1	2	3	4

Calif.

APELLIDO Y NOMBRE:

LIBRETA:

Cálculo numérico B - Final (13/05/2010)

1. Sean

$$L_1: \begin{cases} 2x - y - z = 4 \\ 4x - y - 2z = 9 \end{cases}$$
 y $L_2: \lambda(1,0,2) + (1,2,-3).$

- a) Probar que las rectas L_1 y L_2 son paralelas no coincidentes, y hallar un plano π perpendicular a L_2 que pase por P = (1, 2, -3).
- b) Hallar el punto Q de intersección entre L_1 y π y calcular la distancia d(P,Q) de P a Q.
- 2. Sea $a \in \mathbb{R}$ y $A \in \mathbb{R}^{3 \times 3}$ la matriz

$$A = \left(\begin{array}{ccc} 2 & 3 & 0 \\ 4 & 5 & a^2 \\ 2 & 1 & 2a \end{array}\right).$$

- a) Determinar para cada valor de $a \in \mathbb{R}$ las dimensiones del espacio fila $E_F(A)$, del espacio columna $E_C(A)$ y del núcleo N(A).
- b) Para cada valor de a hallado tal que $N(A) \neq \{0\}$, completar una base del espacio columna de A a una base de \mathbb{R}^3 .
- 3. Sea $M = \begin{pmatrix} a & 0 & 0 \\ b & c & 0 \\ 0 & d & e \end{pmatrix}$ una matriz de Markov, tal que 1/2 es autovalor doble.
 - a) Determinar la matriz M.
 - b) Calcular los estados de equilibrio.
 - c) Determinar el estado límite (si existe) para el estado inicial (0, 1/4, 3/4).
- 4. Decidir, con justificaciones claras o contraejemplos, la verdad o falsedad de las siguientes afirmaciones.
 - a) Sean $A = \begin{pmatrix} 1 & -4 \\ -2 & 8 \end{pmatrix}$ y $B \in \mathbb{R}^{2 \times 2}$ inversible. Entonces el sistema ABx = 0 es compatible determinado.
 - b) Sean u y $v \in \mathbb{R}^2$ tales que $u \cdot v = \sqrt{2}$, ||u|| = 1 y ||v|| = 2. Entonces el ángulo entre u y v es de 45 grados.
 - c) Si $A, B \in \mathbb{R}^3$ son matrices tales que $\det(A) \neq 0$ y 2 no es autovalor de B, entonces 2A AB es inversible.