1	2	3	4

Calif.

APELLIDO Y NOMBRE:

LIBRETA:

Elementos de Cálculo Numérico - Final (Junio 2011)

1. Dadas las siguientes rectas de \mathbb{R}^3 :

$$L_1: \lambda(1,1,0) + (1,k,-1)$$
 y $L_2: \left\{ \begin{array}{ccc} x+z & = & 0 \\ y & = & 1 \end{array} \right.$

- a) determinar para qué valores de $k \in \mathbb{R}$ existe un plano que contenga a L_1 y L_2 , y para todos los valores hallados hallar ecuaciones vectoriales e implícita para dicho plano.
- b) para k = -2 calcular la distancia entre L_1 y L_2 .
- 2. Decidir si son Verdadero o Falso, justificando o dando un contraejemplo.
 - a) Sean $L_1: \lambda v_1 + P_1$ y $L_2: \lambda v_2 + P_2$ las ecuaciones vectoriales de dos rectas. Entonces se tiene que $L_1 = L_2$ si y solo si v_1 y v_2 son vectores proporcionales y los puntos P_1 y P_2 son iguales.
 - b) Sean $A, B \in \mathbb{R}^{n \times n}$ con A inversible. Entonces N(BA) = N(B).
 - c) Sea $A \in \mathbb{R}^{n \times n}$. El sistema Ax = 0 es compatible determinado si yo solo si el sistema $A^2x = 0$ es compatible determinado.
- 3. Sea $A = \begin{pmatrix} 0 & a+1 & -1 \\ 0 & a & 0 \\ -1 & 2 & 0 \end{pmatrix} \in \mathbb{R}^{3\times 3}.$
 - a) Determinar todos los valores de $a \in \mathbb{R}$ para los cuales A es diagonalizable.
 - b) Para a = 1, determinar, si es posible, una matriz C inversible para la cual $C^{-1}(A^2 + A + I)C$ es diagonal, y calcular dicha matriz diagonal.
- 4. Sea $M == \begin{pmatrix} a & 0 & b \\ 0 & 1 & 0 \\ c & 0 & d \end{pmatrix}$ una matriz de Markov tal que tr(M) = 2 y (1,0,1) es un vector de equilibrio.
 - a) Determinar la matriz M y hallar, si es posible, dos estados de equilibrio linealmente independientes.
 - b) Dada una población inicial de 9 individuos, ¿existe un estado límite para el estado inicial v(0) = (0,0,9)? ¿Y para el estado inicial v(0) = (2,5,2)?