
Preface

My primary goal in writing Understanding Analysis was to create an elemen-
tary one-semester book that exposes students to the rich rewards inherent in
taking a mathematically rigorous approach to the study of functions of a real
variable. The aim of a course in real analysis should be to challenge and im-
prove mathematical intuition rather than to verify it. There is a tendency,
however, to center an introductory course too closely around the familiar the-
orems of the standard calculus sequence. Producing a rigorous argument that
polynomials are continuous is good evidence for a well-chosen definition of con-
tinuity, but it is not the reason the subject was created and certainly not the
reason it should be required study. By shifting the focus to topics where an
untrained intuition is severely disadvantaged (e.g., rearrangements of infinite
series, nowhere-differentiable continuous functions, Fourier series), my intent
is to restore an intellectual liveliness to this course by offering the beginning
student access to some truly significant achievements of the subject.

The Main Objectives

In recent years, the standard undergraduate curriculum in mathematics has
been subjected to steady pressure from several different sources. As computers
and technology become more ubiquitous, so do the areas where mathematical
thinking can be a valuable asset. Rather than preparing themselves for graduate
study in pure mathematics, the present majority of mathematics majors look
forward to careers in banking, medicine, law, and numerous other fields where
analytical skills are desirable. Another strong influence on college mathemat-
ics is the ongoing calculus reform effort, now well over ten years old. At the
core of this movement is the justifiable goal of presenting calculus in a more
intuitive way, emphasizing geometric arguments over symbolic ones. Despite
these various trends—or perhaps because of them—nearly every undergraduate
mathematics program continues to require at least one semester of real analysis.
The result is that instructors today are faced with the task of teaching a diffi-
cult, abstract course to a more diverse audience less familiar with the nature of
axiomatic arguments.

The crux of the matter is that any prevailing sentiment in favor of marketing
mathematics to larger groups must at some point be reconciled with the fact
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that theoretical analysis is extremely challenging and even intimidating for some.
One unfortunate resolution of this dilemma has been to make the course easier
by making it less interesting. The omitted material is inevitably what gives
analysis its true flavor. A better solution is to find a way to make the more
advanced topics accessible and worth the effort.

I see three essential goals that a semester of real analysis should try to meet:

1. Students, especially those emerging from a reform approach to calculus,
need to be convinced of the need for a more rigorous study of functions.
The necessity of precise definitions and an axiomatic approach must be
carefully motivated.

2. Having seen mainly graphical, numerical, or intuitive arguments, students
need to learn what constitutes a rigorous mathematical proof and how to
write one.

3. There needs to be significant reward for the difficult work of firming up the
logical structure of limits. Specifically, real analysis should not be just an
elaborate reworking of standard introductory calculus. Students should
be exposed to the tantalizing complexities of the real line, to the subtleties
of different flavors of convergence, and to the intellectual delights hidden
in the paradoxes of the infinite.

The philosophy of Understanding Analysis is to focus attention on questions
that give analysis its inherent fascination. Does the Cantor set contain any
irrational numbers? Can the set of points where a function is discontinuous
be arbitrary? Are derivatives continuous? Are derivatives integrable? Is an
infinitely differentiable function necessarily the limit of its Taylor series? In
giving these topics center stage, the hard work of a rigorous study is justified
by the fact that they are inaccessible without it.

The Structure of the Book

This book is an introductory text. Although some fairly sophisticated topics
are brought in early to advertise and motivate the upcoming material, the main
body of each chapter consists of a lean and focused treatment of the core top-
ics that make up the center of most courses in analysis. Fundamental results
about completeness, compactness, sequential and functional limits, continuity,
uniform convergence, differentiation, and integration are all incorporated. What
is specific here is where the emphasis is placed. In the chapter on integration,
for instance, the exposition revolves around deciphering the relationship be-
tween continuity and the Riemann integral. Enough properties of the integral
are obtained to justify a proof of the Fundamental Theorem of Calculus, but
the theme of the chapter is the pursuit of a characterization of integrable func-
tions in terms of continuity. Whether or not Lebesgue’s measure-zero criterion
is treated, framing the material in this way is still valuable because it is the
questions that are important. Mathematics is not a static discipline. Students
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should be aware of the historical reasons for the creation of the mathematics
they are learning and by extension realize that there is no last word on the
subject. In the case of integration, this point is made explicitly by including
some relatively recent developments on the generalized Riemann integral in the
additional topics of the last chapter.

The structure of the chapters has the following distinctive features.

Discussion Sections: Each chapter begins with the discussion of some mo-
tivating examples and open questions. The tone in these discussions is inten-
tionally informal, and full use is made of familiar functions and results from
calculus. The idea is to freely explore the terrain, providing context for the
upcoming definitions and theorems. A recurring theme is the resolution of the
paradoxes that arise when operations that work well in finite settings are naively
extended to infinite settings (e.g., differentiating an infinite series term-by-term,
reversing the order of a double summation). After these exploratory introduc-
tions, the tone of the writing changes, and the treatment becomes rigorously
tight but still not overly formal. With the questions in place, the need for the
ensuing development of the material is well-motivated and the payoff is in sight.

Project Sections: The penultimate section of each chapter (the final section is
a short epilogue) is written with the exercises incorporated into the exposition.
Proofs are outlined but not completed, and additional exercises are included
to elucidate the material being discussed. The point of this is to provide some
flexibility. The sections are written as self-guided tutorials, but they can also
be the subject of lectures. I have used them in place of a final examination,
and they work especially well as collaborative assignments that can culminate
in a class presentation. The body of each chapter contains the necessary tools,
so there is some satisfaction in letting the students use their newly acquired
skills to ferret out for themselves answers to questions that have been driving
the exposition.

Building a Course

Teaching a satisfying class inevitably involves a race against time. Although
this book is designed for a 12–14 week semester, there are still a few choices to
make as to what to cover.

• The introductions can be discussed, assigned as reading, omitted, or sub-
stituted with something preferable. There are no theorems proved here
that show up later in the text. I do develop some important examples in
these introductions (the Cantor set, Dirichlet’s nowhere-continuous func-
tion) that probably need to find their way into discussions at some point.

• Chapter 3, Basic Topology of R, is much longer than it needs to be. All
that is required by the ensuing chapters are fundamental results about
open and closed sets and a thorough understanding of sequential com-
pactness. The characterization of compactness using open covers as well
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as the section on perfect and connected sets are included for their own in-
trinsic interest. They are not, however, crucial to any future proofs. The
one exception to this is a presentation of the Intermediate Value Theorem
(IVT) as a special case of the preservation of connected sets by continu-
ous functions. To keep connectedness truly optional, I have included two
direct proofs of IVT, one using least upper bounds and the other using
nested intervals. A similar comment can be made about perfect sets. Al-
though proofs of the Baire Category Theorem are nicely motivated by the
argument that perfect sets are uncountable, it is certainly possible to do
one without the other.

• All the project sections (1.5, 2.8, 3.5, 4.6, 5.4, 6.6, 7.6, 8.1–8.4) are optional
in the sense that no results in later chapters depend on material in these
sections. The four topics covered in Chapter 8 are also written in this
project-style format, where the exercises make up a significant part of the
development. The only one of these sections that might require a lecture
is the unit on Fourier series, which is a bit longer than the others.

The Audience

The only prerequisite for this course is a robust understanding of the results
from single-variable calculus. The theorems of linear algebra are not needed,
but the exposure to abstract arguments and proof writing that usually comes
with this course would be a valuable asset. Complex numbers are never used in
this book.

The proofs in Understanding Analysis are written with the introductory
student firmly in mind. Brevity and other stylistic concerns are postponed in
favor of including a significant level of detail. Most proofs come with a fair
amount of discussion about the context of the argument. What should the
proof entail? Which definitions are relevant? What is the overall strategy?
Is one particular proof similar to something already done? Whenever there is
a choice, efficiency is traded for an opportunity to reinforce some previously
learned technique. Especially familiar or predictable arguments are usually
sketched as exercises so that students can participate directly in the development
of the core material.

The search for recurring ideas exists at the proof-writing level and also on
the larger expository level. I have tried to give the course a narrative tone by
picking up on the unifying themes of approximation and the transition from the
finite to the infinite. To paraphrase a passage from the end of the book, real
numbers are approximated by rational ones; values of continuous functions are
approximated by values nearby; curves are approximated by straight lines; areas
are approximated by sums of rectangles; continuous functions are approximated
by polynomials. In each case, the approximating objects are tangible and well-
understood, and the issue is when and how well these qualities survive the
limiting process. By focusing on this recurring pattern, each successive topic
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builds on the intuition of the previous one. The questions seem more natural,
and a method to the madness emerges from what might otherwise appear as a
long list of theorems and proofs.

This book always emphasizes core ideas over generality, and it makes no
effort to be a complete, deductive catalog of results. It is designed to capture the
intellectual imagination. Those who become interested are then exceptionally
well prepared for a second course starting from complex-valued functions on
more general spaces, while those content with a single semester come away with
a strong sense of the essence and purpose of real analysis. Turning once more
to the concluding passages of Chapter 8, “By viewing the different infinities of
mathematics through pathways crafted out of finite objects, Weierstrass and
the other founders of analysis created a paradigm for how to extend the scope
of mathematical exploration deep into territory previously unattainable.”

This exploration has constituted the major thrill of my intellectual life. I
am extremely pleased to offer this guide to what I feel are some of the most
impressive highlights of the journey. Have a wonderful trip!
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Chapter 1

The Real Numbers

1.1 Discussion: The Irrationality of
√

2
Toward the end of his distinguished career, the renowned British mathematician
G.H. Hardy eloquently laid out a justification for a life of studying mathematics
in A Mathematician’s Apology, an essay first published in 1940. At the center
of Hardy’s defense is the thesis that mathematics is an aesthetic discipline. For
Hardy, the applied mathematics of engineers and economists held little charm.
“Real mathematics,” as he referred to it, “must be justified as art if it can be
justified at all.”

To help make his point, Hardy includes two theorems from classical Greek
mathematics, which, in his opinion, possess an elusive kind of beauty that,
although difficult to define, is easy to recognize. The first of these results is
Euclid’s proof that there are an infinite number of prime numbers. The second
result is the discovery, attributed to the school of Pythagoras from around 500
B.C., that

√
2 is irrational. It is this second theorem that demands our attention.

(A course in number theory would focus on the first.) The argument uses only
arithmetic, but its depth and importance cannot be overstated. As Hardy says,
“[It] is a ‘simple’ theorem, simple both in idea and execution, but there is no
doubt at all about [it being] of the highest class. [It] is as fresh and significant
as when it was discovered—two thousand years have not written a wrinkle on
[it].”

Theorem 1.1.1. There is no rational number whose square is 2.

Proof. A rational number is any number that can be expressed in the form p/q,
where p and q are integers. Thus, what the theorem asserts is that no matter
how p and q are chosen, it is never the case that (p/q)2 = 2. The line of attack
is indirect, using a type of argument referred to as a proof by contradiction.
The idea is to assume that there is a rational number whose square is 2 and
then proceed along logical lines until we reach a conclusion that is unacceptable.
At this point, we will be forced to retrace our steps and reject the erroneous

1
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assumption that some rational number squared is equal to 2. In short, we will
prove that the theorem is true by demonstrating that it cannot be false.

And so assume, for contradiction, that there exist integers p and q satisfying

(1)
(
p

q

)2

= 2.

We may also assume that p and q have no common factor, because, if they had
one, we could simply cancel it out and rewrite the fraction in lowest terms. Now,
equation (1) implies

(2) p2 = 2q2.

From this, we can see that the integer p2 is an even number (it is divisible by
2), and hence p must be even as well because the square of an odd number is
odd. This allows us to write p = 2r, where r is also an integer. If we substitute
2r for p in equation (2), then a little algebra yields the relationship

2r2 = q2.

But now the absurdity is at hand. This last equation implies that q2 is even,
and hence q must also be even. Thus, we have shown that p and q are both
even (i.e., divisible by 2) when they were originally assumed to have no common
factor. From this logical impasse, we can only conclude that equation (1) cannot
hold for any integers p and q, and thus the theorem is proved.

A component of Hardy’s definition of beauty in a mathematical theorem
is that the result have lasting and serious implications for a network of other
mathematical ideas. In this case, the ideas under assault were the Greeks’ un-
derstanding of the relationship between geometric length and arithmetic number.
Prior to the preceding discovery, it was an assumed and commonly used fact
that, given two line segments AB and CD, it would always be possible to find
a third line segment whose length divides evenly into the first two. In modern
terminology, this is equivalent to asserting that the length of CD is a rational
multiple of the length of AB. Looking at the diagonal of a unit square (Fig.
1.1), it now followed (using the Pythagorean Theorem) that this was not always
the case. Because the Pythagoreans implicitly interpreted number to mean ra-
tional number, they were forced to accept that number was a strictly weaker
notion than length.

Rather than abandoning arithmetic in favor of geometry (as the Greeks seem
to have done), our resolution to this limitation is to strengthen the concept of
number by moving from the rational numbers to a larger number system. From
a modern point of view, this should seem like a familiar and somewhat natural
phenomenon. We begin with the natural numbers

N = {1, 2, 3, 4, 5, . . . }.
The influential German mathematician Leopold Kronecker (1823–1891) once
asserted that “The natural numbers are the work of God. All of the rest is
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Figure 1.1:
√
2 exists as a geometric length.

the work of mankind.” Debating the validity of this claim is an interesting
conversation for another time. For the moment, it at least provides us with
a place to start. If we restrict our attention to the natural numbers N, then
we can perform addition perfectly well, but we must extend our system to the
integers

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }
if we want to have an additive identity (zero) and the additive inverses necessary
to define subtraction. The next issue is multiplication and division. The number
1 acts as the multiplicative identity, but in order to define division we need to
have multiplicative inverses. Thus, we extend our system again to the rational
numbers

Q =
{
all fractions

p

q
where p and q are integers with q �= 0

}
.

Taken together, the properties of Q discussed in the previous paragraph
essentially make up the definition of what is called a field. More formally stated,
a field is any set where addition and multiplication are well-defined operations
that are commutative, associative, and obey the familiar distributive property
a(b+ c) = ab+ ac. There must be an additive identity, and every element must
have an additive inverse. Finally, there must be a multiplicative identity, and
multiplicative inverses must exist for all nonzero elements of the field. Neither
Z nor N is a field. The finite set {0, 1, 2, 3, 4} is a field when addition and
multiplication are computed modulo 5. This is not immediately obvious but
makes an interesting exercise (Exercise 1.3.1).

The set Q also has a natural order defined on it. Given any two rational
numbers r and s, exactly one of the following is true:

r < s, r = s, or r > s.

This ordering is transitive in the sense that if r < s and s < t, then r < t, so
we are conveniently led to a mental picture of the rational numbers as being
laid out from left to right along a number line. Unlike Z, there are no intervals
of empty space. Given any two rational numbers r < s, the rational number
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1
1.414

√
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Figure 1.2: Approximating
√
2 with rational numbers.

(r+s)/2 sits halfway in between, implying that the rational numbers are densely
nestled together.

With the field properties of Q allowing us to safely carry out the algebraic
operations of addition, subtraction, multiplication, and division, let’s remind
ourselves just what it is that Q is lacking. By Theorem 1.1.1, it is apparent
that we cannot always take square roots. The problem, however, is actually
more fundamental than this. Using only rational numbers, it is possible to
approximate

√
2 quite well (Fig. 1.2). For instance, 1.4142 = 1.999396. By

adding more decimal places to our approximation, we can get even closer to
a value for

√
2, but, even so, we are now well aware that there is a “hole” in

the rational number line where
√
2 ought to be. Of course, there are quite a

few other holes—at
√
3 and

√
5, for example. Returning to the dilemma of the

ancient Greek mathematicians, if we want every length along the number line to
correspond to an actual number, then another extension to our number system
is in order. Thus, to the chain N ⊆ Z ⊆ Q we append the real numbers R.

The question of how to actually construct R from Q is rather complicated
business. It is discussed in Section 1.3, and then again in more detail in Section
8.4. For the moment, it is not too inaccurate to say that R is obtained by
filling in the gaps in Q. Wherever there is a hole, a new irrational number is
defined and placed into the ordering that already exists on Q. The real numbers
are then the union of these irrational numbers together with the more familiar
rational ones. What properties does the set of irrational numbers have? How
do the sets of rational and irrational numbers fit together? Is there a kind
of symmetry between the rationals and the irrationals, or is there some sense
in which we can argue that one type of real number is more common than the
other? The one method we have seen so far for generating examples of irrational
numbers is through square roots. Not too surprisingly, other roots such as 3

√
2

or 5
√
3 are most often irrational. Can all irrational numbers be expressed as

algebraic combinations of nth roots and rational numbers, or are there still
other irrational numbers beyond those of this form?

1.2 Some Preliminaries

The vocabulary necessary for the ensuing development comes from set theory
and the theory of functions. This should be familiar territory, but a brief review
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of the terminology is probably a good idea, if only to establish some agreed-upon
notation.

Sets

Intuitively speaking, a set is any collection of objects. These objects are referred
to as the elements of the set. For our purposes, the sets in question will most
often be sets of real numbers, although we will also encounter sets of functions
and, on a few rare occasions, sets whose elements are other sets.

Given a set A, we write x ∈ A if x (whatever it may be) is an element of A.
If x is not an element of A, then we write x /∈ A. Given two sets A and B, the
union is written A ∪B and is defined by asserting that

x ∈ A ∪B provided that x ∈ A or x ∈ B (or potentially both).

The intersection A ∩B is the set defined by the rule

x ∈ A ∩B provided x ∈ A and x ∈ B.

Example 1.2.1. (i) There are many acceptable ways to assert the contents of
a set. In the previous section, the set of natural numbers was defined by listing
the elements: N = {1, 2, 3, . . . }.

(ii) Sets can also be described in words. For instance, we can define the set
E to be the collection of even natural numbers.

(iii) Sometimes it is more efficient to provide a kind of rule or algorithm for
determining the elements of a set. As an example, let

S = {r ∈ Q : r2 < 2}.

Read aloud, the definition of S says, “Let S be the set of all rational numbers
whose squares are less than 2.” It follows that 1 ∈ S, 4/3 ∈ S, but 3/2 /∈ S
because 9/4 ≥ 2.

Using the previously defined sets to illustrate the operations of intersection
and union, we observe that

N ∪ E = N, N ∩ E = E, N ∩ S = {1}, and E ∩ S = ∅.

The set ∅ is called the empty set and is understood to be the set that contains no
elements. An equivalent statement would be to say that E and S are disjoint.

A word about the equality of two sets is in order (since we have just used
the notion). The inclusion relationship A ⊆ B or B ⊇ A is used to indicate that
every element of A is also an element of B. In this case, we say A is a subset of
B, or B contains A. To assert that A = B means that A ⊆ B and B ⊆ A. Put
another way, A and B have exactly the same elements.

Quite frequently in the upcoming chapters, we will want to apply the union
and intersection operations to infinite collections of sets.



6 Chapter 1. The Real Numbers

Example 1.2.2. Let

A1 = N = {1, 2, 3, . . . },
A2 = {2, 3, 4, . . . },
A3 = {3, 4, 5, . . . },

and, in general, for each n ∈ N, define the set

An = {n, n+ 1, n+ 2, . . . }.
The result is a nested chain of sets

A1 ⊇ A2 ⊇ A3 ⊇ A4 ⊇ · · · ,
where each successive set is a subset of all the previous ones. Notationally,

∞⋃
n=1

An,
⋃
n∈N

An, or A1 ∪A2 ∪A3 ∪ · · ·

are all equivalent ways to indicate the set whose elements consist of any element
that appears in at least one particular An. Because of the nested property of
this particular collection of sets, it is not too hard to see that

∞⋃
n=1

An = A1.

The notion of intersection has the same kind of natural extension to infinite
collections of sets. For this example, we have

∞⋂
n=1

An = ∅.

Let’s be sure we understand why this is the case. Suppose we had some natural
number m that we thought might actually satisfy m ∈ ⋂∞

n=1 An. What this
would mean is that m ∈ An for every An in our collection of sets. Because m is
not an element of Am+1, no such m exists and the intersection is empty.

As mentioned, most of the sets we encounter will be sets of real numbers.
Given A ⊆ R, the complement of A, written Ac, refers to the set of all elements
of R not in A. Thus, for A ⊆ R,

Ac = {x ∈ R : x /∈ A}.
A few times in our work to come, we will refer to De Morgan’s Laws, which
state that

(A ∩B)c = Ac ∪Bc and (A ∪B)c = Ac ∩Bc.

Proofs of these statements are discussed in Exercise 1.2.3.
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Admittedly, there is something imprecise about the definition of set pre-
sented at the beginning of this discussion. The defining sentence begins with
the phrase “Intuitively speaking,” which might seem an odd way to embark on a
course of study that purportedly intends to supply a rigorous foundation for the
theory of functions of a real variable. In some sense, however, this is unavoid-
able. Each repair of one level of the foundation reveals something below it in
need of attention. The theory of sets has been subjected to intense scrutiny over
the past century precisely because so much of modern mathematics rests on this
foundation. But such a study is really only advisable once it is understood why
our naive impression about the behavior of sets is insufficient. For the direction
in which we are heading, this will not happen, although an indication of some
potential pitfalls is given in Section 1.6.

Functions

Definition 1.2.3. Given two sets A and B, a function from A to B is a rule or
mapping that takes each element x ∈ A and associates with it a single element
of B. In this case, we write f : A → B. Given an element x ∈ A, the expression
f(x) is used to represent the element of B associated with x by f . The set A is
called the domain of f . The range of f is not necessarily equal to B but refers
to the subset of B given by {y ∈ B : y = f(x) for some x ∈ A}.

This definition of function is more or less the one proposed by Peter Lejeune
Dirichlet (1805–1859) in the 1830s. Dirichlet was a German mathematician who
was one of the leaders in the development of the rigorous approach to functions
that we are about to undertake. His main motivation was to unravel the issues
surrounding the convergence of Fourier series. Dirichlet’s contributions figure
prominently in Section 8.3, where an introduction to Fourier series is presented,
but we will also encounter his name in several earlier chapters along the way.
What is important at the moment is that we see how Dirichlet’s definition
of function liberates the term from its interpretation as a type of “formula.”
In the years leading up to Dirichlet’s time, the term “function” was generally
understood to refer to algebraic entities such as f(x) = x2+1 or g(x) =

√
x4 + 4.

Definition 1.2.3 allows for a much broader range of possibilities.

Example 1.2.4. In 1829, Dirichlet proposed the unruly function

g(x) =
{
1 if x ∈ Q
0 if x /∈ Q.

The domain of g is all of R, and the range is the set {0, 1}. There is no single
formula for g in the usual sense, and it is quite difficult to graph this function
(see Section 4.1 for a rough attempt), but it certainly qualifies as a function
according to the criterion in Definition 1.2.3. As we study the theoretical nature
of continuous, differentiable, or integrable functions, examples such as this one
will provide us with an invaluable testing ground for the many conjectures we
encounter.
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Example 1.2.5 (Triangle Inequality). The absolute value function is so im-
portant that it merits the special notation |x| in place of the usual f(x) or g(x).
It is defined for every real number via the piecewise definition

|x| =
{

x if x ≥ 0
−x if x < 0.

With respect to multiplication and division, the absolute value function satisfies

(i) |ab| = |a||b| and
(ii) |a+ b| ≤ |a|+ |b|
for all choices of a and b. Verifying these properties (Exercise 1.2.4) is just a
matter of examining the different cases that arise when a, b, and a+b are positive
and negative. Property (ii) is called the triangle inequality. This innocuous
looking inequality turns out to be fantastically important and will be frequently
employed in the following way. Given three real numbers a, b, and c, we certainly
have

|a− b| = |(a− c) + (c− b)|.
By the triangle inequality,

|(a− c) + (c− b)| ≤ |a− c|+ |c− b|,

so we get

(1) |a− b| ≤ |a− c|+ |c− b|.

Now, the expression |a − b| is equal to |b − a| and is best understood as the
distance between the points a and b on the number line. With this interpretation,
equation (1) makes the plausible statement that “the distance from a to b is
less than or equal to the distance from a to c plus the distance from c to b.”
Pretending for a moment that these are points in the plane (instead of on the
real line), it should be evident why this is referred to as the “triangle inequality.”

Logic and Proofs

Writing rigorous mathematical proofs is a skill best learned by doing, and there
is plenty of on-the-job training just ahead. As Hardy indicates, there is an
artistic quality to mathematics of this type, which may or may not come easily,
but that is not to say that anything especially mysterious is happening. A
proof is an essay of sorts. It is a set of carefully crafted directions, which,
when followed, should leave the reader absolutely convinced of the truth of
the proposition in question. To achieve this, the steps in a proof must follow
logically from previous steps or be justified by some other agreed-upon set of
facts. In addition to being valid, these steps must also fit coherently together to
form a cogent argument. Mathematics has a specialized vocabulary, to be sure,
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but that does not exempt a good proof from being written in grammatically
correct English.

The one proof we have seen at this point (to Theorem 1.1.1) uses an indirect
strategy called proof by contradiction. This powerful technique will be employed
a number of times in our upcoming work. Nevertheless, most proofs are direct.
(It also bears mentioning that using an indirect proof when a direct proof is
available is generally considered bad manners.) A direct proof begins from
some valid statement, most often taken from the theorem’s hypothesis, and
then proceeds through rigorously logical deductions to a demonstration of the
theorem’s conclusion. As we saw in Theorem 1.1.1, an indirect proof always
begins by negating what it is we would like to prove. This is not always as easy
to do as it may sound. The argument then proceeds until (hopefully) a logical
contradiction with some other accepted fact is uncovered. Many times, this
accepted fact is part of the hypothesis of the theorem. When the contradiction is
with the theorem’s hypothesis, we technically have what is called a contrapositive
proof.

The next proposition illustrates a number of the issues just discussed and
introduces a few more.

Theorem 1.2.6. Two real numbers a and b are equal if and only if for every
real number ε > 0 it follows that |a− b| < ε.

Proof. There are two key phrases in the statement of this proposition that
warrant special attention. One is “for every,” which will be addressed in a
moment. The other is “if and only if.” To say “if and only if” in mathematics
is an economical way of stating that the proposition is true in two directions.
In the forward direction, we must prove the statement:

(⇒) If a = b, then for every real number ε > 0 it follows that |a− b| < ε.
We must also prove the converse statement:

(⇐) If for every real number ε > 0 it follows that |a− b| < ε, then we must
have a = b.

For the proof of the first statement, there is really not much to say. If a = b,
then |a− b| = 0, and so certainly |a− b| < ε no matter what ε > 0 is chosen.

For the second statement, we give a proof by contradiction. The conclusion
of the proposition in this direction states that a = b, so we assume that a �= b.
Heading off in search of a contradiction brings us to a consideration of the phrase
“for every ε > 0.” Some equivalent ways to state the hypothesis would be to
say that “for all possible choices of ε > 0” or “no matter how ε > 0 is selected,
it is always the case that |a− b| < ε.” But assuming a �= b (as we are doing at
the moment), the choice of

ε0 = |a− b| > 0

poses a serious problem. We are assuming that |a − b| < ε is true for every
ε > 0, so this must certainly be true of the particular ε0 just defined. However,
the statements

|a− b| < ε0 and |a− b| = ε0
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cannot both be true. This contradiction means that our initial assumption that
a �= b is unacceptable. Therefore, a = b, and the indirect proof is complete.

One of the most fundamental skills required for reading and writing analysis
proofs is the ability to confidently manipulate the quantifying phrases “for all”
and “there exists.” Significantly more attention will be given to this issue in
many upcoming discussions.

Induction

One final trick of the trade, which will arise with some frequency, is the use of
induction arguments. Induction is used in conjunction with the natural numbers
N (or sometimes with the set N ∪ {0}). The fundamental principle behind
induction is that if S is some subset of N with the property that

(i) S contains 1 and

(ii) whenever S contains a natural number n, it also contains n+ 1,

then it must be that S = N. As the next example illustrates, this principle can
be used to define sequences of objects as well as to prove facts about them.

Example 1.2.7. Let x1 = 1, and for each n ∈ N define

xn+1 = (1/2)xn + 1.

Using this rule, we can compute x2 = (1/2)(1) + 1 = 3/2, x3 = 7/4, and it is
immediately apparent how this leads to a definition of xn for all n ∈ N.

The sequence just defined appears at the outset to be increasing. For the
terms computed, we have x1 ≤ x2 ≤ x3. Let’s use induction to prove that this
trend continues; that is, let’s show

(2) xn ≤ xn+1

for all values of n ∈ N.
For n = 1, x1 = 1 and x2 = 3/2, so that x1 ≤ x2 is clear. Now, we want to

show that

if we have xn ≤ xn+1, then it follows that xn+1 ≤ xn+2.

Think of S as the set of natural numbers for which the claim in equation (2)
is true. We have shown that 1 ∈ S. We are now interested in showing that if
n ∈ S, then n+1 ∈ S as well. Starting from the induction hypothesis xn ≤ xn+1,
we can multiply across the inequality by 1/2 and add 1 to get

1
2
xn + 1 ≤ 1

2
xn+1 + 1,

which is precisely the desired conclusion xn+1 ≤ xn+2. By induction, the claim
is proved for all n ∈ N.
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Any discussion about why induction is a valid argumentative technique im-
mediately opens up a box of questions about how we understand the natural
numbers. Earlier, in Section 1.1, we avoided this issue by referencing Kro-
necker’s famous comment that the natural numbers are somehow divinely given.
Although we will not improve on this explanation here, it should be pointed out
that a more atheistic and mathematically satisfying approach to N is possible
from the point of view of axiomatic set theory. This brings us back to a recurring
theme of this chapter. Pedagogically speaking, the foundations of mathematics
are best learned and appreciated in a kind of reverse order. A rigorous study of
the natural numbers and the theory of sets is certainly recommended, but only
after we have an understanding of the subtleties of the real number system. It
is this latter topic that is the business of real analysis.

Exercises

Exercise 1.2.1. (a) Prove that
√
3 is irrational. Does a similar argument work

to show
√
6 is irrational?

(b) Where does the proof of Theorem 1.1.1 break down if we try to use it to
prove

√
4 is irrational?

Exercise 1.2.2. Decide which of the following represent true statements about
the nature of sets. For any that are false, provide a specific example where the
statement in question does not hold.

(a) If A1 ⊇ A2 ⊇ A3 ⊇ A4 · · · are all sets containing an infinite number of
elements, then the intersection ∩∞

n=1An is infinite as well.
(b) If A1 ⊇ A2 ⊇ A3 ⊇ A4 · · · are all finite, nonempty sets of real numbers,

then the intersection ∩∞
n=1An is finite and nonempty.

(c) A ∩ (B ∪ C) = (A ∩B) ∪ C.
(d) A ∩ (B ∩ C) = (A ∩B) ∩ C.
(e) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

Exercise 1.2.3 (De Morgan’s Laws). Let A and B be subsets of R.
(a) If x ∈ (A ∩ B)c, explain why x ∈ Ac ∪ Bc. This shows that (A ∩ B)c ⊆

Ac ∪Bc.
(b) Prove the reverse inclusion (A ∩ B)c ⊇ Ac ∪ Bc, and conclude that

(A ∩B)c = Ac ∪Bc.
(c) Show (A ∪B)c = Ac ∩Bc by demonstrating inclusion both ways.

Exercise 1.2.4. Verify the triangle inequality in the special cases where
(a) a and b have the same sign;
(b) a ≥ 0, b < 0, and a+ b ≥ 0.

Exercise 1.2.5. Use the triangle inequality to establish the inequalities
(a) |a− b| ≤ |a|+ |b|;
(b) ||a| − |b|| ≤ |a− b|.

Exercise 1.2.6. Given a function f and a subset A of its domain, let f(A)
represent the range of f over the set A; that is, f(A) = {f(x) : x ∈ A}.
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(a) Let f(x) = x2. If A = [0, 2] (the closed interval {x ∈ R : 0 ≤ x ≤ 2})
and B = [1, 4], find f(A) and f(B). Does f(A∩B) = f(A)∩ f(B) in this case?
Does f(A ∪B) = f(A) ∪ f(B)?

(b) Find two sets A and B for which f(A ∩B) �= f(A) ∩ f(B).
(c) Show that, for an arbitrary function g : R → R, it is always true that

g(A ∩B) ⊆ g(A) ∩ g(B) for all sets A,B ⊆ R.
(d) Form and prove a conjecture about the relationship between g(A ∪ B)

and g(A) ∪ g(B) for an arbitrary function g.

Exercise 1.2.7. Given a function f : D → R and a subset B ⊆ R, let f−1(B)
be the set of all points from the domain D that get mapped into B; that is,
f−1(B) = {x ∈ D : f(x) ∈ B}. This set is called the preimage of B.

(a) Let f(x) = x2. If A is the closed interval [0, 4] and B is the closed interval
[−1, 1], find f−1(A) and f−1(B). Does f−1(A ∩B) = f−1(A) ∩ f−1(B) in this
case? Does f−1(A ∪B) = f−1(A) ∪ f−1(B)?

(b) The good behavior of preimages demonstrated in (a) is completely gen-
eral. Show that for an arbitrary function g : R → R, it is always true that
g−1(A ∩B) = g−1(A) ∩ g−1(B) and g−1(A ∪B) = g−1(A) ∪ g−1(B) for all sets
A,B ⊆ R.

Exercise 1.2.8. Form the logical negation of each claim. One way to do this is
to simply add “It is not the case that...” in front of each assertion, but for each
statement, try to embed the word “not” as deeply into the resulting sentence
as possible (or avoid using it altogether).

(a) For all real numbers satisfying a < b, there exists an n ∈ N such that
a+ 1/n < b.

(b) Between every two distinct real numbers, there is a rational number.
(c) For all natural numbers n ∈ N,

√
n is either a natural number or an

irrational number.
(d) Given any real number x ∈ R, there exists n ∈ N satisfying n > x.

Exercise 1.2.9. Show that the sequence (x1, x2, x3, . . . ) defined in Example
1.2.7 is bounded above by 2; that is, prove that xn ≤ 2 for every n ∈ N.

Exercise 1.2.10. Let y1 = 1, and for each n ∈ N define yn+1 = (3yn + 4)/4.
(a) Use induction to prove that the sequence satisfies yn < 4 for all n ∈ N.
(b) Use another induction argument to show the sequence (y1, y2, y3, . . . ) is

increasing.

Exercise 1.2.11. If a set A contains n elements, prove that the number of
different subsets of A is equal to 2n. (Keep in mind that the empty set ∅ is
considered to be a subset of every set.)

Exercise 1.2.12. For this exercise, assume Exercise 1.2.3 has been successfully
completed.

(a) Show how induction can be used to conclude that

(A1 ∪A2 ∪ · · · ∪An)
c = Ac

1 ∩Ac
2 ∩ · · · ∩Ac

n
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for any finite n ∈ N.
(b) Explain why induction cannot be used to conclude( ∞⋃

n=1

An

)c

=
∞⋂
n=1

Ac
n.

It might be useful to consider part (a) of Exercise 1.2.2.
(c) Is the statement in part (b) valid? If so, write a proof that does not use

induction.

1.3 The Axiom of Completeness

What exactly is a real number? In Section 1.1, we got as far as saying that
the set R of real numbers is an extension of the rational numbers Q in which
there are no holes or gaps. We want every length along the number line—such
as

√
2—to correspond to a real number and vice versa.
We are going to improve on this definition, but as we do so, it is important

to keep in mind our earlier acknowledgment that whatever precise statements
we formulate will necessarily rest on other unproven assumptions or undefined
terms. At some point, we must draw a line and confess that this is what we have
decided to accept as a reasonable place to start. Naturally, there is some debate
about where this line should be drawn. One way to view the mathematics of
the 19th and 20th centuries is as a stalwart attempt to move this line further
and further back toward some unshakable foundation. The majority of the
material covered in this book is attributable to the mathematicians working in
the early and middle parts of the 1800s. Augustin Louis Cauchy (1789–1857),
Bernhard Bolzano (1781–1848), Niels Henrik Abel (1802–1829), Peter Lejeune
Dirichlet, Karl Weierstrass (1815–1897), and Bernhard Riemann (1826–1866) all
figure prominently in the discovery of the theorems that follow. But here is the
interesting point. Nearly all of this work was done using intuitive assumptions
about the nature of R quite similar to our own informal understanding at this
point. Eventually, enough scrutiny was directed at the detailed structure of R
so that, in the 1870s, a handful of ways to rigorously construct R from Q were
proposed.

Following this historical model, our own rigorous construction of R from Q
is postponed until Section 8.4. By this point, the need for such a construction
will be more justified and easier to appreciate. In the meantime, we have many
proofs to write, so it is important to lay down, as explicitly as possible, the
assumptions that we intend to make about the real numbers.

An Initial Definition for R

First, R is a set containing Q. The operations of addition and multiplication
on Q extend to all of R in such a way that every element of R has an additive
inverse and every nonzero element of R has a multiplicative inverse. Echoing
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the discussion in Section 1.1, we assume R is a field, meaning that addition and
multiplication of real numbers is commutative, associative, and the distributive
property holds. This allows us to perform all of the standard algebraic manipu-
lations that are second nature to us. We also assume that the familiar properties
of the ordering on Q extend to all of R. Thus, for example, such deductions as
“If a < b and c > 0, then ac < bc” will be carried out freely without much com-
ment. To summarize the situation in the official terminology of the subject, we
assume that R is an ordered field, which contains Q as a subfield. (A rigorous
definition of “ordered field” is presented in Section 8.4.)

This brings us to the final, and most distinctive, assumption about the real
number system. We must find some way to clearly articulate what we mean by
insisting that R does not contain the gaps that permeate Q. Because this is the
defining difference between the rational numbers and the real numbers, we will
be excessively precise about how we phrase this assumption, hereafter referred
to as the Axiom of Completeness.

Axiom of Completeness. Every nonempty set of real numbers that is bounded
above has a least upper bound.

Now, what exactly does this mean?

Least Upper Bounds and Greatest Lower Bounds

Let’s first state the relevant definitions, and then look at some examples.

Definition 1.3.1. A set A ⊆ R is bounded above if there exists a number b ∈ R
such that a ≤ b for all a ∈ A. The number b is called an upper bound for A.

Similarly, the set A is bounded below if there exists a lower bound l ∈ R
satisfying l ≤ a for every a ∈ A.

Definition 1.3.2. A real number s is the least upper bound for a set A ⊆ R if
it meets the following two criteria:

(i) s is an upper bound for A;

(ii) if b is any upper bound for A, then s ≤ b.

The least upper bound is also frequently called the supremum of the set A.
Although the notation s = lubA is still common, we will always write s = supA
for the least upper bound.

The greatest lower bound or infimum for A is defined in a similar way (Ex-
ercise 1.3.2) and is denoted by inf A (Fig. 1.3).

Although a set can have a host of upper bounds, it can have only one least
upper bound. If s1 and s2 are both least upper bounds for a set A, then
by property (ii) in Definition 1.3.2 we can assert s1 ≤ s2 and s2 ≤ s1. The
conclusion is that s1 = s2 and least upper bounds are unique.
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︸ ︷︷ ︸
lower bounds
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upper bounds✻
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Figure 1.3: Definition of supA and inf A.

Example 1.3.3. Let

A =
{
1
n
: n ∈ N

}
=
{
1,
1
2
,
1
3
, . . .

}
.

The set A is bounded above and below. Successful candidates for an upper
bound include 3, 2, and 3/2. For the least upper bound, we claim supA = 1.
To argue this rigorously using Definition 1.3.2, we need to verify that properties
(i) and (ii) hold. For (i), we just observe that 1 ≥ 1/n for all choices of n ∈ N.
To verify (ii), we begin by assuming we are in possession of some other upper
bound b. Because 1 ∈ A and b is an upper bound for A, we must have 1 ≤ b.
This is precisely what property (ii) asks us to show.

Although we do not quite have the tools we need for a rigorous proof (see
Theorem 1.4.2), it should be somewhat apparent that inf A = 0.

An important lesson to take from Example 1.3.3 is that supA and inf A may
or may not be elements of the set A. This issue is tied to understanding the
crucial difference between the maximum and the supremum (or the minimum
and the infimum) of a given set.

Definition 1.3.4. A real number a0 is a maximum of the set A if a0 is an
element of A and a0 ≥ a for all a ∈ A. Similarly, a number a1 is a minimum of
A if a1 ∈ A and a1 ≤ a for every a ∈ A.

Example 1.3.5. To belabor the point, consider the open interval

(0, 2) = {x ∈ R : 0 < x < 2},
and the closed interval

[0, 2] = {x ∈ R : 0 ≤ x ≤ 2}.
Both sets are bounded above (and below), and both have the same least upper
bound, namely 2. It is not the case, however, that both sets have a maximum.
A maximum is a specific type of upper bound that is required to be an element
of the set in question, and the open interval (0, 2) does not possess such an
element. Thus, the supremum can exist and not be a maximum, but when a
maximum exists then it is also the supremum.
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Let’s turn our attention back to the Axiom of Completeness. Although we
can see now that not every nonempty bounded set contains a maximum, the
Axiom of Completeness asserts that every such set does have a least upper
bound. We are not going to prove this. An axiom in mathematics is an ac-
cepted assumption, to be used without proof. Preferably, an axiom should be
an elementary statement about the system in question that is so fundamental
that it seems to need no justification. Perhaps the Axiom of Completeness fits
this description, and perhaps it does not. Before deciding, let’s remind ourselves
why it is not a valid statement about Q.

Example 1.3.6. Consider again the set

S = {r ∈ Q : r2 < 2},

and pretend for the moment that our world consists only of rational numbers.
The set S is certainly bounded above. Taking b = 2 works, as does b = 3/2. But
notice what happens as we go in search of the least upper bound. (It may be
useful here to know that the decimal expansion for

√
2 begins 1.4142 . . . .) We

might try b = 142/100, which is indeed an upper bound, but then we discover
that b = 1415/1000 is an upper bound that is smaller still. Is there a smallest
one?

In the rational numbers, there is not. In the real numbers, there is. Back
in R, the Axiom of Completeness states that we may set α = supS and be
confident that such a number exists. In the next section, we will prove that
α2 = 2. But according to Theorem 1.1.1, this implies α is not a rational
number. If we are restricting our attention to only rational numbers, then α
is not an allowable option for supS, and the search for a least upper bound
goes on indefinitely. Whatever rational upper bound is discovered, it is always
possible to find one smaller.

The tools needed to carry out the computations described in Example 1.3.6
depend on some results about how Q and N fit inside of R. These are discussed
in the next section.

We now give an equivalent and useful way of characterizing least upper
bounds. Recall that Definition 1.3.2 of the supremum has two parts. Part (i)
says that supA must be an upper bound, and part (ii) states that it must be
the smallest one. The following lemma offers an alternative way to restate part
(ii).

Lemma 1.3.7. Assume s ∈ R is an upper bound for a set A ⊆ R. Then,
s = supA if and only if, for every choice of ε > 0, there exists an element a ∈ A
satisfying s− ε < a.

Proof. Here is a short rephrasing of the lemma: Given that s is an upper bound,
s is the least upper bound if and only if any number smaller than s is not an
upper bound. Putting it this way almost qualifies as a proof, but we will expand
on what exactly is being said in each direction.
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(⇒) For the forward direction, we assume s = supA and consider s−ε, where
ε > 0 has been arbitrarily chosen. Because s− ε < s, part (ii) of Definition 1.3.2
implies that s − ε is not an upper bound for A. If this is the case, then there
must be some element a ∈ A for which s− ε < a (because otherwise s− ε would
be an upper bound). This proves the lemma in one direction.

(⇐) Conversely, assume s is an upper bound with the property that no
matter how ε > 0 is chosen, s − ε is no longer an upper bound for A. Notice
that what this implies is that if b is any number less than s, then b is not an
upper bound. (Just let ε = s− b.) To prove that s = supA, we must verify part
(ii) of Definition 1.3.2. (Read it again.) Because we have just argued that any
number smaller than s cannot be an upper bound, it follows that if b is some
other upper bound for A, then b ≥ s.

It is certainly the case that all of our conclusions to this point about least
upper bounds have analogous versions for greatest lower bounds. The Axiom of
Completeness does not explicitly assert that a nonempty set bounded below has
an infimum, but this is because we do not need to assume this fact as part of
the axiom. Using the Axiom of Completeness, there are several ways to prove
that greatest lower bounds exist for bounded sets. One such proof is explored
in Exercise 1.3.3.

Exercises

Exercise 1.3.1. Let Z5 = {0, 1, 2, 3, 4} and define addition and multiplication
modulo 5. In other words, compute the integer remainder when a+b and ab are
divided by 5, and use this as the value for the sum and product, respectively.

(a) Show that, given any element z ∈ Z5, there exists an element y such that
z + y = 0. The element y is called the additive inverse of z.

(b) Show that, given any z �= 0 in Z5, there exists an element x such that
zx = 1. The element x is called the multiplicative inverse of z.

(c) The existence of additive and multiplicative inverses is part of the def-
inition of a field. Investigate the set Z4 = {0, 1, 2, 3} (where addition and
multiplication are defined modulo 4) for the existence of additive and multi-
plicative inverses. Make a conjecture about the values of n for which additive
inverses exist in Zn, and then form another conjecture about the existence of
multiplicative inverses.

Exercise 1.3.2. (a) Write a formal definition in the style of Definition 1.3.2
for the infimum or greatest lower bound of a set.

(b) Now, state and prove a version of Lemma 1.3.7 for greatest lower bounds.

Exercise 1.3.3. (a) Let A be bounded below, and define B = {b ∈ R :
b is a lower bound for A}. Show that supB = inf A.

(b) Use (a) to explain why there is no need to assert that greatest upper
bounds exist as part of the Axiom of Completeness.

(c) Propose another way to use the Axiom of Completeness to prove that
sets bounded below have greatest lower bounds.
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Exercise 1.3.4. Assume that A and B are nonempty, bounded above, and
satisfy B ⊆ A. Show supB ≤ supA.

Exercise 1.3.5. Let A ⊆ R be bounded above, and let c ∈ R. Define the sets
c+A and cA by c+A = {c+ a : a ∈ A} and cA = {ca : a ∈ A}.

(a) Show that sup(c+A) = c+ supA.
(b) If c ≥ 0, show that sup(cA) = c supA.
(c) Postulate a similar type of statement for sup(cA) for the case c < 0.

Exercise 1.3.6. Compute, without proofs, the suprema and infima of the fol-
lowing sets:

(a) {n ∈ N : n2 < 10}.
(b) {n/(m+ n) : m,n ∈ N}.
(c) {n/(2n+ 1) : n ∈ N}.
(d) {n/m : m,n ∈ N with m+ n ≤ 10}.

Exercise 1.3.7. Prove that if a is an upper bound for A, and if a is also an
element of A, then it must be that a = supA.

Exercise 1.3.8. If supA < supB, then show that there exists an element b ∈ B
that is an upper bound for A.

Exercise 1.3.9. Without worrying about formal proofs for the moment, decide
if the following statements about suprema and infima are true or false. For any
that are false, supply an example where the claim in question does not appear
to hold.

(a) A finite, nonempty set always contains its supremum.
(b) If a < L for every element a in the set A, then supA < L.
(c) If A and B are sets with the property that a < b for every a ∈ A and

every b ∈ B, then it follows that supA < inf B.
(d) If supA = s and supB = t, then sup(A+B) = s+ t. The set A+B is

defined as A+B = {a+ b : a ∈ A and b ∈ B}.
(e) If supA ≤ supB, then there exists an element b ∈ B that is an upper

bound for A.

1.4 Consequences of Completeness

The first application of the Axiom of Completeness is a result that may look
like a more natural way to mathematically express the sentiment that the real
line contains no gaps.

Theorem 1.4.1 (Nested Interval Property). For each n ∈ N, assume we
are given a closed interval In = [an, bn] = {x ∈ R : an ≤ x ≤ bn}. Assume
also that each In contains In+1. Then, the resulting nested sequence of closed
intervals

I1 ⊇ I2 ⊇ I3 ⊇ I4 ⊇ · · ·
has a nonempty intersection; that is,

⋂∞
n=1 In �= ∅.
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Proof. In order to show that
⋂∞

n=1 In is not empty, we are going to use the
Axiom of Completeness (AoC) to produce a single real number x satisfying
x ∈ In for every n ∈ N. Now, AoC is a statement about bounded sets, and the
one we want to consider is the set

A = {an : n ∈ N}
of left-hand endpoints of the intervals.

A={an: n∈N}︷ ︸︸ ︷
a1 a2 a3 · · · an · · · · · · bn · · · b3 b2 b1

[ [ [ [ ] ] ] ]

Because the intervals are nested, we see that every bn serves as an upper bound
for A. Thus, we are justified in setting

x = supA.

Now, consider a particular In = [an, bn]. Because x is an upper bound for A,
we have an ≤ x. The fact that each bn is an upper bound for A and that x is
the least upper bound implies x ≤ bn.

Altogether then, we have an ≤ x ≤ bn, which means x ∈ In for every choice
of n ∈ N. Hence, x ∈ ⋂∞

n=1 In, and the intersection is not empty.

The Density of Q in R

The set Q is an extension of N, and R in turn is an extension of Q. The next
few results indicate how N and Q sit inside of R.

Theorem 1.4.2 (Archimedean Property). (i) Given any number x ∈ R,
there exists an n ∈ N satisfying n > x.

(ii) Given any real number y > 0, there exists an n ∈ N satisfying 1/n < y.

Proof. Part (i) of the proposition states that N is not bounded above. There
has never been any doubt about the truth of this, and it could be reasonably
argued that we should not have to prove it at all. This is a legitimate point
of view, especially in light of the fact that we have decided to assume other
familiar properties of N, Z, and Q as given.

The counterargument is that we will prove it because we can. A set can pos-
sess the Archimedean property without being complete—Q is a fine example—
but a demonstration of this fact requires a good deal of scrutiny into the ax-
iomatic construction of the ordered field in question. In the case of R, the
Axiom of Completeness furnishes us with a very short argument. A large num-
ber of deep results ultimately depend on this relationship between R and N, so
having a proof for it adds a little extra certainty to these upcoming arguments.

And so to the proof. Assume, for contradiction, that N is bounded above.
By the Axiom of Completeness (AoC),N should then have a least upper bound,
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and we can set α = supN. If we consider α − 1, then we no longer have an
upper bound (see Lemma 1.3.7), and therefore there exists an n ∈ N satisfying
α − 1 < n. But this is equivalent to α < n + 1. Because n + 1 ∈ N, we have
a contradiction to the fact that α is supposed to be an upper bound for N.
(Notice that the contradiction here depends only on AoC and the fact that N
is closed under addition.)

Part (ii) follows from (i) by letting x = 1/y.

This familiar property of N is the key to an extremely important fact about
how Q fits inside of R.

Theorem 1.4.3 (Density of Q in R). For every two real numbers a and b
with a < b, there exists a rational number r satisfying a < r < b.

Proof. To simplify matters, let’s assume 0 ≤ a < b. The case where a < 0
follows quickly from this one (Exercise 1.4.1). A rational number is a quotient
of integers, so we must produce m,n ∈ N so that

(1) a <
m

n
< b.

The first step is to choose the denominator n large enough so that consecutive
increments of size 1/n are too close together to “step over” the interval (a, b).

• •
0 a b

1
n

2
n

3
n · · · m−1

n
m
n

Using Theorem 1.4.2, we may pick n ∈ N large enough so that

(2)
1
n

< b− a.

Multiplying inequality (1) by n gives na < m < nb. With n already chosen, the
idea now is to choose m to be the smallest natural number greater than na. In
other words, pick m ∈ N so that

m− 1
(3)
≤ na

(4)
< m.

Now, inequality (4) immediately yields a < m/n, which is half of the battle.
Keeping in mind that inequality (2) is equivalent to a < b− 1/n, we can use (3)
to write

m ≤ na+ 1

< n

(
b− 1

n

)
+ 1

= nb.

Because m < nb implies m/n < b, we have a < m/n < b, as desired.
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Theorem 1.4.3 is paraphrased by saying that Q is dense in R. Without
working too hard, we can use this result to show that the irrational numbers
are dense in R as well.

Corollary 1.4.4. Given any two real numbers a < b, there exists an irrational
number t satisfying a < t < b.

Proof. Exercise 1.4.3.

The Existence of Square Roots

It is time to tend to some unfinished business left over from Example 1.3.6 and
this chapter’s opening discussion.

Theorem 1.4.5. There exists a real number α ∈ R satisfying α2 = 2.

Proof. After reviewing Example 1.3.6, consider the set

T = {t ∈ R : t2 < 2}

and set α = supT . We are going to prove α2 = 2 by ruling out the possibilities
α2 < 2 and α2 > 2. Keep in mind that there are two parts to the definition of
supT , and they will both be important. (This always happens when a supremum
is used in an argument.) The strategy is to demonstrate that α2 < 2 violates
the fact that α is an upper bound for T , and α2 > 2 violates the fact that it is
the least upper bound.

Let’s first see what happens if we assume α2 < 2. In search of an element of
T that is larger than α, write(

α+
1
n

)2

= α2 +
2α
n
+

1
n2

< α2 +
2α
n
+
1
n

= α2 +
2α+ 1

n
.

But now assuming α2 < 2 gives us a little space in which to fit the (2α+ 1)/n
term and keep the total less than 2. Specifically, choose n0 ∈ N large enough
so that

1
n0

<
2− α2

2α+ 1
.

This implies (2α+ 1)/n0 < 2− α2, and consequently that(
α+

1
n0

)2

< α2 + (2− α2) = 2.

Thus, α+1/n0 ∈ T , contradicting the fact that α is an upper bound for T . We
conclude that α2 < 2 cannot happen.
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Now, what about the case α2 > 2? This time, write(
α− 1

n

)2

= α2 − 2α
n
+

1
n2

> α2 − 2α
n

.

The remainder of the argument is requested in Exercise 1.4.6.

A small modification of this proof can be used to show that
√
x exists for

any x ≥ 0. A formula for expanding (α+ 1/n)m called the binomial formula
can be used to show that m

√
x exists for arbitrary values of m ∈ N.

Countable and Uncountable Sets

The applications of the Axiom of Completeness to this point have basically
served to restore our confidence in properties we already felt we knew about the
real number system. One final consequence of completeness that we are about
to present is of a very different nature and, on its own, represents an astounding
intellectual discovery. The traditional way that mathematics gets done is by
one mathematician modifying and expanding on the work of those who came
before. This model does not seem to apply to Georg Cantor (1845–1918), at
least with regard to his work on the theory of infinite sets.

At the moment, we have an image ofR as consisting of rational and irrational
numbers, continuously packed together along the real line. We have seen that
both Q and I (the set of irrationals) are dense in R, meaning that in every
interval (a, b) there exist rational and irrational numbers alike. Mentally, there
is a temptation to think of Q and I as being intricately mixed together in equal
proportions, but this turns out not to be the case. In a way that Cantor made
precise, the irrational numbers far outnumber the rational numbers in making
up the real line.

Cardinality

The term cardinality is used in mathematics to refer to the size of a set. The
cardinalities of finite sets can be compared simply by attaching a natural number
to each set. The set of Snow White’s dwarfs is smaller than the set of United
States Supreme Court Justices because 7 is less than 9. But how might we
draw this same conclusion without referring to any numbers? Cantor’s idea was
to attempt to put the sets into a 1–1 correspondence with each other. There
are fewer dwarfs than Justices because, if the dwarfs were all simultaneously
appointed to the bench, there would still be two empty chairs to fill. On the
other hand, the cardinality of the Supreme Court is the same as the cardinality
of the set of fielders on a baseball team. This is because, when the judges take
the field, it is possible to arrange them so that there is exactly one judge at
every position.
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The advantage of this method of comparing the sizes of sets is that it works
equally well on sets that are infinite.

Definition 1.4.6. A function f : A → B is one-to-one (1–1) if a1 �= a2 in A
implies that f(a1) �= f(a2) in B. The function f is onto if, given any b ∈ B, it
is possible to find an element a ∈ A for which f(a) = b.

A function f : A → B that is both 1–1 and onto provides us with exactly
what we mean by a 1–1 correspondence between two sets. The property of
being 1–1 means that no two elements of A correspond to the same element of
B (no two judges are playing the same position), and the property of being onto
ensures that every element of B corresponds to something in A (there is a judge
at every position).

Definition 1.4.7. Two sets A and B have the same cardinality if there exists
f : A → B that is 1–1 and onto. In this case, we write A ∼ B.

Example 1.4.8. (i) If we let E = {2, 4, 6, . . . } be the set of even natural num-
bers, then we can show N ∼ E. To see why, let f : N → E be given by
f(n) = 2n.

N : 1 2 3 4 · · · n · · ·
� � � � · · · �

E : 2 4 6 8 · · · 2n · · ·

It is certainly true that E is a proper subset of N, and for this reason it may
seem logical to say that E is a “smaller” set than N. This is one way to look at
it, but it represents a point of view that is heavily biased from an overexposure
to finite sets. The definition of cardinality is quite specific, and from this point
of view E and N are equivalent.

(ii) To make this point again, note that although N is contained in Z as a
proper subset, we can show N ∼ Z. This time let

f(n) =
{
(n− 1)/2 if n is odd
−n/2 if n is even.

The important details to verify are that f does not map any two natural numbers
to the same element of Z (f is 1–1) and that every element of Z gets “hit” by
something in N (f is onto).

N : 1 2 3 4 5 6 7 · · ·
� � � � � � �

Z : 0 −1 1 −2 2 −3 3 · · ·
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• •−1 1

Figure 1.4: (−1, 1) ∼ R using f(x) = x/(x2 − 1).

Example 1.4.9. A little calculus (which we will not supply) shows that the
function f(x) = x/(x2 − 1) takes the interval (−1, 1) onto R in a 1–1 fashion
(Fig. 1.4). Thus (−1, 1) ∼ R. In fact, (a, b) ∼ R for any interval (a, b).

Countable Sets

Definition 1.4.10. A set A is countable if N ∼ A. An infinite set that is not
countable is called an uncountable set.

From Example 1.4.8, we see that both E and Z are countable sets. Putting
a set into a 1–1 correspondence with N, in effect, means putting all of the
elements into an infinitely long list or sequence. Looking at Example 1.4.8, we
can see that this was quite easy to do for E and required only a modest bit
of shuffling for the set Z. A natural question arises as to whether all infinite
sets are countable. Given some infinite set such as Q or R, it might seem as
though, with enough cleverness, we should be able to fit all the elements of our
set into a single list (i.e., into a correspondence with N). After all, this list is
infinitely long so there should be plenty of room. But alas, as Hardy remarks,
“[The mathematician’s] subject is the most curious of all—there is none in which
truth plays such odd pranks.”

Theorem 1.4.11. (i) The set Q is countable. (ii) The set R is uncountable.

Proof. (i) For each n ∈ N, let An be the set given by

An =
{
±p

q
: where p, q ∈ N are in lowest terms with p+ q = n

}
.
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The first few of these sets look like

A1 =
{
0
1

}
, A2 =

{
1
1
,
−1
1

}
, A3 =

{
1
2
,
−1
2

,
2
1
,
−2
1

}
,

A4 =
{
1
3
,
−1
3

,
3
1
,
−3
1

}
, and A5 =

{
1
4
,
−1
4

,
2
3
,
−2
3

,
3
2
,
−3
2

,
4
1
,
−4
1

}
.

The crucial observation is that each An is finite and every rational number
appears in exactly one of these sets. Our 1–1 correspondence with N is then
achieved by consecutively listing the elements in each An.

N : 1 2 3 4 5 6 7 8 9 10 11 12 · · ·
� � � � � � � � � � � �

Q : 0
1

1
1 − 1

1
1
2 − 1

2
2
1 − 2

1
1
3 − 1

3
3
1 − 3

1
1
4 · · ·︸︷︷︸

A1

︸ ︷︷ ︸
A2

︸ ︷︷ ︸
A3

︸ ︷︷ ︸
A4

Admittedly, writing an explicit formula for this correspondence would be an
awkward task, and attempting to do so is not the best use of time. What
matters is that we see why every rational number appears in the correspondence
exactly once. Given, say, 22/7, we have that 22/7 ∈ A29. Because the set of
elements in A1, . . . , A28 is finite, we can be confident that 22/7 eventually gets
included in the sequence. The fact that this line of reasoning applies to any
rational number p/q is our proof that the correspondence is onto. To verify
that it is 1–1, we observe that the sets An were constructed to be disjoint so
that no rational number appears twice. This completes the proof of (i).

(ii) The second statement of Theorem 1.4.11 is the truly unexpected part,
and its proof is done by contradiction. Assume that there does exist a 1–1,
onto function f : N → R. Again, what this suggests is that it is possible to
enumerate the elements of R. If we let x1 = f(1), x2 = f(2), and so on, then
our assumption that f is onto means that we can write

(1) R = {x1, x2, x3, x4, . . . }
and be confident that every real number appears somewhere on the list. We
will now use the Nested Interval Property (Theorem 1.4.1) to produce a real
number that is not there.

Let I1 be a closed interval that does not contain x1. Next, let I2 be a closed
interval, contained in I1, which does not contain x2. The existence of such an
I2 is easy to verify. Certainly I1 contains two smaller disjoint closed intervals,
and x2 can only be in one of these. In general, given an interval In, construct
In+1 to satisfy

(i) In+1 ⊆ In and

(ii) xn+1 /∈ In+1.
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[ [ ] ]• •
xn+1 xn︸ ︷︷ ︸

In+1

In︷ ︸︸ ︷

We now consider the intersection
⋂∞

n=1 In. If xn0 is some real number from the
list in (1), then we have xn0 /∈ In0 , and it follows that

xn0 /∈
∞⋂
n=1

In.

Now, we are assuming that the list in (1) contains every real number, and this
leads to the conclusion that ∞⋂

n=1

In = ∅.

However, the Nested Interval Property (NIP) asserts that
⋂∞

n=1 In �= ∅. By
NIP, there is at least one x ∈ ⋂∞

n=1 In that, consequently, cannot be on the list
in (1). This contradiction means that such an enumeration of R is impossible,
and we conclude that R is an uncountable set.

What exactly should we make of this discovery? It is an important exercise
to show that any subset of a countable set must be either countable or finite.
This should not be too surprising. If a set can be arranged into a single list, then
deleting some elements from this list results in another (shorter, and potentially
terminating) list. This means that countable sets are the smallest type of infinite
set. Anything smaller is either still countable or finite.

The force of Theorem 1.4.11 is that the cardinality of R is, informally speak-
ing, a larger type of infinity. The real numbers so outnumber the natural num-
bers that there is no way to map N onto R. No matter how we attempt this,
there are always real numbers to spare. The set Q, on the other hand, is count-
able. As far as infinite sets are concerned, this is as small as it gets. What does
this imply about the set I of irrational numbers? By imitating the demonstra-
tion that N ∼ Z, we can prove that the union of two countable sets must be
countable. Because R = Q ∪ I, it follows that I cannot be countable because
otherwise R would be. The inescapable conclusion is that, despite the fact that
we have encountered so few of them, the irrational numbers form a far greater
subset of R than Q.

The properties of countable sets described in this discussion are useful for a
few exercises in upcoming chapters. For easier reference, we state them as some
final propositions and outline their proofs in the exercises that follow.

Theorem 1.4.12. If A ⊆ B and B is countable, then A is either countable,
finite, or empty.

Theorem 1.4.13. (i) If A1, A2, . . . Am are each countable sets, then the union
A1 ∪A2 ∪ · · · ∪Am is countable.

(ii) If An is a countable set for each n ∈ N, then
⋃∞

n=1 An is countable.
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Exercises

Exercise 1.4.1. Without doing too much work, show how to prove Theorem
1.4.3 in the case where a < 0 by converting this case into the one already proven.

Exercise 1.4.2. Recall that I stands for the set of irrational numbers.
(a) Show that if a, b ∈ Q, then ab and a+ b are elements of Q as well.
(b) Show that if a ∈ Q and t ∈ I, then a+ t ∈ I and at ∈ I as long as a �= 0.
(c) Part (a) can be summarized by saying that Q is closed under addition

and multiplication. Is I closed under addition and multiplication? Given two
irrational numbers s and t, what can we say about s+ t and st?

Exercise 1.4.3. Using Exercise 1.4.2, supply a proof for Corollary 1.4.4 by
applying Theorem 1.4.3 to the real numbers a−√

2 and b−√
2.

Exercise 1.4.4. Use the Archimedean Property of R to rigorously prove that
inf{1/n : n ∈ N} = 0.

Exercise 1.4.5. Prove that
⋂∞

n=1(0, 1/n) = ∅. Notice that this demonstrates
that the intervals in the Nested Interval Property must be closed for the con-
clusion of the theorem to hold.

Exercise 1.4.6. (a) Finish the proof of Theorem 1.4.5 by showing that the
assumption α2 > 2 leads to a contradiction of the fact that α = supT .

(b) Modify this argument to prove the existence of
√
b for any real number

b ≥ 0.

Exercise 1.4.7. Finish the following proof for Theorem 1.4.12.
Assume B is a countable set. Thus, there exists f : N → B, which is 1–1

and onto. Let A ⊆ B be an infinite subset of B. We must show that A is
countable.

Let n1 = min{n ∈ N : f(n) ∈ A}. As a start to a definition of g : N → A,
set g(1) = f(n1). Show how to inductively continue this process to produce a
1–1 function g from N onto A.

Exercise 1.4.8. Use the following outline to supply proofs for the statements
in Theorem 1.4.13.

(a) First, prove statement (i) for two countable sets, A1 and A2. Example
1.4.8 (ii) may be a useful reference. Some technicalities can be avoided by first
replacing A2 with the set B2 = A2\A1 = {x ∈ A2 : x /∈ A1}. The point of
this is that the union A1 ∪ B2 is equal to A1 ∪ A2 and the sets A1 and B2 are
disjoint. (What happens if B2 is finite?)

Now, explain how the more general statement in (i) follows.
(b) Explain why induction cannot be used to prove part (ii) of Theorem

1.4.13 from part (i).
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(c) Show how arranging N into the two-dimensional array

1 3 6 10 15 · · ·
2 5 9 14 · · ·
4 8 13 · · ·
7 12 · · ·
11 · · ·
...

leads to a proof of Theorem 1.4.13 (ii).

Exercise 1.4.9. (a) Given sets A and B, explain why A ∼ B is equivalent to
asserting B ∼ A.

(b) For three sets A,B, and C, show that A ∼ B and B ∼ C implies A ∼ C.
These two properties are what is meant by saying that ∼ is an equivalence
relation.

Exercise 1.4.10. Show that the set of all finite subsets of N is a countable set.
(It turns out that the set of all subsets of N is not a countable set. This is the
topic of Section 1.5.)

Exercise 1.4.11. Consider the open interval (0,1), and let S be the set of
points in the open unit square; that is, S = {(x, y) : 0 < x, y < 1}.

(a) Find a 1–1 function that maps (0, 1) into, but not necessarily onto, S.
(This is easy.)

(b) Use the fact that every real number has a decimal expansion to produce
a 1–1 function that maps S into (0, 1). Discuss whether the formulated function
is onto. (Keep in mind that any terminating decimal expansion such as .235
represents the same real number as .234999 . . . .)

The Schröder–Bernstein Theorem discussed in Exercise 1.4.13 to follow can
now be applied to conclude that (0, 1) ∼ S.

Exercise 1.4.12. A real number x ∈ R is called algebraic if there exist integers
a0, a1, a2, . . . , an ∈ Z, not all zero, such that

anx
n + an1x

n−1 + · · ·+ a1x+ a0 = 0.

Said another way, a real number is algebraic if it is the root of a polynomial with
integer coefficients. Real numbers that are not algebraic are called transcenden-
tal numbers. Reread the last paragraph of Section 1.1. The final question posed
here is closely related to the question of whether or not transcendental numbers
exist.

(a) Show that
√
2, 3

√
2, and

√
3 +

√
2 are algebraic.

(b) Fix n ∈ N, and let An be the algebraic numbers obtained as roots of
polynomials with integer coefficients that have degree n. Using the fact that
every polynomial has a finite number of roots, show that An is countable. (For
each m ∈ N, consider polynomials anxn+ an1x

n−1+ · · ·+ a1x+ a0 that satisfy
|an|+ |an−1|+ · · ·+ |a1|+ |a0| ≤ m.)



1.5. Cantor’s Theorem 29

(c) Now, argue that the set of all algebraic numbers is countable. What may
we conclude about the set of transcendental numbers?

Exercise 1.4.13 (Schröder–Bernstein Theorem). Assume there exists a 1–
1 function f : X → Y and another 1–1 function g : Y → X. Follow the steps to
show that there exists a 1–1, onto function h : X → Y and hence X ∼ Y .

(a) The range of f is defined by f(X) = {y ∈ Y : y = f(x) for some x ∈ X}.
Let y ∈ f(X). (Because f is not necessarily onto, the range f(X) may not be
all of Y .) Explain why there exists a unique x ∈ X such that f(x) = y. Now
define f−1(y) = x, and show that f−1 is a 1–1 function from f(X) onto X.

In a similar way, we can also define the 1–1 function g−1 : g(X)→ Y .
(b) Let x ∈ X be arbitrary. Let the chain Cx be the set consisting of all

elements of the form

(1) . . . , f−1(g−1(x)), g−1(x), x, f(x), g(f(x)), f(g(f(x))), . . . .

Explain why the number of elements to the left of x in the above chain may be
zero, finite, or infinite.

(c) Show that any two chains are either identical or completely disjoint.
(d) Note that the terms of the chain in (1) alternate between elements of X

and elements of Y . Given a chain Cx, we want to focus on Cx∩Y , which is just
the part of the chain that sits in Y .

Define the set A to be the union of all chains Cx satisfying Cx ∩ Y ⊆ f(X).
Let B consist of the union of the remaining chains not in A. Show that any
chain contained in B must be of the form

y, g(y), f(g(y)), g(f(g(y))), . . . ,

where y is an element of Y that is not in f(X).
(e) Let X1 = A ∩X, X2 = B ∩X, Y1 = A ∩ Y , and Y2 = B ∩ Y . Show that

f maps X1 onto Y1 and that g maps Y2 onto X2. Use this information to prove
X ∼ Y .

1.5 Cantor’s Theorem

Cantor’s work into the theory of infinite sets extends far beyond the conclusions
of Theorem 1.4.11. Although initially resisted, his creative and relentless assault
in this area eventually produced a revolution in set theory and a paradigm shift
in the way mathematicians came to understand the infinite.

Cantor’s Diagonalization Method

The proof presented for Theorem 1.4.11 (ii) is different from any of the argu-
ments that Cantor gave for this result. It was chosen because of how directly
it reveals the connection between the concepts of uncountability and complete-
ness, and because the technique of using nested intervals will be used several
more times in our work ahead.
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Cantor initially published his discovery thatR is uncountable in 1874, but in
1891 he offered another proof of this same fact that is startling in its simplicity.
It relies on decimal representations for real numbers, which we will accept and
use without any formal definitions.

Theorem 1.5.1. The open interval (0, 1) = {x ∈ R : 0 < x < 1} is uncount-
able.

Exercise 1.5.1. Show that (0, 1) is uncountable if and only ifR is uncountable.
This shows that Theorem 1.5.1 is equivalent to Theorem 1.4.11.

Proof. As with Theorem 1.4.11, we proceed by contradiction and assume that
there does exist a function f : N→ (0, 1) that is 1–1 and onto. For each m ∈ N,
f(m) is a real number between 0 and 1, and we represent it using the decimal
notation

f(m) = .am1am2am3am4am5 . . . .

What is meant here is that for each m,n ∈ N, amn is the digit from the set
{0, 1, 2, . . . , 9} that represents the nth digit in the decimal expansion of f(m).
The 1–1 correspondence between N and (0, 1) can be summarized in the doubly
indexed array

N (0, 1)
1 ←→ f(1) = .a11 a12 a13 a14 a15 a16 · · ·
2 ←→ f(2) = .a21 a22 a23 a24 a25 a26 · · ·
3 ←→ f(3) = .a31 a32 a33 a34 a35 a36 · · ·
4 ←→ f(4) = .a41 a42 a43 a44 a45 a46 · · ·
5 ←→ f(5) = .a51 a52 a53 a54 a55 a56 · · ·
6 ←→ f(6) = .a61 a62 a63 a64 a65 a66 · · ·
...

...
...

...
...

...
...

...
. . .

The key assumption about this correspondence is that every real number in
(0, 1) is assumed to appear somewhere on the list.

Now for the pearl of the argument. Define a real number x ∈ (0, 1) with the
decimal expansion x = .b1b2b3b4 . . . using the rule

bn =
{
2 if ann �= 2
3 if ann = 2.

Let’s be clear about this. To compute the digit b1, we look at the digit a11 in
the upper left-hand corner of the array. If a11 = 2, then we choose b1 = 3;
otherwise, we set b1 = 2.

Exercise 1.5.2. (a) Explain why the real number x = .b1b2b3b4 . . . cannot be
f(1).

(b) Now, explain why x �= f(2), and in general why x �= f(n) for any n ∈ N.
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(c) Point out the contradiction that arises from these observations and con-
clude that (0, 1) is uncountable.

Exercise 1.5.3. Supply rebuttals to the following complaints about the proof
of Theorem 1.5.1.

(a) Every rational numbers has a decimal expansion so we could apply this
same argument to show that the set of rational numbers between 0 and 1 is un-
countable. However, because we know that any subset of Q must be countable,
the proof of Theorem 1.5.1 must be flawed.

(b) A few numbers have two different decimal representations. Specifically,
any decimal expansion that terminates can also be written with repeating 9’s.
For instance, 1/2 can be written as .5 or as .4999 . . . . Doesn’t this cause some
problems?

Exercise 1.5.4. Let S be the set consisting of all sequences of 0’s and 1’s. Ob-
serve that S is not a particular sequence, but rather a large set whose elements
are sequences; namely,

S = {(a1, a2, a3, . . . ) : an = 0 or 1}.

As an example, the sequence (1, 0, 1, 0, 1, 0, 1, 0, . . . ) is an element of S, as is the
sequence (1, 1, 1, 1, 1, 1, . . . ).

Give a rigorous argument showing that S is uncountable.

Having distinguished between the countable infinity of N and the uncount-
able infinity ofR, a new question that occupied Cantor was whether or not there
existed an infinity “above” that of R. This is logically treacherous territory.
The same care we gave to defining the relationship “has the same cardinality
as” needs to be given to defining relationships such as “has cardinality greater
than” or “has cardinality less than or equal to.” Nevertheless, without getting
too weighed down with formal definitions, one gets a very clear sense from the
next result that there is a hierarchy of infinite sets that continues well beyond
the continuum of R.

Power Sets and Cantor’s Theorem

Given a set A, the power set P (A) refers to the collection of all subsets of A. It
is important to understand that P (A) is itself considered a set whose elements
are the different possible subsets of A.

Exercise 1.5.5. (a) Let A = {a, b, c}. List the eight elements of P (A). (Do
not forget that ∅ is considered to be a subset of every set.)

(b) If A is finite with n elements, show that P (A) has 2n elements. (Con-
structing a particular subset of A can be interpreted as making a series of
decisions about whether or not to include each element of A.)



32 Chapter 1. The Real Numbers

Exercise 1.5.6. (a) Using the particular set A = {a, b, c}, exhibit two different
1–1 mappings from A into P (A).

(b) Letting B = {1, 2, 3, 4}, produce an example of a 1–1 map g : B → P (B).
(c) Explain why, in parts (a) and (b), it is impossible to construct mappings

that are onto.

Cantor’s Theorem states that the phenomenon in Exercise 1.5.6 holds for in-
finite sets as well as finite sets. Whereas mapping A into P (A) is quite effortless,
finding an onto map is impossible.

Theorem 1.5.2 (Cantor’s Theorem). Given any set A, there does not exist
a function f : A → P (A) that is onto.

Proof. This proof, like the others of its kind, is indirect. Thus, assume, for
contradiction, that f : A → P (A) is onto. Unlike the usual situation in which
we have sets of numbers for the domain and range, f is a correspondence between
a set and its power set. For each element a ∈ A, f(a) is a particular subset of
A. The assumption that f is onto means that every subset of A appears as f(a)
for some a ∈ A. To arrive at a contradiction, we will produce a subset B ⊆ A
that is not equal to f(a) for any a ∈ A.

Construct B using the following rule. For each element a ∈ A, consider the
subset f(a). This subset of A may contain the element a or it may not. This
depends on the function f . If f(a) does not contain a, then we include a in our
set B. More precisely, let

B = {a ∈ A : a /∈ f(a)}.

Exercise 1.5.7. Return to the particular functions contructed in Exercise 1.5.6
and construct the subset B that results using the preceding rule. In each case,
note that B is not in the range of the function used.

We now focus on the general argument. Because we have assumed that our
function f : A → P (A) is onto, it must be that B = f(a′) for some a′ ∈ A. The
contradiction arises when we consider whether or not a′ is an element of B.

Exercise 1.5.8. (a) First, show that the case a′ ∈ B leads to a contradiction.
(b) Now, finish the argument by showing that the case a′ /∈ B is equally

unacceptable.

Exercise 1.5.9. As a final exercise, answer each of the following by establishing
a 1–1 correspondence with a set of known cardinality.

(a) Is the set of all functions from {0, 1} to N countable or uncountable?
(b) Is the set of all functions from N to {0, 1} countable or uncountable?
(c) Given a set B, a subset A of P (B) is called an antichain if no element

of A is a subset of any other element of A. Does P (N) contain an uncountable
antichain?
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1.6 Epilogue

The relationship of having the same cardinality is an equivalence relation (see
Exercise 1.4.9), meaning, roughly, that all of the sets in the universe can be
organized into disjoint groups according to their size. Two sets appear in the
same group, or equivalence class, if and only if they have the same cardinality.
Thus, N, Z, and Q are grouped together in one class with all of the other
countable sets, whereas R is in another class that includes the interval (0, 1)
among other uncountable sets. One implication of Cantor’s Theorem is that
P (R)—the set of all subsets of R—is in a different class from R, and there is
no reason to stop here. The set of subsets of P (R)—namely P (P (R))—is in
yet another class, and this process continues indefinitely.

Having divided the universe of sets into disjoint groups, it would be con-
venient to attach a “number” to each collection which could be used the way
natural numbers are used to refer to the sizes of finite sets. Given a set X,
there exists something called the cardinal number of X, denoted cardX, which
behaves very much in this fashion. For instance, two sets X and Y satisfy
cardX = cardY if and only if X ∼ Y . (Rigorously defining cardX requires
some significant set theory. One way this is done is to define cardX to be a
very particular set that can always be uniquely found in the same equivalence
class as X.)

Looking back at Cantor’s Theorem, we get the strong sense that there is
an order on the sizes of infinite sets that should be reflected in our new car-
dinal number system. Specifically, if it is possible to map a set X into Y in
a 1–1 fashion, then we want cardX ≤ cardY . Writing the strict inequality
cardX < cardY should indicate that it is possible to map X into Y but that
it is impossible to show X ∼ Y . Restated in this notation, Cantor’s Theorem
states that for every set A, cardA < cardP (A).

There are some significant details to work out. A kind of metaphysical prob-
lem arises when we realize that an implication of Cantor’s Theorem is that there
can be no “largest” set. A declaration such as, “Let U be the set of all possible
things,” is paradoxical because we immediately get that cardU < cardP (U)
and thus the set U does not contain everything it was advertised to hold. Is-
sues such as this one are ultimately resolved by imposing some restrictions on
what can qualify as a set. As set theory was formalized, the axioms had to
be crafted so that objects such as U are simply not allowed. A more down-to-
earth problem in need of attention is demonstrating that our definition of “≤”
between cardinal numbers really is an ordering. This involves showing that car-
dinal numbers possess a property analogous to real numbers, which states that
if cardX ≤ cardY and cardY ≤ cardX, then cardX = cardY . In the end, this
boils down to proving that if there exists f : X → Y that is 1–1, and if there
exists g : Y → X that is 1–1, then it is possible to find a function h : X → Y
that is both 1–1 and onto. A proof of this fact eluded Cantor but was eventu-
ally supplied independently by Ernst Schröder (in 1896) and Felix Bernstein (in
1898). An argument for the Schröder–Bernstein Theorem is outlined in Exercise
1.4.13.
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There was another deep problem stemming from the budding theory of car-
dinal numbers that occupied Cantor and which was not resolved during his
lifetime. Because of the importance of countable sets, the symbol ℵ0 (“aleph
naught”) is frequently used for cardN. The subscript “0” is appropriate when
we remember that countable sets are the smallest type of infinite set. In terms
of cardinal numbers, if cardX < ℵ0, then X is finite. Thus, ℵ0 is the smallest
infinite cardinal number. The cardinality of R is also significant enough to de-
serve the special designation c = cardR = card(0, 1). The content of Theorems
1.4.11 and 1.5.1 is that ℵ0 < c. The question that plagued Cantor was whether
there were any cardinal numbers strictly in between these two. Put another
way, does there exist a set A ⊆ R with cardN < cardA < cardR? Cantor was
of the opinion that no such set existed. In the ordering of cardinal numbers, he
conjectured, c was the immediate successor of ℵ0.

Cantor’s “continuum hypothesis,” as it came to be called, was one of the
most famous mathematical challenges of the past century. Its unexpected res-
olution came in two parts. In 1940, the German logician and mathematician
Kurt Gödel demonstrated that, using only the agreed-upon set of axioms of set
theory, there was no way to disprove the continuum hypothesis. In 1963, Paul
Cohen successfully showed that, under the same rules, it was also impossible to
prove this conjecture. Taken together, what these two discoveries imply is that
the continuum hypothesis is undecidable. It can be accepted or rejected as a
statement about the nature of infinite sets, and in neither case will any logical
contradictions arise.

The mention of Kurt Gödel brings to mind a final comment about the sig-
nificance of Cantor’s work. Gödel is best known for his “Incompleteness The-
orems,” which pertain to the strength of axiomatic systems in general. What
Gödel showed was that any consistent axiomatic system created to study arith-
metic was necessarily destined to be “incomplete” in the sense that there would
always be true statements that the system of axioms would be too weak to
prove. At the heart of Gödel’s very complicated proof is a type of manipula-
tion closely related to what is happening in the proofs of Theorems 1.5.1 and
1.5.2. Variations of Cantor’s proof methods can also be found in the limita-
tive results of computer science. The “halting problem” asks, loosely, whether
some general algorithm exists that can look at every program and decide if that
program eventually terminates. The proof that no such algorithm exists uses a
diagonalization-type construction at the core of the argument. The main point
to make is that not only are the implications of Cantor’s theorems profound
but the argumentative techniques are as well. As a more immediate example of
this phenomenon, the diagonalization method is used again in Chapter 6—in a
constructive way—as a crucial step in the proof of the Arzela–Ascoli Theorem.



Chapter 2

Sequences and Series

2.1 Discussion: Rearrangements of Infinite
Series

Consider the infinite series
∞∑
n=1

(−1)n+1

n
= 1− 1

2
+
1
3
− 1
4
+
1
5
− 1
6
+
1
7
− 1
8
+ · · · .

If we naively begin adding from the left-hand side, we get a sequence of what
are called partial sums. In other words, let sn equal the sum of the first n terms
of the series, so that s1 = 1, s2 = 1/2, s3 = 5/6, s4 = 7/12, and so on. One
immediate observation is that the successive sums oscillate in a progressively
narrower space. The odd sums decrease (s1 > s3 > s5 > . . . ) while the even
sums increase (s2 < s4 < s6 < . . . ).

0 1
• •• • ••

s1s2 s3s4 s5s6 ❄

S≈.69

s2 < s4 < s6 < · · ·S · · · < s5 < s3 < s1

It seems reasonable—and we will soon prove—that the sequence (sn) eventu-
ally hones in on a value, call it S, where the odd and even partial sums “meet”.
At this moment, we cannot compute S precisely, but we know it falls somewhere
between 7/12 and 5/6. Summing a few hundred terms reveals that S ≈ .69.
Whatever its value, there is now an overwhelming temptation to write

(1) S = 1− 1
2
+
1
3
− 1
4
+
1
5
− 1
6
+
1
7
− 1
8
+ · · ·

meaning, perhaps, that if we could indeed add up all infinitely many of these
numbers, then the sum would equal S. A more familiar example of an equation

35
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of this type might be

2 = 1 +
1
2
+
1
4
+
1
8
+

1
16
+

1
32
+

1
64
+ · · · ,

the only difference being that in the second equation we have a more recognizable
value for the sum.

But now for the crux of the matter. The symbols +, −, and = in the preced-
ing equations are deceptively familiar notions being used in a very unfamiliar
way. The crucial question is whether or not properties of addition and equality
that are well understood for finite sums remain valid when applied to infinite ob-
jects such as equation (1). The answer, as we are about to witness, is somewhat
ambiguous.

Treating equation (1) in a standard algebraic way, let’s multiply through by
1/2 and add it back to equation (1):

(2)

1
2S = 1

2 − 1
4 + 1

6 − 1
8 + 1

10 − 1
12 + · · ·

+ S = 1 − 1
2 +

1
3 − 1

4 +
1
5 − 1

6 +
1
7 − 1

8 +
1
9 − 1

10 +
1
11 − 1

12 +
1
13 − · · ·

3
2 S = 1 + 1

3 − 1
2 +

1
5 + 1

7 − 1
4 +

1
9 + 1

11 − 1
6 +

1
13 · · ·

Now, look carefully at the result. The sum in equation (2) consists precisely
of the same terms as those in the original equation (1), only in a different order.
Specifically, the series in (2) is a rearrangement of (1) where we list the first
two positive terms (1 + 1

3 ) followed by the first negative term (− 1
2 ), followed

by the next two positive terms ( 1
5 +

1
7 ) and then the next negative term (− 1

4 ).
Continuing this, it is apparent that every term in (2) appears in (1) and vice
versa. The rub comes when we realize that equation (2) asserts that the sum of
these rearranged, but otherwise unaltered, numbers is equal to 3/2 its original
value. Indeed, adding a few hundred terms of equation (2) produces partial
sums in the neighborhood of 1.03. Addition, in this infinite setting, is not
commutative!

Let’s look at a similar rearrangement of the series
∞∑
n=0

(−1/2)n.

This series is geometric with first term 1 and common ratio r = −1/2. Using
the formula 1/(1− r) for the sum of a geometric series (Example 2.7.5), we get

1− 1
2
+
1
4
− 1
8
+

1
16

− 1
32
+

1
64

− 1
128

+
1
256

· · · = 1
1− (− 1

2 )
=
2
3
.

This time, some computational experimentation with the “two positives, one
negative” rearrangement

1 +
1
4
− 1
2
+

1
16
+

1
64

− 1
8
+

1
256

+
1

1024
− 1
32

· · ·
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yields partial sums quite close to 2/3. The sum of the first 30 terms, for instance,
equals .666667. Infinite addition is commutative in some instances but not in
others.

Far from being a charming theoretical oddity of infinite series, this phe-
nomenon can be the source of great consternation in many applied situations.
How, for instance, should a double summation over two index variables be de-
fined? Let’s say we are given a grid of real numbers {aij : i, j ∈ N}, where
aij = 1/2j−i if j > i, aij = −1 if j = i, and aij = 0 if j < i.



−1 1
2

1
4

1
8

1
16 · · ·

0 −1 1
2

1
4

1
8 · · ·

0 0 −1 1
2

1
4 · · ·

0 0 0 −1 1
2 · · ·

0 0 0 0 −1 · · ·
...

...
...

...
...
. . .




We would like to attach a mathematical meaning to the summation

∞∑
i,j=1

aij

whereby we intend to include every term in the preceding array in the total.
One natural idea is to temporarily fix i and sum across each row. A moment’s
reflection (and a fact about geometric series) shows that each row sums to 0.
Summing the sums of the rows, we get

∞∑
i,j=1

aij =
∞∑
i=1


 ∞∑

j=1

aij


 =

∞∑
i=1

(0) = 0.

We could just as easily have decided to fix j and sum down each column first.
In this case, we have

∞∑
i,j=1

aij =
∞∑
j=1

( ∞∑
i=1

aij

)
=

∞∑
j=1

( −1
2j−1

)
= −2.

Changing the order of the summation changes the value of the sum. One com-
mon way that double sums arise (although not this particular one) is from the
multiplication of two series. There is a natural desire to write(∑

ai

)(∑
bj

)
=
∑
i,j

aibj ,
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except that the expression on the right-hand side makes no sense at the moment.
It is the pathologies that give rise to the need for rigor. A satisfying resolu-

tion to the questions raised will require that we be absolutely precise about what
we mean as we manipulate these infinite objects. It may seem that progress is
slow at first, but that is because we do not want to fall into the trap of letting
the biases of our intuition corrupt our arguments. Rigorous proofs are meant to
be a check on intuition, and in the end we will see that they actually improve
our mental picture of the mathematical infinite. As a final example, consider
something as intuitively fundamental as the associative property of addition
applied to the series

∑∞
n=1(−1)n. Grouping the terms one way gives

(−1 + 1) + (−1 + 1) + (−1 + 1) + (−1 + 1) + · · · = 0 + 0 + 0 + 0 + · · · = 0,

whereas grouping in another yields

−1 + (1− 1) + (1− 1) + (1− 1) + (1− 1) + · · · = −1 + 0+ 0+ 0+ 0+ · · · = −1.
Manipulations that are legitimate in finite settings do not always extend to
infinite settings. Deciding when they do and why they do not is one of the
central themes of analysis.

2.2 The Limit of a Sequence

An understanding of infinite series depends heavily on a clear understanding of
the theory of sequences. In fact, most of the concepts in analysis can be reduced
to statements about the behavior of sequences. Thus, we will spend a significant
amount of time investigating sequences before taking on infinite series.

Definition 2.2.1. A sequence is a function whose domain is N.

This formal definition leads immediately to the familiar depiction of a se-
quence as an ordered list of real numbers. Given a function f : N→ R, f(n) is
just the nth term on the list. The notation for sequences reinforces this familiar
understanding.

Example 2.2.2. Each of the following are common ways to describe a sequence.

(i) (1, 1
2 ,

1
3 ,

1
4 , · · · ),

(ii) ( 1+n
n )∞n=1 = ( 2

1 ,
3
2 ,

4
3 , · · · ),

(iii) (an), where an = 2n for each n ∈ N,

(iv) (xn), where x1 = 2 and xn+1 = xn+1
2 .

On occasion, it will be more convenient to index a sequence beginning with
n = 0 or n = n0 for some natural number n0 different from 1. These minor
variations should cause no confusion. What is essential is that a sequence be an
infinite list of real numbers. What happens at the beginning of such a list is of
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little importance in most cases. The business of analysis is concerned with the
behavior of the infinite “tail” of a given sequence.

We now present what is arguably the most important definition in the book.

Definition 2.2.3 (Convergence of a Sequence). A sequence (an) converges
to a real number a if, for every positive number ε, there exists an N ∈ N such
that whenever n ≥ N it follows that |an − a| < ε.

To indicate that (an) converges to a, we write either lim an = a or (an)→ a.

In an effort to decipher this complicated definition, it helps first to consider
the ending phrase “|an − a| < ε,” and think about the points that satisfy an
inequality of this type.

Definition 2.2.4. Given a real number a ∈ R and a positive number ε > 0,
the set

Vε(a) = {x ∈ R : |x− a| < ε}
is called the ε-neighborhood of a.

Notice that Vε(a) consists of all of those points whose distance from a is less
than ε. Said another way, Vε(a) is an interval, centered at a, with radius ε.

( )

Vε(a)︷ ︸︸ ︷
a− ε a a+ ε

Recasting the definition of convergence in terms of ε-neighborhoods gives a
more geometric impression of what is being described.

Definition 2.2.3B (Convergence of a Sequence: Topological Version).
A sequence (an) converges to a if, given any ε-neighborhood Vε(a) of a, there
exists a point in the sequence after which all of the terms are in Vε(a). In other
words, every ε-neighborhood contains all but a finite number of the terms of
(an).

✲✛ ( )
a−ε a a+ε

Vε(a)︷ ︸︸ ︷
• ••••••••••••••

a1 a2 a3 · · · ❄

aN

Definition 2.2.3 and Definition 2.2.3B say precisely the same thing; the nat-
ural number N in the original version of the definition is the point where the
sequence (an) enters Vε(a), never to leave. It should be apparent that the value
of N depends on the choice of ε. The smaller the ε-neighborhood, the larger N
may have to be.
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Example 2.2.5. Consider the sequence (an), where an = 1/
√
n.

Our intuitive understanding of limits points confidently to the conclusion
that

lim
(
1√
n

)
= 0.

Before trying to prove this not too impressive fact, let’s first explore the rela-
tionship between ε and N in the definition of convergence. For the moment, take
ε to be 1/10. This defines a sort of “target zone” for the terms in the sequence.
By claiming that the limit of (an) is 0, we are saying that the terms in this
sequence eventually get arbitrarily close to 0. How close? What do we mean
by “eventually”? We have set ε = 1/10 as our standard for closeness, which
leads to the ε-neighborhood (−1/10, 1/10) centered around the limit 0. How
far out into the sequence must we look before the terms fall into this interval?
The 100th term a100 = 1/10 puts us right on the boundary, and a little thought
reveals that

if n > 100, then an ∈
(
− 1
10

,
1
10

)
.

Thus, for ε = 1/10 we choose N = 101 (or anything larger) as our response.
Now, our choice of ε = 1/10 was rather whimsical, and we can do this again,

letting ε = 1/50. In this case, our target neighborhood shrinks to (−1/50, 1/50),
and it is apparent that we must travel farther out into the sequence before an
falls into this interval. How far? Essentially, we require that

1√
n

<
1
50

which occurs as long as n > 502 = 2500.

Thus, N = 2501 is a suitable response to the challenge of ε = 1/50.
It may seem as though this duel could continue forever, with different ε

challenges being handed to us one after another, each one requiring a suitable
value of N in response. In a sense, this is correct, except that the game is
effectively over the instant we recognize a rule for how to choose N given an
arbitrary ε > 0. For this problem, the desired algorithm is implicit in the algebra
carried out to compute the previous response of N = 2501. Whatever ε happens
to be, we want

1√
n

< ε which is equivalent to insisting that n >
1
ε2

.

With this observation, we are ready to write the formal argument.

We claim that

lim
(
1√
n

)
= 0.

Proof. Let ε > 0 be an arbitrary positive number. Choose a natural number N
satisfying

N >
1
ε2

.
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We now verify that this choice of N has the desired property. Let n ≥ N . Then,

n >
1
ε2

implies
1√
n

< ε and hence |an − 0| < ε.

Quantifiers

The definition of convergence given ealier is the result of hundreds of years of
refining the intuitive notion of limit into a mathematically rigorous statement.
The logic involved is complicated and is intimately tied to the use of the quan-
tifiers “for all” and “there exists.” Learning to write a grammatically correct
convergence proof goes hand in hand with a deep understanding of why the
quantifiers appear in the order that they do.

The definition begins with the phrase,

“For all ε, there exists N ∈ N such that ...”

Looking back at our first example, we see that our formal proof begins with, “Let
ε > 0 be an arbitrary positive number.” This is followed by a construction of N
and then a demonstration that this choice of N has the desired property. This,
in fact, is a basic outline for how every convergence proof should be presented.

Template for a proof that (xn)→ x:

- “Let ε > 0 be arbitrary.”

- Demonstrate a choice for N ∈ N. This step usually requires the most
work, almost all of which is done prior to actually writing the formal
proof.

- Now, show that N actually works.

- “Assume n ≥ N.”

- With N well chosen, it should be possible to derive the inequality
|xn − x| < ε.

Example 2.2.6. Show

lim
(
n+ 1
n

)
= 1.

As mentioned, before attempting a formal proof, we first need to do some
preliminary scratch work. In the first example, we experimented by assigning
specific values to ε (and it is not a bad idea to do this again), but let us skip
straight to the algebraic punch line. The last line of our proof should be that
for suitably large values of n, ∣∣∣∣n+ 1n

− 1
∣∣∣∣ < ε.
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Because ∣∣∣∣n+ 1n
− 1
∣∣∣∣ = 1

n
,

this is equivalent to the inequality 1/n < ε or n > 1/ε. Thus, choosing N to be
an integer greater than 1/ε will suffice.

With the work of the proof done, all that remains is the formal writeup.

Proof. Let ε > 0 be arbitrary. Choose N ∈ N with N > 1/ε. To verify that
this choice of N is appropriate, let n ∈ N satisfy n ≥ N . Then, n ≥ N implies
n > 1/ε, which is the same as saying 1/n < ε. Finally, this means∣∣∣∣n+ 1n

− 1
∣∣∣∣ < ε,

as desired.

Divergence

Significant insight into the role of the quantifiers in the definition of convergence
can be gained by studying an example of a sequence that does not have a limit.

Example 2.2.7. Consider the sequence(
1,−1

2
,
1
3
,−1
4
,
1
5
,−1
5
,
1
5
,−1
5
,
1
5
,−1
5
,
1
5
,−1
5
,
1
5
,−1
5
, · · ·
)

.

How can we argue that this sequence does not converge to zero? Looking at the
first few terms, it seems the initial evidence actually supports such a conclusion.
Given a challenge of ε = 1/2, a little reflection reveals that after N = 3 all the
terms fall into the neighborhood (−1/2, 1/2). We could also handle ε = 1/4.
(What is the smallest possible N in this case?)

But the definition of convergence says “For all ε > 0...,” and it should be
apparent that there is no response to a choice of ε = 1/10, for instance. This
leads us to an important observation about the logical negation of the definition
of convergence of a sequence. To prove that a particular number x is not the
limit of a sequence (xn), we must produce a single value of ε for which no N ∈ N
works. More generally speaking, the negation of a statement that begins “For
all P, there exists Q...” is the statement, “For at least one P, no Q is possible...”
For instance, how could we disprove the spurious claim that “At every college
in the United States, there is a student who is at least seven feet tall”?

We have argued that the preceding sequence does not converge to 0. Let’s
argue against the claim that it converges to 1/5. Choosing ε = 1/10 produces
the neighborhood (1/10, 3/10). Although the sequence continually revisits this
neighborhood, there is no point at which it enters and never leaves as the defini-
tion requires. Thus, no N exists for ε = 1/10, so the sequence does not converge
to 1/5.

Of course, this sequence does not converge to any other real number, and it
would be more satisfying to simply say that this sequence does not converge.
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Definition 2.2.8. A sequence that does not converge is said to diverge.

Although it is not too difficult, we will postpone arguing for divergence in general
until we develop a more economical divergence criterion later in Section 2.5.

Exercises

Exercise 2.2.1. Verify, using the definition of convergence of a sequence, that
the following sequences converge to the proposed limit.

(a) lim 1
(6n2+1) = 0.

(b) lim 3n+1)
(2n+5) =

3
2 .

(c) lim 2√
n+3 = 0.

Exercise 2.2.2. What happens if we reverse the order of the quantifiers in
Definition 2.2.3?

Definition: A sequence (xn) verconges to x if there exists an ε > 0 such that
for all N ∈ N it is true that n ≥ N implies |xn − x| < ε.

Give an example of a vercongent sequence. Can you give an example of a
vergonent sequence that is divergent? What exactly is being described in this
strange definition?

Exercise 2.2.3. Describe what we would have to demonstrate in order to dis-
prove each of the following statements.

(a) At every college in the United States, there is a student who is at least
seven feet tall.

(b) For all colleges in the United States, there exists a professor who gives
every student a grade of either A or B.

(c) There exists a college in the United States where every student is at least
six feet tall.

Exercise 2.2.4. Argue that the sequence

1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, (5 zeros), 1, . . .

does not converge to zero. For what values of ε > 0 does there exist a response
N . For which values of ε > 0 is there no suitable response?

Exercise 2.2.5. Let [[x]] be the greatest integer less than or equal to x. For ex-
ample, [[π]] = 3 and [[3]] = 3. Find lim an and supply proofs for each conclusion
if

(a) an = [[1/n]],
(b) an = [[(10 + n)/2n]].

Reflecting on these examples, comment on the statement following Definition
2.2.3 that “the smaller the ε-neighborhood, the larger N may have to be.”

Exercise 2.2.6. Suppose that for a particular ε > 0 we have found a suitable
value of N that “works” for a given sequence in the sense of Definition 2.2.3.

(a) Then, any larger/smaller (pick one) N will also work for the same ε > 0.
(b) Then, this same N will also work for any larger/smaller value of ε.
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Exercise 2.2.7. Informally speaking, the sequence
√
n “converges to infinity.”

(a) Imitate the logical structure of Definition 2.2.3 to create a rigorous defi-
nition for the mathematical statement limxn =∞. Use this definition to prove
lim

√
n =∞.

(b) What does your definition in (a) say about the particular sequence
(1, 0, 2, 0, 3, 0, 4, 0, 5, 0, . . . )?

Exercise 2.2.8. Here are two useful definitions:

(i) A sequence (an) is eventually in a set A ⊆ R if there exists an N ∈ N
such that an ∈ A for all n ≥ N .

(ii) A sequence (an) is frequently in a set A ⊆ R if, for every N ∈ N, there
exists an n ≥ N such that an ∈ A.

(a) Is the sequence (−1)n eventually or frequently in the set {1}?
(b) Which definition is stronger? Does frequently imply eventually or does

eventually imply frequently?
(c) Give an alternate rephrasing of Definition 2.2.3B using either frequently

or eventually. Which is the term we want?
(d) Suppose an infinite number of terms of a sequence (xn) are equal to

2. Is (xn) necessarily eventually in the interval (1.9, 2.1)? Is it frequently in
(1.9, 2.1)?

2.3 The Algebraic and Order Limit Theorems

The real purpose of creating a rigorous definition for convergence of a sequence is
not to have a tool to verify computational statements such as lim 2n/(n+2) = 2.
Historically, a definition of the limit like Definition 2.2.3 came 150 years after the
founders of calculus began working with intuitive notions of convergence. The
point of having such a logically tight description of convergence is so that we can
confidently state and prove statements about convergence sequences in general.
We are ultimately trying to resolve arguments about what is and is not true
regarding the behavior of limits with respect to the mathematical manipulations
we intend to inflict on them.

As a first example, let us prove that convergent sequences are bounded. The
term“bounded” has a rather familiar connotation but, like everything else, we
need to be explicit about what it means in this context.

Definition 2.3.1. A sequence (xn) is bounded if there exists a number M > 0
such that |xn| ≤ M for all n ∈ N.

Geometrically, this means that we can find an interval [−M,M ] that contains
every term in the sequence (xn).

Theorem 2.3.2. Every convergent sequence is bounded.
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Proof. Assume (xn) converges to a limit l. This means that given a particular
value of ε, say ε = 1, we know there must exist an N ∈ N such that if n ≥ N ,
then xn is in the interval (l − 1, l + 1). Not knowing whether l is positive or
negative, we can certainly conclude that

|xn| < |l|+ 1

for all n ≥ N .

✲✛ ( )
l−1 l l+1

xn, n≥N︷ ︸︸ ︷
• ••••••••••••
x5 x4x2 x1 x3

0 ✻
M

We still need to worry (slightly) about the the terms in the sequence that
come before the Nth term. Because there are only a finite number of these, we
let

M = max{|x1|, |x2|, |x3|, . . . , |xN−1|, |l|+ 1}.
It follows that |xn| ≤ M for all n ∈ N, as desired.

This chapter began with a demonstration of how applying familiar algebraic
properties (commutativity of addition) to infinite objects (series) can lead to
paradoxical results. These examples are meant to instill in us a sense of caution
and justify the extreme care we are taking in drawing our conclusions. The
following theorems illustrate that sequences behave extremely well with respect
to the operations of addition, multiplication, division, and order.

Theorem 2.3.3 (Algebraic Limit Theorem). Let lim an = a, and lim bn =
b. Then,

(i) lim(can) = ca, for all c ∈ R;

(ii) lim(an + bn) = a+ b;

(iii) lim(anbn) = ab;

(iv) lim(an/bn) = a/b, provided b �= 0.

Proof. (i) Consider the case where c �= 0. We want to show that the sequence
(can) converges to ca, so the structure of the proof follows the template we
described in Section 2.2. First, we let ε be some arbitrary positive number. Our
goal is to find some point in the sequence (can) after which we have

|can − ca| < ε.

Now,
|can − ca| = |c||an − a|.
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We are given that (an) → a, so we know we can make |an − a| as small as we
like. In particular, we can choose an N such that

|an − a| < ε

|c|
whenever n ≥ N. To see that this N indeed works, observe that, for all n ≥ N ,

|can − ca| = |c||an − a| < |c| ε

|c| = ε.

The case c = 0 reduces to showing that the constant sequence (0, 0, 0, . . . )
converges to 0. This is addressed in Exercise 2.3.1.

Before continuing with parts (ii), (iii), and (iv), we should point out that
the proof of (i), while somewhat short, is extremely typical for a convergence
proof. Before embarking on a formal argument, it is a good idea to take an
inventory of what we want to make less than ε, and what we are given can be
made small for suitable choices of n. For the previous proof, we wanted to make
|can− ca| < ε, and we were given |an−a| < anything we like (for large values of
n). Notice that in (i), and all of the ensuing arguments, the strategy each time
is to bound the quantity we want to be less than ε, which in each case is

|(terms of sequence)− (proposed limit)|,
with some algebraic combination of quantities over which we have control.

(ii) To prove this statement, we need to argue that the quantity

|(an + bn)− (a+ b)|
can be made less than an arbitrary ε using the assumptions that |an − a| and
|bn − b| can be made as small as we like for large n. The first step is to use the
triangle inequality (Example 1.2.5) to say

|(an + bn)− (a+ b)| = |(an − a) + (bn − b)| ≤ |an − a|+ |bn − b|.
Again, we let ε > 0 be arbitrary. The technique this time is to divide the ε
between the two expressions on the right-hand side in the preceding inequality.
Using the hypothesis that (an)→ a, we know there exists an N1 such that

|an − a| < ε

2
whenever n ≥ N1.

Likewise, the assumption that (bn) → b means that we can choose an N2 so
that

|bn − b| < ε

2
whenever n ≥ N2.

The question now arises as to which of N1 or N2 we should take to be our
choice of N . By choosing N = max{N1, N2}, we ensure that if n ≥ N , then
n ≥ N1 and n ≥ N2. This allows us to conclude that

|(an + bn)− (a+ b)| ≤ |an − a|+ |bn − b|
<

ε

2
+

ε

2
= ε
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for all n ≥ N , as desired.

(iii) To show that (anbn)→ ab, we begin by observing that

|anbn − ab| = |anbn − abn + abn − ab|
≤ |anbn − abn|+ |abn − ab|
= |bn||an − a|+ |a||bn − b|.

In the initial step, we subtracted and then added abn, which created an oppor-
tunity to use the triangle inequality. Essentially, we have broken up the distance
from anbn to ab with a midway point and are using the sum of the two distances
to overestimate the original distance. This clever trick will become a familiar
technique in arguments to come.

Letting ε > 0 be arbitrary, we again proceed with the strategy of making each
piece in the preceding inequality less than ε/2. For the piece on the right-hand
side (|a||bn − b|), if a �= 0 we can choose N1 so that

n ≥ N1 implies |bn − b| < 1
|a|

ε

2
.

(The case when a = 0 is handled in Exercise 2.3.7.) Getting the term on the
left-hand side (|bn||an − a|) to be less than ε/2 is complicated by the fact that
we have a variable quantity |bn| to contend with as opposed to the constant |a|
we encountered in the right-hand term. The idea is to replace |bn| with a worst-
case estimate. Using the fact that convergent sequences are bounded (Theorem
2.3.2), we know there exists a bound M > 0 satisfying |bn| ≤ M for all n ∈ N.
Now, we can choose N2 so that

|an − a| < 1
M

ε

2
whenever n ≥ N2.

To finish the argument, pick N = max{N1, N2}, and observe that if n ≥ N ,
then

|anbn − ab| ≤ |anbn − abn|+ |abn − ab|
= |bn||an − a|+ |a||bn − b|
≤ M |an − a|+ |a||bn − b|
< M

( ε

M2

)
+ |a|

(
ε

|a|2
)
= ε.

(iv) This final statement will follow from (iii) if we can prove that

(bn)→ b implies
(
1
bn

)
→ 1

b

whenever b �= 0. We begin by observing that∣∣∣∣ 1bn − 1
b

∣∣∣∣ = |b− bn|
|b||bn| .



48 Chapter 2. Sequences and Series

Because (bn)→ b, we can make the preceding numerator as small as we like by
choosing n large. The problem comes in that we need a worst-case estimate on
the size of 1/(|b||bn|). Because the bn terms are in the denominator, we are no
longer interested in an upper bound on |bn| but rather in an inequality of the
form |bn| ≥ δ > 0. This will then lead to a bound on the size of 1/(|b||bn|).

The trick is to look far enough out into the sequence (bn) so that the terms
are closer to b than they are to 0. Consider the particular value ε0 = |b|/2.
Because (bn) → b, there exists an N1 such that |bn − b| < |b|/2 for all n ≥ N1.
This implies |bn| > |b|/2.

Next, choose N2 so that n ≥ N2 implies

|bn − b| < ε|b|2
2

.

Finally, if we let N = max{N1, N2}, then n ≥ N implies∣∣∣∣ 1bn − 1
b

∣∣∣∣ = |b− bn| 1
|b||bn| <

ε|b|2
2

1

|b| |b|2
= ε.

Limits and Order

Although there are a few dangers to avoid (see Exercise 2.3.8), the Algebraic
Limit Theorem verifies that the relationship between algebraic combinations of
sequences and the limiting process is as trouble-free as we could hope for. Limits
can be computed from the individual component sequences provided that each
component limit exists. The limiting process is also well-behaved with respect
to the order operation.

Theorem 2.3.4 (Order Limit Theorem). Assume lim an = a and lim bn =
b.

(i) If an ≥ 0 for all n ∈ N, then a ≥ 0.

(ii) If an ≤ bn for all n ∈ N, then a ≤ b.

(iii) If there exists c ∈ R for which c ≤ bn for all n ∈ N, then c ≤ b. Similarly,
if an ≤ c for all n ∈ N, then a ≤ c.

Proof. (i) We will prove this by contradiction; thus, let’s assume a < 0. The
idea is to produce a term in the sequence (an) that is also less than zero. To
do this, we consider the particular value ε0 = |a|. The definition of convergence
guarantees that we can find an N such that |an − a| < |a| for all n ≥ N . In
particular, this would mean that |aN − a| < |a|, which implies aN < 0. This
contradicts our hypothesis that aN ≥ 0. We therefore conclude that a ≥ 0.

( )
a−ε0 a 0=a+ε0

•••• • • • • • •· · · a2 a1❄
aN
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(ii) The Algebraic Limit Theorem ensures that the sequence (bn − an) con-
verges to b−a. Because bn−an ≥ 0, we can apply part (i) to get that b−a ≥ 0.

(iii) Take an = c (or bn = c) for all n ∈ N, and apply (ii).

A word about the idea of “tails” is in order. Loosely speaking, limits and
their properties do not depend at all on what happens at the beginning of
the sequence but are strictly determined by what happens when n gets large.
Changing the value of the first ten—or ten thousand—terms in a particular
sequence has no effect on the limit. Theorem 2.3.4, part (i), for instance, assumes
that an ≥ 0 for all n ∈ N. However, the hypothesis could be weakened by
assuming only that there exists some point N1 where an ≥ 0 for all n ≥ N1.
The theorem remains true, and in fact the same proof is valid with the provision
that when N is chosen it be at least as large as N1.

In the language of analysis, when a property (such as non-negativity) is not
necessarily true about some finite number of initial terms but is true for all
terms in the sequence after some point N , we say that the sequence eventu-
ally has this property. (See Exercise 2.2.8.) Theorem 2.3.4, part (i), could be
restated, “Convergent sequences that are eventually nonnegative converge to
nonnegative limits.” Parts (ii) and (iii) have similar modifications, as will many
other upcoming results.

Exercises

Exercise 2.3.1. Show that the constant sequence (a, a, a, a, . . . ) converges to
a.

Exercise 2.3.2. Let xn ≥ 0 for all n ∈ N.
(a) If (xn)→ 0, show that (

√
xn)→ 0.

(b) If (xn)→ x, show that (
√
xn)→

√
x.

Exercise 2.3.3 (Squeeze Theorem). Show that if xn ≤ yn ≤ zn for all n ∈
N, and if limxn = lim zn = l, then lim yn = l as well.

Exercise 2.3.4. Show that limits, if they exist, must be unique. In other words,
assume lim an = l1 and lim an = l2, and prove that l1 = l2.

Exercise 2.3.5. Let (xn) and (yn) be given, and define (zn) to be the “shuffled”
sequence (x1, y1, x2, y2, x3, y3, . . . , xn, yn, . . . ). Prove that (zn) is convergent if
and only if (xn) and (yn) are both convergent with limxn = lim yn.

Exercise 2.3.6. (a) Show that if (bn)→ b, then the sequence of absolute values
|bn| converges to |b|.

(b) Is the converse of part (a) true? If we know that |bn| → |b|, can we
deduce that (bn)→ b?

Exercise 2.3.7. (a) Let (an) be a bounded (not necessarily convergent) se-
quence, and assume lim bn = 0. Show that lim(anbn) = 0. Why are we not
allowed to use the Algebraic Limit Theorem to prove this?
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(b) Can we conclude anything about the convergence of (anbn) if we assume
that (bn) converges to some nonzero limit b?

(c) Use (a) to prove Theorem 2.3.3, part (iii), for the case when a = 0.

Exercise 2.3.8. Give an example of each of the following, or state that such a
request is impossible by referencing the proper theorem(s):

(a) sequences (xn) and (yn), which both diverge, but whose sum (xn + yn)
converges;

(b) sequences (xn) and (yn), where (xn) converges, (yn) diverges, and (xn+
yn) converges;

(c) a convergent sequence (bn) with bn �= 0 for all n such that (1/bn) diverges;
(d) an unbounded sequence (an) and a convergent sequence (bn) with (an −

bn) bounded;
(e) two sequences (an) and (bn), where (anbn) and (an) converge but (bn)

does not.

Exercise 2.3.9. Does Theorem 2.3.4 remain true if all of the inequalities are
assumed to be strict? If we assume, for instance, that a convergent sequence
(xn) satisfies xn > 0 for all n ∈ N, what may we conclude about the limit?

Exercise 2.3.10. If (an)→ 0 and |bn − b| ≤ an, then show that (bn)→ b.

Exercise 2.3.11 (Cesaro Means). Show that if (xn) is a convergent sequence,
then the sequence given by the averages

yn =
x1 + x2 + · · ·+ xn

n

also converges to the same limit.
Give an example to show that it is possible for the sequence (yn) of averages

to converge even if (xn) does not.

Exercise 2.3.12. Consider the doubly indexed array am,n = m/(m+ n).
(a) Intuitively speaking, what should limm,n→∞ am,n represent? Compute

the “iterated” limits

lim
n→∞ lim

m→∞ am,n and lim
m→∞ lim

n→∞ am,n.

(b) Formulate a rigorous definition in the style of Definition 2.2.3 for the
statement

lim
m,n→∞ am,n = l.

2.4 The Monotone Convergence Theorem and a
First Look at Infinite Series

We showed in Theorem 2.3.2 that convergent sequences are bounded. The
converse statement is certainly not true. It is not too difficult to produce an
example of a bounded sequence that does not converge. On the other hand, if
a bounded sequence is monotone, then in fact it does converge.
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Definition 2.4.1. A sequence (an) is increasing if an ≤ an+1 for all n ∈ N and
decreasing if an ≥ an+1 for all n ∈ N. A sequence is monotone if it is either
increasing or decreasing.

Theorem 2.4.2 (Monotone Convergence Theorem). If a sequence is mono-
tone and bounded, then it converges.

Proof. Let (an) be monotone and bounded. To prove (an) converges using the
definition of convergence, we are going to need a candidate for the limit. Let’s
assume the sequence is increasing (the decreasing case is handled similarly), and
consider the set of points {an : n ∈ N}. By assumption, this set is bounded, so
we can let

s = sup{an : n ∈ N}.
It seems reasonable to claim that lim(an) = s.

✲✛ • • • • • • ••••••••···a2a1 an≤an+1... ❄
s=sup{an;n∈N}

To prove this, let ε > 0. Because s is the least upper bound of {an : n ∈ N},
s − ε is not an upper bound, so there exists a point in the sequence aN such
that s − ε < aN . Now, the fact that (an) is increasing implies that if n ≥ N ,
then aN ≤ an. Hence,

s− ε < aN ≤ an ≤ s < s+ ε,

which implies |an − s| < ε, as desired.

The Monotone Convergence Theorem is extremely useful for the study of
infinite series, largely because it asserts the convergence of a sequence without
explicit mention of the actual limit. This is a good moment to do some prelimi-
nary investigations, so it is time to formalize the relationship between sequences
and series.

Definition 2.4.3. Let (bn) be a sequence. An infinite series is a formal expres-
sion of the form ∞∑

n=1

bn = b1 + b2 + b3 + b4 + b5 + · · · .

We define the corresponding sequence of partial sums (sm) by

sm = b1 + b2 + b3 + · · ·+ bm,

and say that the series
∑∞

n=1 bn converges to B if the sequence (sm) converges
to B. In this case, we write

∑∞
n=1 bn = B.
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Example 2.4.4. Consider

∞∑
n=1

1
n2 .

Because the terms in the sum are all positive, the sequence of partial sums given
by

sm = 1 +
1
4
+
1
9
+ · · ·+ 1

m2

is increasing. The question is whether or not we can find some upper bound on
(sm). To this end, observe

sm = 1 +
1
2 · 2 +

1
3 · 3 +

1
4 · 4 + · · ·+ 1

m2

< 1 +
1
2 · 1 +

1
3 · 2 +

1
4 · 3 + · · ·+ 1

m(m− 1)

= 1 +
(
1− 1

2

)
+
(
1
2
− 1
3

)
+
(
1
3
− 1
4

)
+ · · ·+

(
1

(m− 1)
− 1

m

)
= 1 + 1− 1

m
< 2.

Thus, 2 is an upper bound for the sequence of partial sums, so by the Monotone
Convergence Theorem,

∑∞
n=1 1/n

2 converges to some (presently unknown) limit
less than 2.

Example 2.4.5 (Harmonic Series). This time, consider the so-called har-
monic series

∞∑
n=1

1
n
.

Again, we have an increasing sequence of partial sums,

sm = 1 +
1
2
+
1
3
+ · · ·+ 1

m
,

that upon naive inspection appears as though it may be bounded. However, 2
is no longer an upper bound because

s4 = 1 +
1
2
+
(
1
3
+
1
4

)
> 1 +

1
2
+
(
1
4
+
1
4

)
= 2.
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A similar calculation shows that s8 > 2 1
2 , and we can see that in general

s2k = 1 +
1
2
+
(
1
3
+
1
4

)
+
(
1
5
+ · · ·+ 1

8

)
+ · · ·+

(
1

2k−1 + 1
+ · · ·+ 1

2k

)

> 1 +
1
2
+
(
1
4
+
1
4

)
+
(
1
8
+ · · ·+ 1

8

)
+ · · ·+

(
1
2k
+ · · ·+ 1

2k

)

= 1 +
1
2
+ 2
(
1
4

)
+ 4
(
1
8

)
+ · · ·+ 2k−1

(
1
2k

)
= 1 +

1
2
+
1
2
+
1
2
+ · · ·+ 1

2

= 1 + k

(
1
2

)
,

which is unbounded. Thus, despite the incredibly slow pace, the sequence of
partial sums of

∑∞
n=1 1/n eventually surpasses every number on the positive real

line. Because convergent sequences are bounded, the harmonic series diverges.

The previous example is a special case of a general argument that can be
used to determine the convergence or divergence of a large class of infinite series.

Theorem 2.4.6 (Cauchy Condensation Test). Suppose (bn) is decreasing
and satisfies bn ≥ 0 for all n ∈ N. Then, the series

∑∞
n=1 bn converges if and

only if the series

∞∑
n=0

2nb2n = b1 + 2b2 + 4b4 + 8b8 + 16b16 + · · ·

converges.

Proof. First, assume that
∑∞

n=0 2
nb2n converges. Theorem 2.3.2 guarantees

that the partial sums

tk = b1 + 2b2 + 4b4 + · · ·+ 2kb2k

are bounded; that is, there exists an M > 0 such that tk ≤ M for all k ∈ N.
We want to prove that

∑∞
n=1 bn converges. Because bn ≥ 0, we know that the

partial sums are increasing, so we only need to show that

sm = b1 + b2 + b3 + · · ·+ bm

is bounded.
Fixm and let k be large enough to ensurem ≤ 2k+1−1. Then, sm ≤ s2k+1−1

and

s2k+1−1 = b1 + (b2 + b3) + (b4 + b5 + b6 + b7) + · · ·+ (b2k + · · ·+ b2k+1−1)
≤ b1 + (b2 + b2) + (b4 + b4 + b4 + b4) + · · ·+ (b2k + · · ·+ b2k)
= b1 + 2b2 + 4b4 + · · ·+ 2kb2k = tk.
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Thus, sm ≤ tk ≤ M , and the sequence (sm) is bounded. By the Monotone
Convergence Theorem, we can conclude that

∑∞
n=1 bn converges.

The proof that
∑∞

n=0 2
nb2n diverges implies

∑∞
n=1 bn diverges is similar to

Example 2.4.5. The details are requested in Exercise 2.4.1.

Corollary 2.4.7. The series
∑∞

n=1 1/n
p converges if and only if p > 1.

A rigorous argument for this corollary requires a few basic facts about geo-
metric series. The proof is requested in Exercise 2.7.7 at the end of Section 2.7
where geometric series are discussed.

Exercises

Exercise 2.4.1. Complete the proof of Theorem 2.4.6 by showing that if the
series

∑∞
n=0 2

nb2n diverges, then so does
∑∞

n=1 bn. Example 2.4.5 may be a
useful reference.

Exercise 2.4.2. (a) Prove that the sequence defined by x1 = 3 and

xn+1 =
1

4− xn

converges.
(b) Now that we know limxn exists, explain why limxn+1 must also exist

and equal the same value.
(c) Take the limit of each side of the recursive equation in part (a) of this

exercise to explicitly compute limxn.

Exercise 2.4.3. Following the model of Exercise 2.4.2, show that the sequence
defined by y1 = 1 and yn+1 = 4− 1/yn converges and find the limit.

Exercise 2.4.4. Show that

√
2,
√
2
√
2,

√
2
√
2
√
2, . . .

converges and find the limit.

Exercise 2.4.5 (Calculating Square Roots). Let x1 = 2, and define

xn+1 =
1
2

(
xn +

2
xn

)
.

(a) Show that x2
n is always greater than 2, and then use this to prove that

xn − xn+1 ≥ 0. Conclude that limxn =
√
2.

(b) Modify the sequence (xn) so that it converges to
√
c.

Exercise 2.4.6 (Limit Superior). Let (an) be a bounded sequence.
(a) Prove that the sequence defined by yn = sup{ak : k ≥ n} converges.
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(b) The limit superior of (an), or lim sup an, is defined by

lim sup an = lim yn,

where yn is the sequence from part (a) of this exercise. Provide a reasonable
definition for lim inf an and briefly explain why it always exists for any bounded
sequence.

(c) Prove that lim inf an ≤ lim sup an for every bounded sequence, and give
an example of a sequence for which the inequality is strict.

(d) Show that lim inf an = lim sup an if and only if lim an exists. In this
case, all three share the same value.

2.5 Subsequences and the Bolzano–Weierstrass
Theorem

In Example 2.4.5, we showed that the sequence of partial sums (sm) of the
harmonic series does not converge by focusing our attention on a particular
subsequence (s2k) of the original sequence. For the moment, we will put the
topic of infinite series aside and more fully develop the important concept of
subsequences.

Definition 2.5.1. Let (an) be a sequence of real numbers, and let n1 < n2 <
n3 < n4 < n5 < · · · be an increasing sequence of natural numbers. Then the
sequence

an1 , an2 , an3 , an4 , an5 , · · ·
is called a subsequence of (an) and is denoted by (anj

), where j ∈ N indexes
the subsequence.

Notice that the order of the terms in a subsequence is the same as in the
original sequence, and repetitions are not allowed. Thus if

(an) =
(
1,
1
2
,
1
3
,
1
4
,
1
5
,
1
6
, · · ·
)

,

then (
1
2
,
1
4
,
1
6
,
1
8
, · · ·
)

and
(
1
10

,
1
100

,
1

1000
,

1
10000

, · · ·
)

are examples of legitimate subsequences, whereas(
1
10

,
1
5
,
1
100

,
1
50

,
1

1000
,
1
500

, · · ·
)

and
(
1, 1,

1
3
,
1
5
,
1
7
,
1
9
, · · ·
)

are not.

Theorem 2.5.2. Subsequences of a convergent sequence converge to the same
limit as the original sequence.
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Proof. Exercise 2.5.1

This not too surprising result has several somewhat surprising applications.
It is the key ingredient for understanding when infinite sums are associative
(Exercise 2.5.2). We can also use it in the following clever way to compute
values of some familiar limits.

Example 2.5.3. Let 0 < b < 1. Because

b > b2 > b3 > b4 > · · · > 0,

the sequence (bn) is decreasing and bounded below. The Monotone Convergence
Theorem allows us to conclude that (bn) converges to some l satisfying b > l ≥ 0.
To compute l, notice that (b2n) is a subsequence, so (b2n)→ l by Theorem 2.5.2.
But (b2n) = (bn)(bn), so by the Algebraic Limit Theorem, (b2n) → l · l = l2.
Because limits are unique, l2 = l, and thus l = 0.

Without much trouble (Exercise 2.5.5), we can generalize this example to
conclude (bn)→ 0 whenever −1 < b < 1.

Example 2.5.4 (Divergence Criterion). Theorem 2.5.2 is also useful for pro-
viding economical proofs for divergence. In Example 2.2.7, we were quite sure
that (

1,−1
2
,
1
3
,−1
4
,
1
5
,−1
5
,
1
5
,−1
5
,
1
5
,−1
5
,
1
5
,−1
5
,
1
5
,−1
5
, · · ·
)

did not converge to any proposed limit. Notice that(
1
5
,
1
5
,
1
5
,
1
5
,
1
5
, · · ·
)

is a subsequence that converges to 1/5. Also,(
−1
5
,−1
5
,−1
5
,−1
5
,−1
5
, · · ·
)

is a different subsequence of the original sequence that converges to −1/5. Be-
cause we have two subsequences converging to two different limits, we can rig-
orously conclude that the original sequence diverges.

The Bolzano–Weierstrass Theorem

In the previous example, it was rather easy to spot a convergent subsequence
(or two) hiding in the original sequence. For bounded sequences, it turns out
that it is always possible to find at least one such convergent subsequence.

Theorem 2.5.5 (Bolzano–Weierstrass Theorem). Every bounded sequence
contains a convergent subsequence.
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Proof. Let (an) be a bounded sequence so that there exists M > 0 satisfying
|an| ≤ M for all n ∈ N. Bisect the closed interval [−M,M ] into the two closed
intervals [−M, 0] and [0,M ]. (The midpoint is included in both halves.) Now, it
must be that at least one of these closed intervals contains an infinite number of
the points in the sequence (an). Select a half for which this is the case and label
that interval as I1. Then, let an1 be some point in the sequence (an) satisfying
an1 ∈ I1.

−M 0 M✻

an1

❄

an2I1︷ ︸︸ ︷

︸ ︷︷ ︸
I2

• • • • • • •••••••• • • • • • •

Next, we bisect I1 into closed intervals of equal length, and let I2 be a
half that again contains an infinite number of points of the original sequence.
Because there are an infinite number of points from (an) to choose from, we
can select an an2 from the original sequence with n2 > n1 and an2 ∈ I2. In
general, we construct the closed interval Ik by taking a half of Ik−1 containing
an infinite number of points of (an) and then select nk > nk−1 > · · · > n2 > n1
so that ank

∈ Ik.
We want to argue that (ank

) is a convergent subsequence, but we need a
candidate for the limit. The sets

I1 ⊇ I2 ⊇ I3 ⊇ · · ·

form a nested sequence of closed intervals, and by the Nested Interval Property
there exists at least one point x ∈ R contained in every Ik. This provides us
with the candidate we were looking for. It just remains to show that (ank

)→ x.
Let ε > 0. By construction, the length of Ik is M(1/2)k−1 which converges

to zero. (This follows from Example 2.5.3 and the Algebraic Limit Theorem.)
Choose N so that k ≥ N implies that the length of Ik is less than ε. Because x
and ank

are both in Ik, it follows that |ank
− x| < ε.

Exercises

Exercise 2.5.1. Prove Theorem 2.5.2.

Exercise 2.5.2. (a) Prove that if an infinite series converges, then the associa-
tive property holds. Assume a1 + a2 + a3 + a4 + a5 + · · · converges to a limit L
(i.e., the sequence of partial sums (sn)→ L). Show that any regrouping of the
terms

(a1 + a2 + · · ·+ an1) + (an1+1 + · · ·+ an2) + (an2+1 + · · ·+ an3) + · · ·
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leads to a series that also converges to L.
(b) Compare this result to the example discussed at the end of Section 2.1

where infinite addition was shown not to be associative. Why doesn’t our proof
in (a) apply to this example?

Exercise 2.5.3. Give an example of each of the following, or argue that such
a request is impossible.

(a) A sequence that does not contain 0 or 1 as a term but contains subse-
quences converging to each of these values.

(b) A monotone sequence that diverges but has a convergent subsequence.
(c) A sequence that contains subsequences converging to every point in the

infinite set {1, 1/2, 1/3, 1/4, 1/5, . . . }.
(d) An unbounded sequence with a convergent subsequence.
(e) A sequence that has a subsequence that is bounded but contains no

subsequence that converges.

Exercise 2.5.4. Assume (an) is a bounded sequence with the property that
every convergent subsequence of (an) converges to the same limit a ∈ R. Show
that (an) must converge to a.

Exercise 2.5.5. Extend the result proved in Example 2.5.3 to the case |b| < 1.
Show lim(bn) = 0 whenever −1 < b < 1.

Exercise 2.5.6. Let (an) be a bounded sequence, and define the set

S = {x ∈ R : x < an for infinitely many terms an}.
Show that there exists a subsequence (ank

) converging to s = supS. (This is
a direct proof of the Bolzano–Weierstrass Theorem using the Axiom of Com-
pleteness.)

2.6 The Cauchy Criterion

The following definition bears a striking resemblance to the definition of con-
vergence for a sequence.

Definition 2.6.1. A sequence (an) is called a Cauchy sequence if, for every
ε > 0, there exists an N ∈ N such that whenever m,n ≥ N it follows that
|an − am| < ε.

To make the comparison easier, let’s restate the definition of convergence.

Definition 2.2.3 (Convergence of a Sequence). A sequence (an) converges
to a real number a if, for every ε > 0, there exists an N ∈ N such that whenever
n ≥ N it follows that |an − a| < ε.

As we have discussed, the definition of convergence asserts that, given an
arbitrary positive ε, it is possible to find a point in the sequence after which
the terms of the sequence are all closer to the limit a than the given ε. On



2.6. The Cauchy Criterion 59

the other hand, a sequence is a Cauchy sequence if, for every ε, there is a
point in the sequence after which the terms are all closer to each other than the
given ε. To spoil the surprise, we will argue in this section that in fact these
two definitions are equivalent: Convergent sequences are Cauchy sequences,
and Cauchy sequences converge. The significance of the definition of a Cauchy
sequence is that there is no mention of a limit. This is somewhat like the
situation with the Monotone Convergence Theorem in that we will have another
way of proving that sequences converge without having any explicit knowledge
of what the limit might be.

Theorem 2.6.2. Every convergent sequence is a Cauchy sequence.

Proof. Assume (xn) converges to x. To prove that (xn) is Cauchy, we must
find a point in the sequence after which we have |xn − xm| < ε. This can be
done using an application of the triangle inequality. The details are requested
in Exercise 2.6.2.

The converse is a bit more difficult to prove, mainly because, in order to prove
that a sequence converges, we must have a proposed limit for the sequence to
approach. We have been in this situation before in the proofs of the Monotone
Convergence Theorem and the Bolzano–Weierstrass Theorem. Our strategy
here will be to use the Bolzano–Weierstrass Theorem. This is the reason for the
next lemma. (Compare this with Theorem 2.3.2.)

Lemma 2.6.3. Cauchy sequences are bounded.

Proof. Given ε = 1, there exists an N such that |xm−xn| < 1 for all m,n ≥ N.
Thus, we must have |xn| < |xN |+ 1 for all n ≥ N . It follows that

M = max{|x1|, |x2|, |x3|, . . . , |xN−1|, |xN |+ 1}
is a bound for the sequence (xn).

Theorem 2.6.4 (Cauchy Criterion). A sequence converges if and only if it
is a Cauchy sequence.

Proof. (⇒) This direction is Theorem 2.6.2.
(⇐) For this direction, we start with a Cauchy sequence (xn). Lemma

2.6.3 guarantees that (xn) is bounded, so we may use the Bolzano–Weierstrass
Theorem to produce a convergent subsequence (xnk

). Set

x = limxnk
.

The idea is to show that the original sequence (xn) converges to this same limit.
Once again, we will use a triangle inequality argument. We know the terms in
the subsequence are getting close to the limit x, and the assumption that (xn)
is Cauchy implies the terms in the “tail” of the sequence are close to each other.
Thus, we want to make each of these distances less than half of the prescribed
ε.
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