Práctica 2

1. Estudiar la convergencia de las siguientes series:

(a)
$$\sum_{n=1}^{\infty} \frac{n^2 + 3n - 1}{2n^2 + 3}$$
 (b) $\sum_{n=1}^{\infty} \frac{n}{2^n}$ (c) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{10n}}$

(d)
$$\sum_{n=1}^{\infty} \frac{n+1}{n}$$
 (e) $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$ (f) $\sum_{n=1}^{\infty} \frac{1}{n^{2/3}}$

(g)
$$\sum_{n=1}^{\infty} \frac{1+n}{3+n^2}$$
 (h) $\sum_{n=1}^{\infty} \frac{1}{n^2+2n+3}$ (i) $\sum_{n=1}^{\infty} \sin(\frac{1}{n})$

2. Hallar la suma de las siguientes series:

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{3^{n-2}}$$
 (b) $\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$ (sug.: fracciones simples)

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}$$
 (d) $\sum_{n=1}^{\infty} \frac{2^n + 3^n}{6^n}$

3. Hallar la suma de la serie $\sum_{n=1}^{\infty} \frac{3n^2 - 4n + 2}{n!}$.

Sugerencia: descomponer el término general en la forma

$$\frac{3n^2 - 4n + 2}{n!} = \frac{A}{n!} + \frac{B}{(n-1)!} + \frac{C}{(n-2)!}$$

4. Cuántos primeros términos hay que tomar en las series siguientes para que su suma difiera no más que en $1/10^6$ de la suma de las series correspondientes:

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^n}$$
, (b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$, (c) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n!}$.

5. ¿Es cierto que si $\sum_{n=1}^{\infty} a_k$ y $\sum_{n=1}^{\infty} b_k$ son dos series divergentes, entonces $\sum_{n=1}^{\infty} a_k b_k$ es divergente?

6. i) Demostrar la desigualdad

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} > \ln(n+1) > \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n+1}$$

Sugerencia: Recordar la demostración del criterio de comparación con una integral impropia.

ii) Si $r_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} - \ln(n)$, demostrar que r_n converge.

Nota: El límite de r_n se conoce como la constante de Euler-Mascheroni. Su valor aproximado es

 $0,57721566490153286060651209008240243104215933593992\dots$

7. Establecer el *criterio de Raabe*: la serie de términos positivos $\sum a_n$ converge o diverge

$$n\left(\frac{a_n}{a_{n+1}} - 1\right)$$

sea mayor que $1 + \varepsilon$ o menor o igual que 1 para todo n suficientemente grande, y para algún $\varepsilon > 0$ independiente de n.

8. Probar el siguiente teorema de Abel: Si $\{a_n\}$ es una sucesión decreciente de números positivos, y si $\sum a_n$ converge, entonces $na_n \to 0$ si $n \to \infty$.

Sug.: $na_{2n} \leq a_{n+1} + a_{n+2} + \cdots + a_{2n} \to 0$ si $n \to \infty$, y similarmente para na_{2n+1} .

- 9. Probar el siguiente criterio de convergencia (condensación de Cauchy): Sea b_n una sucesión decreciente de números no negativos. Entonces la serie $\sum b_n$ converge si y sólo si la serie $\sum 2^n b_{2^n}$ converge.
- 10. Decir si las siguientes series convergen condicional o absolutamente:

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n \cdot 2^n}$$
, (b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln(n)}$, (c) $\sum_{n=1}^{\infty} (-1)^n \frac{n^2 - 2n - 1}{n!}$.

- (a) Mostrar que si $\sum a_n$ converge absolutamente, entonces $\sum a_n^2$ converge. ¿Vale este resultado si $\sum a_n$ converge sólo condicionalmente?
 - (b) ¿Si $\sum a_n$ converge y $a_n \ge 0$, se puede concluir algo de $\sum \sqrt{a_n}$?
- 12. Sean $\{a_n\}_n$ y $\{b_n\}_n$ sucesiones de números reales. Llamemos $S_n = \sum_{k=1}^n a_k$.
 - (a) Probar la siguiente fórmula de suma por partes:

$$\sum_{k=1}^{n} a_k b_k = S_n b_n - \sum_{k=1}^{n-1} S_k (b_{k+1} - b_k).$$

(b) Probar el siguiente criterio de Dirichlet:

Si $\{b_n\}_n$ es una sucesión monótona decreciente de números positivos, tal que $\lim b_n=0$ y la sucesión $\{S_n\}_n$ es acotada, entonces la serie $\sum a_m b_m$ es convergente.

13. Sea $|\alpha| < 1$. Mostrar que

$$\frac{1}{(1-\alpha)^2} = \sum_{k=1}^{+\infty} k\alpha^{k-1}.$$

14. Hallar los valores de x para los cuales convergen las series:

(a)
$$\sum_{n=1}^{\infty} \frac{x^n}{2^n}$$

(e)
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2} (x-2)^n$$

(f) $\sum_{n=1}^{\infty} \frac{2^n n!}{n^n} (x+1)^n$
(g) $\sum_{n=1}^{\infty} 3^{n^2} x^{n^2}$
(h) $\sum_{n=1}^{\infty} n! (x+1)^n$.

(a)
$$\sum_{n=1}^{\infty} \frac{x^n}{2^n}$$
(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n^2}$$
(c)
$$\sum_{n=1}^{\infty} \frac{x^n}{n+\sqrt{n}}$$

(f)
$$\sum_{m=1}^{\infty} \frac{2^n n!}{n^n} (x+1)^m$$

(c)
$$\sum_{n=1}^{\infty} \frac{x^n}{n+\sqrt{n}}$$

(g)
$$\sum_{n=1}^{\infty} 3^{n^2} x^{n^2}$$

(d)
$$\sum_{n=1}^{\infty} 2^n \sin(\frac{x}{3^n})$$

(h)
$$\sum_{n=1}^{\infty} n!(x+1)^n$$