Adicionales de Práctica 2

Definición: dadas dos sucesiones de número reales $\{a_n\}_{n=0}^{\infty}$ y $\{b_n\}_{n=0}^{\infty}$, definimos como el producto de Cauchy a la sucesión $\{c_n\}_{n=0}^{\infty}$ tal que

$$c_n = \sum_{k=0}^n a_k b_{n-k}.$$

Sean $\sum_{n=0}^{\infty} a_n$ y $\sum_{n=0}^{\infty} b_n$, definimos

$$\left(\sum_{n=0}^{\infty} a_n\right) \cdot \left(\sum_{n=0}^{\infty} b_n\right) = \sum_{n=0}^{\infty} c_n = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}.$$

1. Si se define la función exponencial Exp(x) por su serie de potencias

$$\operatorname{Exp}(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!},$$

probar (utilizando el producto de Cauchy de series) que $\operatorname{Exp}(x+y) = \operatorname{Exp}(x) \cdot \operatorname{Exp}(y)$.

2. Si $\sum a_n$ y $\sum b_n$ son series convergentes (no necesariamente absolutamente), ¿es la serie producto (de Cauchy) convergente?

Sugerencia. Considerar
$$a_n = b_n = \frac{(-1)^{n-1}}{\sqrt{n}}, n \ge 1.$$

3. Sea F_n la sucesión de Fibonacci definida por $F_0 = 0$, $F_1 = 1$ y $F_{n+1} = F_n + F_{n-1}$ si $n \ge 1$. Consideramos la función definida por la serie de potencias

$$f(x) = \sum_{n=0}^{\infty} F_n x^n$$

- a) Encuentre una expresión explícita de f (es una función racional)
- b) Utilícela para deducir una fórmula explícita para F_n .
- c) ¿Cuál es el radio de convergencia de la serie de f?