Práctica 4

1. Sea $f: \mathbb{R} \to \mathbb{R}$, $A, B \subseteq \mathbb{R}$ y $X, Y \subseteq \mathbb{R}$. Decidir en cada caso si corresponde \subseteq, \supseteq ó = y probarlo.

- 2. Sea $f:(a,b)\to\mathbb{R}$. Probar que $\lim_{x\to a^+}f(x)=l$ si y solo si para toda sucesión estrictamente decreciente $\{x_n\}$ tal que $\lim_{n\to\infty}x_n=a$, vale $\lim_{n\to\infty}f(x_n)=l$.
- 3. Sean $f:[a,b] \to \mathbb{R}$ monótona y $x \in (a,b]$. Demostrar que si existe una sucesión $\{x_n\} \subset (a,b]$ tal que $x_n < x$ para todo n, $\lim_{n\to\infty} x_n = x$ y $\lim_{n\to\infty} f(x_n) = l$, entonces $f(x^-) = l$.

Enunciar el resultado correspondiente para $f(x^+)$.

- 4. Sean $A, B \subseteq \mathbb{R}$ y sean $f : A \to \mathbb{R}$, $g : B \to \mathbb{R}$ tales que $f(A) \subset B$. Si f es continua en $a \in A$ y g es continua en f(a), probar que $g \circ f$ es continua en a.
- 5. Sea $f: \mathbb{R} \to \mathbb{R}$ una función continua tal que f(x) = f(y) para todo $x, y \in \mathbb{Q}$. Demostrar que f es una función constante. Deducir que dos funciones continuas que coinciden sobre \mathbb{Q} son la misma función.
- 6. Hallar todos los puntos donde la función f es continua, siendo
 - (a) $f:[0,1] \rightarrow [0,1]$ la función:

$$f(x) = \begin{cases} x, & \text{si } x \in \mathbb{Q} \\ 1 - x & \text{si } x \notin \mathbb{Q} \end{cases}.$$

(b) $f: \mathbb{R} \to \mathbb{R}$ la función:

$$f(x) = \begin{cases} \frac{1}{b} & \text{si } x = \frac{a}{b} \text{ con } a, b \in \mathbb{Z} \text{ coprimos y } b > 0 \\ 0 & \text{si } x \notin \mathbb{Q} \end{cases}.$$

7. Sea $f:[a,b] \to [a,b]$ continua. Demostrar que existe $c \in [a,b]$ tal que f(c)=c. Sugerencia. Considerar la función x-f(x).

- 8. Sea $f: \mathbb{R} \to \mathbb{R}$. Probar que son equivalentes:
 - (a) f es continua (en todo \mathbb{R}).
 - (b) $f^{-1}(O)$ es abierto para todo $O \subseteq \mathbb{R}$ abierto.
 - (c) $f^{-1}(F)$ es cerrado para todo $F \subseteq \mathbb{R}$ cerrado.
- 9. Sea $f: \mathbb{R} \to \mathbb{R}$ una función continua. Probar que el gráfico de f es un subconjunto cerrado de \mathbb{R}^2 .
- 10. Sea $K \subset \mathbb{R}$ un conjunto compacto y sea $f: K \to \mathbb{R}$ una función continua tal que f(x) > 0 para todo $x \in K$. Probar que existe $\alpha > 0$ tal que $f(x) > \alpha$ para todo $x \in K$.
- 11. Sea $f: \mathbb{R} \to \mathbb{R}$ continua tal que $\lim_{|x| \to +\infty} f(x) = +\infty$. Probar que f alcanza su mínimo valor.
- 12. Sea $K \subset \mathbb{R}$ un conjunto compacto y sea $f: K \to \mathbb{R}$ una función continua. Probar :
 - (a) $\{|x|: x \in K\}$ es compacto.
 - (b) Dado $c \in f(K)$ existe entre las raíces x de la ecuación f(x) = c, una de módulo mínimo.
- 13. * Considérese el conjunto $\mathbb{Q} \cap (0,1)$. Dado que este conjunto es numerable e infinito se puede escribir: $\mathbb{Q} \cap (0,1) = \{x_1, x_2, ..., x_n, ...\}$. Se define $f:(0,1) \to \mathbb{R}$ de la manera siguiente:

$$f(x) = \sum_{n \in \Omega_x} \frac{1}{2^n}$$

donde $\Omega_x = \{ n \in \mathbb{N} : x_n < x \}.$

Demostrar que:

- (a) f está bien definida.
- (b) f es una función monótona creciente.
- (c) f es discontinua en todo punto del conjunto $\mathbb{Q} \cap (0,1)$; más aún: para todo $n \in \mathbb{N}$ se tiene $f(x_n+) f(x_n-) = \frac{1}{2^n} > 0$.
- (d) f es continua a izquierda en todo $x \in (0,1)$; es decir, para todo $x \in (0,1)$ vale que f(x-) = f(x).
- (e) f es continua en todo punto del conjunto $(0,1) \mathbb{Q}$.
- 14. Estudiar la continuidad uniforme de las funciones siguientes:
 - (a) $f: \mathbb{R} \to \mathbb{R}$ siendo f(x) = |x|.
 - (b) $f: \mathbb{R} \to \mathbb{R}$ siendo $f(x) = x^2$.
 - (c) $f:(r,+\infty)\to\mathbb{R}$ siendo $f(x)=\sqrt{x}$, con r=0 y con r>0.
 - (d) $f:(0,1)\to\mathbb{R}$ siendo $f(x)=\sin(\frac{1}{x})$.
 - (e) $f: \mathbb{R} \to \mathbb{R}$ siendo $f(x) = \frac{1}{1+x^2}$.

- 15. Sea $S \subseteq \mathbb{R}$ y sean $f, g: S \to \mathbb{R}$ funciones uniformemente continuas.
 - (a) Probar que f + g es uniformemente continua.
 - (b) Mostrar con un ejemplo que $f \cdot g$ no necesariamente es uniformemente continua, aún si alguna de las funciones f ó g es acotada.
 - (c) Probar que si $h: f(S) \to \mathbb{R}$ es otra función uniformemente continua entonces $h \circ f: S \to \mathbb{R}$ también lo es.
- 16. Sea $f: \mathbb{R} \to \mathbb{R}$ una función que es uniformemente continua en los intervalos [a, b] y [b, c]. Probar que f es uniformemente continua en [a, c].

¿Es cierto que si f es una función uniformemente continua sobre un conjunto $A \subseteq \mathbb{R}$ y también sobre un conjunto $B \subseteq \mathbb{R}$, entonces lo es en $A \cup B$?

17. Sea $f : \mathbb{R} \to \mathbb{R}$, x_0 y α números reales. Se dice que f es localmente Lipschitz de orden α en el punto x_0 si existen $\varepsilon, M \in \mathbb{R}_{>0}$ tales que

$$|f(x) - f(x_0)| < M|x - x_0|^{\alpha}$$
 para todo x tal que $0 < |x - x_0| < \varepsilon$.

M se llama la constante de Lipschitz de f. Cuando el orden $\alpha=1$ decimos simplemente que f es Lipschitz.

- (a) Demostrar que si f es localmente Lipschitz de orden $\alpha > 0$ en x_0 entonces f es continua en x_0 .
- (b) Mostrar que si f es localmente Lipschitz de orden $\alpha > 1$ en x_0 , entonces es derivable en x_0 y $f'(x_0) = 0$.
- 18. Una función $f: A \to \mathbb{R}$ se dice que es Lipschitz si existe una constante M > 0, llamada la constante de Lipschitz de f, tal que

$$|f(x) - f(y)| < M|x - y|$$
 para todo $x, y \in A$.

Sea $f: [-1,1] \to \mathbb{R}$ la función $f(x) = \sqrt[3]{x}$. Demostrar que f no es Lipschitz pero sin embargo f es uniformemente continua (en particular "unif. cont. \Rightarrow Lipschitz").

19. Sea $S \subset \mathbb{R}$ y sea $f: S \to \mathbb{R}$ una función Lipschitz con constante igual a M < 1. Demostrar que si S es cerrado, y $f(S) \subseteq S$ entonces existe $y \in S$ tal que f(y) = y, en otras palabras, f tiene un punto fijo.

Sugerencia. Considerar la sucesión $(x_n)_{n\in\mathbb{N}}$ en S construída recursivamente así: $x_1 \in S$ cualquiera, si x_n está definido se toma $x_{n+1} := f(x_n)$, en otras palabras, $x_{n+1} := f^{(n)}(x_1)$. Demostrar que $(x_n)_{n\in\mathbb{N}}$ es una sucesión de Cauchy; tomar $y = \lim_{n\to\infty} x_n$.

Mostrar con un ejemplo que el resultado es falso si no se supone S cerrado.

20. Sea $f: \mathbb{R} \to \mathbb{R}$ la función $f(x) = \frac{x + \sqrt{x^2 + 1}}{2}$. Demostrar que f es Lipschitz con M = 1 pero que f no tiene puntos fijos.

Sugerencia. Considerar la función $g: K \to \mathbb{R}$ definida como g(x) = |x - f(x)|.

- 21. En cada uno de los casos siguientes, hallar el límite puntual de la sucesión $(f_n)_{n\in\mathbb{N}}$ en el conjunto $S\subset\mathbb{R}$:
 - (a) $f_n(c) = x^n$, S = (-1, 1].
 - (b) $f_n(x) = \frac{e^x}{x^n}$, $S = (1, +\infty)$.
 - (c) $f_n(x) = n^2 x (1 x^2)^n$, S = [0, 1].
- 22. (a) Probar que la sucesión del ejercicio 21(a) converge uniformemente en T=(0,1/2), pero en S=(-1,1] converge puntualmente a una función que no es continua.
 - (b) Probar que la sucesión del ejercicio 21(b) converge uniformemente en T = [2, 5].
- 23. Analizar la convergencia puntual y uniforme de las siguientes sucesiones de funciones en los conjuntos indicados:
 - (a) $f_n(x) = \frac{\sin(nx)}{n}$, sobre todo \mathbb{R} .
 - (b) $f_n(x) = \sin(\frac{x}{n})$, sobre todo \mathbb{R} .
 - (c) $f_n(x) = \frac{n}{n+1}x$, sobre todo \mathbb{R} .
- 24. Sea $S \subset \mathbb{R}$ y sea $\{f_n\}_{n \in \mathbb{N}}$ una sucesión de funciones $f_n : S \to \mathbb{R}$ que converge uniformemente a una función $f : S \to \mathbb{R}$. Probar que si f_n es acotada para cada $n \in \mathbb{N}$ entonces vale:
 - (a) f es acotada.
 - (b) Existe $M \in \mathbb{R}$ tal que $|f_n(x)| \leq M$ para todo $x \in S$ y todo $n \in \mathbb{N}$ (en otras palabras, $\{f_n\}_{n \in \mathbb{N}}$ es uniformemente acotada).
- 25. Sea $(f_n)_{n\in\mathbb{N}}$ la sucesión de funciones $f_n:[0,1]\to\mathbb{R}$ definida por

$$f_n(x) = n^2 x (1 - x)^n.$$

- (a) Probar que $(f_n)_{n\in\mathbb{N}}$ converge puntualmente a la función cero en el intervalo [0,1].
- (b) Verificar que existe $\lim_{n\to\infty} \int_0^1 f_n(x) dx$ pero que el límite no puede 'pasar adentro de la integral'. Es decir, ver que $\lim_{n\to\infty} \int_0^1 f_n(x) dx \neq \int_0^1 (\lim_{n\to\infty} f_n(x)) dx$
- 26. Sea $\{f_n\}$ una sucesión de funciones derivables definidas sobre el intervalo [a, b]. Supongamos que $\{f'_n\}$ converge uniformemente en [a, b]. Probar que si existe $x_0 \in [a, b]$ tal que $\{f_n(x_0)\}$ converge, entonces $\{f_n\}$ converge uniformemente en [a, b].
- 27. Sea $\{f_n\}_{n\in\mathbb{N}}$ una sucesión de funciones definidas en $S\subset\mathbb{R}$. Sea $\{a_n\}_{n\in\mathbb{N}}\subset\mathbb{R}$ tal que la serie $\sum_{n=1}^{\infty}a_n<\infty$. Si $|f_n(x)|\leq a_n$ para todo $x\in S,\ n\in\mathbb{N}$, se sigue que la sucesión $S_N(x)=\sum_{n=1}^N f_n(x)$ converge uniformemente en S.