TIEMPOS DE MEZCLA EN CADENAS DE MARKOV SEGUNDO CUATRIMESTRE, 2023

PRACTICA 5.5: ENTROPY, LARGE DEVIATIONS, AND CODING

Ejercicio 1. Let p = {p1,..., un} be a probability measure on {1,..., n}. We call

H(p) ==Y pilog()
i=1

its Shannon entropy. Prove that 0 < H(u) < log(n).

Ejercicio 2. Relative entropy Given p and v two probability measures on {1,..., n}, we call
n
H(ulv) = pilog(pi/vi)
i=1

the relative entropy of p with respect to v. Prove that H (u|v) > 0.

Ejercicio 3. Stirling Prove that

ee "n" < n! <nee "n".
Hint: Use that log(|z]) < log(z) <log([z]), = > 1.

Ejercicio 4. Variational representation of relative entropy Prove that

H(ulv) = Sl}p { Z pifi — log (Z Viefi)}
i=1 =1
= SI}p {Eu[f] — log (E,[e/]) },

where the supremum is over all functions f : {1,..., n} — R. Use this variational representation
to prove that H(u|v) > 0.

Ejercicio 5. Consider the alphabet A = {a, b, ¢}, and two possible codings that associate to
each letter in A a word in the alphabet {0, 1},

Code 1 Code 2
a—0 a— 01
b— 010 b — 001
c— 10 c— 10

Prove that some messages cannot be reconstructed from the coded message when the first code
is used, while this is always possible if the second code is applied.

Ejercicio 6. (Laplace principle) Consider g > 0 and f continuous functions; prove that

1 b
lim log/ g(z)e™ @ de = méx f(z).

n—+o0o N z€a,b]

Ejercicio 7. (Contraction principle) Let A be a finite set, u, a sequence of probability
measures on A defined by
e—na(a)

Nn(a) = ZbeA o—na(b)

1



and f: A — B a function from A to another finite set B. Here o : A — R™ are positive weights
associated to each element of A. Prove that for any S C A we have

A .
e 108 #n(5) = = Jpf (e,

where a(a) = a(a) — minge4 a(b). Let v, be the sequence of probability measures on B defined

by vn(b) = >4 f(a)=p Hn(@). Prove that for any W C B

1
lim  — log v, (W) = — fnf :
Jm —logy (W) blenwﬁ(b)

where 3(b) = infy, f(q)—p @(a).

Ejercicio 8. (Cramer from Sanov) Let u, v probability measures on {1,2,...,n}. Prove that
inf  H(v|p) =sup Az —lo ey
ok H (i) =sup { g Z i }

Ejercicio 9. Show that for the probability measure on N

1

pin) = Zn(logn)lte

where Z is a normalization constant, we have H(u) = 4o0.

Ejercicio 10. (Fekete’s lemma) Let a,, be a real sequence that is subadditive, i.e. such that
Antm < Gn + Gm; show then that the limit lim,, %” exists and coincides with inf,, %"

Ejercicio 11. Prove a large deviations principle for the pair empirical measure of samples from
an i.i.d. sequence.



