Taller de Cálculo Avanzado Resolución del primer parcial

Ejercicio 1

Demostrar el siguiente resultado elemental de álgebra de límites. Sea $(x_n)_{n\in\mathbb{N}}$ una sucesión de números reales que converge a $x\in\mathbb{R}$. Probar que $\lim_{n\to\infty}x_n^2=x^2$.

Solución

Dado un $\epsilon > 0$ debemos ver que existe un número natural n_0 (que va a depender de ϵ) de manera que para cualquier otro $n \geq n_0$ valga $|x_n^2 - x^2| < \epsilon$. Tenemos

$$|x_n^2 - x^2| = |(x_n - x)(x_n + x)|$$

$$= |x_n - x||x_n + x|$$

$$\leq |x_n - x|(|x_n| + |x|)$$

Por ser convergente la sucesión x_n está acotada^{*}, existe un M > 0 tal que $|x_n| < M$ para todo $n \in \mathbb{N}$. Entonces

$$|x_n^2 - x^2| < |x_n - x|(M + |x|)$$

Consideremos $\epsilon' = \epsilon/(M+|x|)$, notar que M+|x|>0 así que podemos dividir sin problemas. Sea $n_0 \in \mathbb{N}$ tal que $\forall n \geq n_0, |x_n-x|<\epsilon'$. Si $n \geq n_0$ entonces $|x_n^2-x^2|<\epsilon$.

Ejercicio 2

Sean $(x_n)_{n\in\mathbb{N}}$ e $(y_n)_{n\in\mathbb{N}}$ dos sucesiones acotadas de números reales y sean $x=\limsup_{n\to\infty}x_n$, $y=\limsup_{n\to\infty}x_n$. Sea $(z_n)_{n\in\mathbb{N}}\in\mathbb{R}^\mathbb{N}$ definida por $z_{2n}=x_n$ y $z_{2n-1}=y_n$ para todo $n\in\mathbb{N}$. Probar que $\limsup_{n\to\infty}z_n=\max\{x,y\}$.

Solución

Recordemos que lím sup $z_n = \max\{\text{puntos límite de } (z_n)_n\}$. Llamemos $z = \text{lím sup } z_n$. Para ver que $z = \max\{x, y\}$ probemos las dos desigualdades.

El límite superior de una sucesión es un punto límite, luego existe $(x_{n_k})_k$ subsucesión de x_n que tiende a x. Pero $x_{n_k} = z_{2n_k}$ es una subsucesión de $(z_n)_n$, por lo que x es punto límite de $(z_n)_n$, entonces $x \le z$. Análogamente se ve que $y \le z$. Por lo tanto máx $\{x,y\} \le z$.

Para la otra desigualdad tomemos un a punto de límite de $(z_n)_n$. Sea $(z_{n_k})_k$ una subsucesión que tiende a a. No puede ser que $(z_{n_k})_k$ tenga finitos términos con n_k par y finitos con n_k impar.

^{*}Como $x_n \to x$, existe $n_1 \in \mathbb{N}$ tal que $\forall n \ge n_1, |x_n - x| < 1$. Si $n \ge n_1$ entonces $|x_n| \le |x_n - x| + |x| < 1 + |x|$. Sea $M = \max\{|x_1|, |x_2|, \dots, |x_{n_0-1}|, 1+|x|\} + 1$, cumple que $\forall n \in \mathbb{N}, |x_n| < M$.

Sin pérdida de generalidad supongamos que hay infinitos n_k pares (el otro caso es análogo). Así que tenemos una subsucesión de $(x_n)_n$ que tiende a a. Luego $a \le x \le \max\{x,y\}$. Pero esto vale para todo a punto límite de $(z_n)_n$. Luego $z \le \max\{x,y\}$.

Ejercicio 3

Sea $\sum_{n=1}^{\infty} a_n$ una serie convergente de términos positivos. Para cada $n \in \mathbb{N}$ definimos $b_n =$

$$(-1)^n a_{n^2}$$
. Demostrar que $\sum_{n=1}^{\infty} b_n$ converge.

Solución

Veamos que la serie $\sum_{n=1}^{\infty} b_n$ converge absolutamente. Notemos que para todo $N \in \mathbb{N}$

$$S_N = \sum_{n=1}^N |b_n| = \sum_{n=1}^N a_{n^2} \le \sum_{n=1}^{N^2} a_n \le \sum_{n=1}^\infty a_{n^2} = M$$

La última cota se debe a que $\sum a_n$ es una serie convergente de términos positivos, luego está acotada por su limite. O sea que la suma parcial de términos positivos S_N está acotada, por lo tanto converge.

Ejercicio 4

Sean $A, B \subseteq \mathbb{R}^n$. Se define $A + B = \{x + y \mid x \in A, y \in B\}$. Probar que $A^{\circ} + B \subseteq (A + B)^{\circ}$.

Solución

Tomemos un $z \in A^{\circ} + B$, z = a + b con $a \in A^{\circ}$ y $b \in B$. Dado que $a \in A^{\circ}$ sabemos que existe un $\epsilon > 0$ tal que $B(a, \epsilon) \subseteq A$. Veamos que $B(z, \epsilon) \subseteq A + B$, lo que prueba que $z \in (A + B)^{\circ}$.

Tomemos un $w \in B(z, \epsilon)$, entonces $||w - z|| < \epsilon$. Notemos que $||(w - b) - a|| = ||w - (b + a)|| = ||w - z|| < \epsilon$. Luego $w - b \in B(a, \epsilon) \subseteq A$, por lo que $w - b \in A$. Escribamos w = w - b + b. Tenemos $b \in B$ y $w - b \in A$, luego $w \in A + B$.

Ejercicio 5

Sean $K,L\subseteq\mathbb{R}$ dos conjuntos compactos. Probar que $K\times L\subseteq\mathbb{R}^2$ es compacto.

Solución

Para probar que $K \times L$ es compacto veamos que toda sucesión $(a_n)_{n \in \mathbb{N}} \subseteq K \times L$ tiene una subsucesión $(a_{n_k})_{k \in \mathbb{N}}$ que converge a un elemento de $K \times L$. Notemos que $a_n = (x_n, y_n)$ con

 $x_n \in K, \ y_n \in L$, por lo que tenemos dos sucesiones $(x_n)_{n \in \mathbb{N}}$ e $(y_n)_{n \in \mathbb{N}}$ de elementos de K y L respectivamente. Como K es compacto existe una subsucesión $(x_{n_k})_k$ de $(x_n)_n$ que converge a un $x \in K$. Dado que L es compacto sabemos que existe una subsucesión $(y_{n_k})_{j \in \mathbb{N}}$ de $(y_{n_k})_k$ que converge a un elemento $y \in L$. Por ser subsucesión de $(x_{n_k})_k$ sucesión convergente, $(x_{n_{k_j}})_j$ también tiende a x. Tenemos $a_{n_{k_j}} = (x_{n_{k_j}}, y_{n_{k_j}})$ subsucesión de $(a_n)_n$ que converge a $(x, y) \in K \times L$, dado que sus coordenadas convergen. \blacksquare