Ejercicios para entregar

Práctica 2

1. Considerar la función que a cada $x \in \mathbb{R}$ le asigna (cuando existe) el valor de la suma $\sum_{n=0}^{\infty} (-1)^n x^n$. Describir el dominio de esta función y verificar que en ese dominio vale

$$\sum_{n=0}^{\infty} (-1)^n x^n = \frac{1}{1+x}$$

Notar que existe el lím $\frac{1}{x \to 1^-} = \frac{1}{1+x} = \frac{1}{2}$ pero la serie no converge en x = 1.

2. Probar el siguiente teorema, que muestra bajo qué hipótesis adicionales se puede concluir la convergencia de una serie de potencias en el extremo del intervalo de convergencia.

Teorema. Sea an una sucesión tal que $\lim_{n\to\infty} na_n = 0$. Supongamos además que la serie $\sum_{n=0}^{\infty} a_n x^n$ tiene radio de convergencia 1. Definamos en el intervalo (-1,1) la

función
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
. Vale entonces que si $\lim_{x \to 1^-} f(x) = s$ entonces $\sum_{n=0}^{\infty} a_n = s$.

Sugerencias:

- a) Sea $S_r=\sum_{n=0}^r a_n$ la suma parcial de la serie de potencias en x=1. Probar que $\lim_{r\to\infty}S_r-f(1-\frac1r)=0$
- b) Para probar a), descomponer la serie que define a $f(1-\frac{1}{r})$ como

$$f\left(1 - \frac{1}{r}\right) = \sum_{n=0}^{r} a_n \left(1 - \frac{1}{r}\right)^n + \sum_{n=r+1}^{\infty} a_n \left(1 - \frac{1}{r}\right)^n$$

c) Usar la siguiente identidad $1-x^n=(1-x)(1+x+x^2+\cdots+x^{n-1})$ y algún valor de x adecuado para acotar

$$\left| S_r - \sum_{n=0}^r a_n \left(1 - \frac{1}{r} \right)^n \right|$$

(puede resultar útil el ejercicio 21 de la práctica 1)

d) Acotar el término de la cola de la serie por alguna geométrica conveniente

$$\left| \sum_{n=r+1}^{\infty} a_n \left(1 - \frac{1}{r} \right)^n \right| \le ??$$