{n-2} + \dots + 2 a_2 X + a_1$$

Ejemplos.

- 1) Sea $f \in \mathbb{Q}[X]$, $f = 2X^{11} \frac{1}{4}X^8 + \frac{3}{5}X^6 + 5X^2 \frac{2}{3}$. Entonces el derivado de f es $f' = 22X^{10} 2X^7 + \frac{18}{5}X^5 + 10X$.
- 2) Sea $f = 4X^9 + 3X^7 + X^5 + 5X^4 + 4X^2 + 6X + 3 \in \mathbb{Z}_7[X]$. Entonces el derivado de f es $f' = X^8 + 5X^4 + 6X^3 + X + 6$.

Propiedades del derivado. Sean $f, g \in \mathbb{K}[X]$. Entonces se verifican

- i) (f+g)' = f' + g'
- ii) (f.g)' = f'.g + f.g'

Proposición. Sea IK un cuerpo de característica cero, es decir, tal que $\underbrace{1+1+\cdots+1}_{n \text{ sumandos}} \neq 0$

para todo $n \in \mathbb{N}$ (por ejemplo, $\mathbb{K} = \mathbb{Q}$, \mathbb{R} o \mathbb{C}) y sea $f \in \mathbb{K}[X]$.

Entonces se verifican

- i) f' = 0 si y sólo si f = c para algún $c \in \mathbb{K}$
- ii) Si $f' \neq 0$ entonces gr $f' = \operatorname{gr} f 1$

Dejamos la demostración como ejercicio. Observemos que la hipótesis de que IK tenga característica cero es esencial. En efecto, si $f \in \mathbb{Z}_p[X]$ es el polinomio $f = X^p - 1$ entonces f' = 0 (es decir, no se satisface i)) y si $f \in \mathbb{Z}_p[X]$ es el polinomio $f = X^p + X + 1$ entonces f' = 1 (es decir, no se satisface ii)).

Sea IK un cuerpo (por ejemplo, IK = \mathbb{Q} , IR, \mathbb{C} o \mathbb{Z}_p) y sea $f \in \mathbb{K}[X]$. Diremos que $a \in \mathbb{K}$ es raíz de f de multiplicidad m si existe $g \in \mathbb{K}[X]$ tal que $f = (X - a)^m . g$ y $g(a) \neq 0$, es decir, si $(X - a)^m | f$ y $(X - a)^{m+1} | f$. En tal caso escribimos m = mult(a, f).

Diremos que $a \in \mathbb{K}$ es raíz simple de f si mult(a, f) = 1, doble si mult(a, f) = 2 y triple si mult(a, f) = 3. Diremos que $a \in \mathbb{K}$ es raíz múltiple de f si $mult(a, f) \geq 2$.

Ejemplo. Si $f \in \mathbb{Z}_5[X]$, $f = X^6 - X$ entonces 0 es raíz simple de f y 1 es raíz múltiple de f. Más aún, mult(1, f) = 5 ya que $f = X(X - 1)^5$

Observación. Sea $f \in \mathbb{K}[X]$ un polinomio de grado n > 0. Si a_1, a_2, \ldots, a_r son las raíces de f en \mathbb{K} y $m_i = \text{mult}(a_i, f)$ entonces $(X - a_i)^{m_i} \mid f \ (1 \leq i \leq r)$. Luego, como $(X - a_i)^{m_i}$ y $(X - a_j)^{m_j}$ son coprimos para todo $i \neq j$, se tiene que

$$\prod_{i=1}^{r} (X - a_i)^{m_i} \mid f$$

y por lo tanto $m_1 + m_2 + \cdots + m_r \leq \operatorname{gr} f = n$. Es decir, un polinomio $f \in \mathbb{K}[X]$ de grado n tiene a lo sumo n raíces en \mathbb{K} , contadas con multiplicidad.

En particular, si $\mathbb{K} = \mathbb{C}$, dado $f \in \mathbb{C}[X]$ polinomio de grado n > 0 cuyas raíces en \mathbb{C} son a_1, a_2, \ldots, a_r y $m_i = \text{mult}(a_i, f)$ entonces

$$\prod_{i=1}^{r} (X - a_i)^{m_i} \mid f$$

Por lo tanto,

$$f = g \cdot \prod_{i=1}^{r} (X - a_i)^{m_i}$$

y $g(a_i) \neq 0$ $(1 \leq i \leq r)$ ya que $(X - a_i)^{m_i + 1} \not f$. Luego debe ser grg = 0 pues si gr $g \geq 1$ entonces g (y en consecuencia f) tendría una raíz $a \in \mathbb{C}$, con $a \neq a_1, a_2, \ldots, a_r$. Luego, la factorización de f en $\mathbb{C}[X]$ es

$$f = c. \prod_{i=1}^{r} (X - a_i)^{m_i}$$

 a_1, a_2, \ldots, a_r son las raíces de f en \mathbb{C} , $m_i = \text{mult}(a_i, f)$ y $c \in \mathbb{C}$ es el coeficiente principal de f.

Sea $f \in \mathbb{K}[X]$ y sea $n \in \mathbb{N}_0$. Definimos el derivado n-ésimo de f, al que denotaremos por $f^{(n)}$, inductivamente en la forma

$$f^{(n)} = \begin{cases} f & \text{si } n = 0\\ (f^{(n-1)})' & \text{si } n \ge 1 \end{cases}$$

Proposición. Sea IK un cuerpo de característica cero (por ejemplo, IK = \mathbb{Q} , IR o \mathbb{C}), sea $f \in IK[X]$ y sea $a \in IK$. Entonces, dado $m \in \mathbb{N}$, $m \geq 2$ se verifica:

a es raíz de f de multiplicidad $m \iff f(a) = 0$ y a es raíz de f' de multiplicidad m-1 $Demostración: (\Longrightarrow) f = (X-a)^m.g$, con $g \in \mathbb{K}[X]$ tal que $g(a) \neq 0$. Luego, f(a) = 0 y

$$f' = m(X - a)^{m-1} \cdot g + (X - a)^m \cdot g' = (X - a)^{m-1} (mg + (X - a)g')$$

Por lo tanto f(a) = 0 y $f' = (X - a)^{m-1} h$, donde $h = mg + (X - a)g' \in \mathbb{K}[X]$ y $h(a) = m \cdot g(a) \neq 0$.

 (\Leftarrow) Supongamos que f(a) = 0 y $f' = (X - a)^{m-1}.h$, donde $h(a) \neq 0$.

Por el algoritmo de división, existen $q, r \in \mathbb{K}[X]$ tales que $f = (X - a)^m . q + r$ y r = 0 o gr r < m. Probaremos que r = 0 y que $q(a) \neq 0$.

Utilizando las propiedades del derivado se tiene que

$$f' = m(X - a)^{m-1}q + (X - a)^m q' + r' = (X - a)^{m-1}(mq + (X - a)q') + r'$$

y, como IK tiene característica cero, r' = 0 o gr $r' = \operatorname{gr} r - 1 < m - 1$. Como $(X - a)^{m-1} \mid f'$ entonces $(X - a)^{m-1} \mid r'$. Luego debe ser r' = 0, de donde resulta que r = c para algún $c \in \operatorname{IK}$. Por lo tanto $(X - a)^{m-1} \cdot h = f' = (X - a)^{m-1} (mq + (X - a)q')$ de donde resulta que h = mq + (X - a)q' y, en consecuencia, $q(a) \neq 0$ pues $h(a) \neq 0$.

Luego, $f = (X - a)^m \cdot q + c$, con $c \in \mathbb{K}$ y $q \in \mathbb{K}[X]$ tal que $q(a) \neq 0$. Finalmente, especializando en a y teniendo en cuenta que f(a) = 0, se tiene que c = 0.

Proposición. Sea IK un cuerpo de característica cero (por ejemplo, IK = \mathbb{Q} , IR o \mathbb{C}), sea $f \in \mathbb{IK}[X]$ y sea $a \in \mathbb{IK}$. Entonces, dado $m \in \mathbb{N}$, se verifica:

a es raíz de f de multiplicidad $m \iff f^{(k)}(a) = 0 \ \forall 0 \le k \le m-1 \ \text{y} \ f^{(m)}(a) \ne 0$

Demostración: Por inducción en m. Veamos primero que vale para m=1, es decir, debemos probar que a es raíz simple de f si y sólo si f(a)=0 y $f'(a)\neq 0$.

Por el teorema del resto, f = (X - a)g + f(a). Luego, f' = g + (X - a)g' y por lo tanto f'(a) = g(a). Entonces a es raíz simple de f si y sólo si f = (X - a)g y $g(a) \neq 0$ si y sólo si f(a) = 0 y $f'(a) \neq 0$.

Supongamos ahora que la proposición vale para m y veamos que vale para m+1. Por la proposición anterior, a es raíz de f de multiplicidad $m+1 \iff f(a)=0$ y a es raíz de f' de multiplicidad m

Ahora, usando la hipótesis inductiva para f', resulta que a es raíz de f de multiplicidad $m+1 \iff f(a)=0, \ (f')^{(k)}(a)=0 \ \ \forall \ 0 \le k \le m-1 \ \ y \ (f')^{(m)}(a) \ne 0 \iff f^{(k)}(a)=0 \ \ \forall \ 0 \le k \le m \ \ y \ f^{(m+1)}(a) \ne 0.$

Corolario 1. Sea IK un cuerpo de característica cero (por ejemplo, IK = \mathbb{Q} , IR o \mathbb{C}), sea $f \in IK[X]$ y sea $a \in IK$. Entonces a es raíz múltiple de f si y sólo si a es raíz de f y de f'.

Corolario 2. Sea IK un cuerpo de característica cero (por ejemplo, IK = \mathbb{Q} , IR o \mathbb{C}) y sea $f \in \mathbb{K}[X]$. Entonces f tiene todas sus raíces simples si y sólo si f y f' son coprimos. Dejamos la demostración como ejercicio.

Corolario 3. Sea $f \in \mathbb{Q}[X]$. Si f es irreducible en $\mathbb{Q}[X]$ todas raíces de f en \mathbb{C} son simples. Demostración: Como f es irreducible entonces $(f:f') \neq 1$ si y sólo si $f \mid f'$. Pero como gr $f' = \operatorname{gr} f - 1 < \operatorname{gr} f$ entonces no puede ocurrir que f divida a f'. Luego, (f:f') = 1. Por lo tanto, por el corolario 2, resulta que todas las raíces de f en \mathbb{C} son simples. \square

Ejemplos.

1) El polinomio $f = X^7 - X + 2$ tiene todas sus raíces simples.

En efecto, supongamos que $a \in \mathbb{C}$ es una raíz múltiple de f. Entonces, por el corolario 1, a es raíz de f y de f'. Por lo tanto, como $f' = 7X^6 - 1$ entonces $0 = f(a) = a^7 - a + 2$ y $0 = f'(a) = 7a^6 - 1$. Luego, $a^6 = \frac{1}{7}$ y

$$0 = a^7 - a + 2 = a^6 a - a + 2 = \frac{1}{7}a - a + 2 = -\frac{6}{7}a + 2$$

Por lo tanto $a^6 = \frac{1}{7}$ y $a = \frac{7}{3}$, lo que es absurdo.

2) Sea $f = -X^5 + aX^4 + X^3 - 5X^2 + (a^2 - 3a + 6)X - (a^2 - 2a + 1)$. Hallar todos los $a \in \mathbb{C}$ tales que 1 es raíz doble de f

Debemos hallar los $a \in \mathbb{C}$ tales que f(1) = 0, f'(1) = 0 y $f''(1) \neq 0$. Calculemos f' y f''.

$$f' = -5X^4 + 4aX^3 + 3X^2 - 10X + a^2 - 3a + 6$$

$$f'' = -20X^3 + 12aX^2 + 6X - 10$$

Luego,

$$f(1) = -1 + a + 1 - 5 + a^{2} - 3a + 6 - (a^{2} - 2a + 1) = 0$$

$$f'(1) = -5 + 4a + 3 - 10 + a^{2} - 3a + 6 = a^{2} + a - 6$$

$$f''(1) = -20 + 12a + 6 - 10 = -24 + 12a$$

entonces f(1) = 0 para todo a y $f'(1) = 0 \iff a = 2$ o a = -3 y como debe valer $f''(1) \neq 0$ entonces el único $a \in \mathbb{C}$ que satisface lo pedido es a = -3.