Construction of the real numbers

In mathematics, there are several ways of defining the real number system as an ordered field. The synthetic
approach gives a list of axioms for the real numbers as a complete ordered field. Under the usual axioms of set
theory, one can show that these axioms are categorical, in the sense that there is a model for the axioms, and any two
such models are isomorphic. Any one of these models must be explicitly constructed, and most of these models are

built using the basic properties of the rational number system as an ordered field.

Synthetic approach

The synthetic approach axiomatically defines the real number system as a complete ordered field. Precisely, this
means the following. A model for the real number system consists of a set R, two distinct elements 0 and 1 of R, two
binary operations + and * on R (called addition and multiplication, resp.), a binary relation < on R, satisfying the

following properties.
1. (R, +, *) forms a field. In other words,

e Forallx,y,andzinR,x+ (y+2)=x+y)+zandx * (y ¥ z) = (x * y) * z. (associativity of addition and
multiplication)

e ForallxandyinR,x+y=y+xandx *y=y *x. (commutativity of addition and multiplication)

e Forallx,y,and zin R, x * (y + z) = (x * y) + (x * 7). (distributivity of multiplication over addition)

e Forall xin R, x + 0 = x. (existence of additive identity)

* (Oisnotequal to 1, and for all x in R, x * 1 = x. (existence of multiplicative identity)

* For every x in R, there exists an element —x in R, such that x + (—x) = 0. (existence of additive inverses)

* For every x # 0 in R, there exists an element xlin R, such that x * =1 (existence of multiplicative

inverses)
2. (R, =) forms a totally ordered set. In other words,

e Forall xin R, x < x. (reflexivity)
e Forallxandyin R, if x < yandy < x, then x = y. (antisymmetry)
e Forallx,y,and zin R, if x <y and y < z, then x < z. (transitivity)

e Forallxandyin R, x <y ory < x. (totalness)
3. The field operations + and * on R are compatible with the order <. In other words,

* Forallx,yandzin R, if x <y, then x + z < y + z. (preservation of order under addition)

e ForallxandyinR,if 0 <xand 0 <y, then 0 < x * y (preservation of order under multiplication)

4. The order < is complete in the following sense: every non-empty subset of R bounded above has a least upper

bound. In other words,

» If A is a non-empty subset of R, and if A has an upper bound, then A has a least upper bound u, such that for

every upper bound v of A, u < v.

The final axiom, defining the order as Dedekind-complete, is most crucial. Without this axiom, we simply have the
axioms which define a totally ordered field, and there are many non-isomorphic models which satisfy these axioms.
This axiom implies that the Archimedean property applies for this field. Therefore, when the completeness axiom is
added, it can be proved that any two models must be isomorphic, and so in this sense, there is only one complete

ordered Archimedean field.

When we say that any two models of the above axioms are isomorphic, we mean that for any two models (R, O I 1 e
e * e < R) and (S, 0 5 1 ¢ te * ¢ < S)’ there is a bijection f: R — S preserving both the field operations and the order.
Explicitly,

* fis both injective and surjective.




. f(OR)=OSandf(1R)= IS.
e Forall xand yin R, fx +p y) =flx) +Sf(y) and f(x *R y) = flx) *Sf(y).
e ForallxandyinR, x < rY if and only if f{x) < < f).

Explicit constructions of models

We shall not prove that any models of the axioms are isomorphic. Such a proof can be found in any number of
modern analysis or set theory textbooks. We will sketch the basic definitions and properties of a number of
constructions, however, because each of these is important for both mathematical and historical reasons. The first
three, due to Georg Cantor/Charles Méray, Richard Dedekind and Karl Weierstrass/Otto Stolz all occurred within a
few years of each other. Each has advantages and disadvantages. A major motivation in all three cases was the

instruction of mathematics students.

Construction from Cauchy sequences

If we have a space where Cauchy sequences are meaningful (such as a “rational' metric space, i.e., a space in which
distance is defined and takes rational values, or more generally a uniform space), a standard procedure to force all
Cauchy sequences to converge is adding new points to the space (a process called completion). By starting with
rational numbers and the metric d(x,y) = Ix — yl, we can construct the real numbers, as will be detailed below. (A
different metric on the rationals could result in the p-adic numbers instead.)
Let R be the set of Cauchy sequences of rational numbers. That is, sequences
XXX e of rational numbers such that for every rational € > 0, there exists an integer N such that for all natural
numbers m,n > N, Ixm—xnl<£. Here the vertical bars denote the absolute value.
Cauchy sequences (x) and (y) can be added and multiplied as follows:

() +0) = +y)

()X ()= Xy )
Two Cauchy sequences are called equivalent if and only if the difference between them tends to zero.

Comparison between two cauchy sequences is possible as such : (xn) > (yn) if and only if x is equivalent to y or there

exists an integer N such that x 2y forall n > N.

This does indeed define an equivalence relation, it is compatible with the operations defined above, and the set R of
all equivalence classes can be shown to satisfy all the usual axioms of the real numbers. This is remarkable because
not all of these axioms necessarily apply to the rational numbers, which are being used to construct the sequences
themselves. We can embed the rational numbers into the reals by identifying the rational number r with the

equivalence class of the sequence (7,77, ...).

The only real number axiom that does not follow easily from the definitions is the completeness of <, i.e. the least
upper bound property. It can be proved as follows: Let S be a non-empty subset of R and U be an upper bound for S.
Substituting a larger value if necessary, we may assume U is rational. Since S is non-empty, there is a rational
number L such that L < s for some s in S. Now define sequences of rationals (un) and (ln) as follows:

Set Uy = U and lO =L
For each n consider the number:

m = (un + ln)/2
It m is an upper bound for S set:

u =m andl =1

n+1 n n+1 n

Otherwise set:

[ =m andu _=u
n+l n n+l1 n




This obviously defines two Cauchy sequences of rationals, and so we have real numbers [ = (ln) and u = (un). It is
easy to prove, by induction on 7 that:

u is an upper bound for S for all n
and:

ln is never an upper bound for § for any n
Thus u is an upper bound for S. To see that it is a least upper bound, notice that the limit of (un - ln) is 0,and so [ =
u. Now suppose b < u = [ is a smaller upper bound for S. Since (ln) is monotonic increasing it is easy to see that b < ln
for some n. But ln is not an upper bound for S and so neither is b. Hence u is a least upper bound for § and < is
complete.
A practical and concrete representative for an equivalence class representing a real number is provided by the
representation to base b — in practice, b is usually 2 (binary), 8 (octal), 10 (decimal) or 16 (hexadecimal). For
example, the number m = 3.14159... corresponds to the Cauchy sequence (3,3.1,3.14,3.141,3.1415,...). Notice that the
sequence (0,0.9,0.99,0.999,0.9999....) is equivalent to the sequence (1,1.0,1.00,1.000,1.0000,...); this shows that
0.999...=1.
An advantage of this approach is that it does not use the linear order of the rationals, only the metric. Hence it

generalizes to other metric spaces.

Construction by Dedekind cuts
A Dedekind cut in an ordered field is a partition of it, (A, B), such that A is nonempty and closed downwards, B is
nonempty and closed upwards, and A contains no greatest element. Real numbers can be constructed as Dedekind

cuts of rational numbers.

For convenience we may take the lower set A as the representative of any given Dedekind cut ( A, B) , since A

completely determines /3 . By doing this we may think intuitively of a real number as being represented by the set
of all smaller rational numbers. In more detail, a real number 7 is any subset of the set Qof rational numbers that

fulfills the following conditions:!

1. ris not empty

2. T#Q

3. ris closed downwards. In other words, for all z,y € Qsuchthatz < y,if y € Tthenx € r

4. rcontains no greatest element. In other words, there isno & € 7 such that forall ¥y € 7, y <z

» We form the set R of real numbers as the set of all Dedekind cuts 4 of (}, and define a total ordering on the
real numbers as follows: T <y <z C y

e We embed the rational numbers into the reals by identifying the rational number g with the set of all smaller
rational numbers {x c Q T < q} .[1] Since the rational numbers are dense, such a set can have no greatest
element and thus fulfills the conditions for being a real number laid out above.

« Additon. A+ B:={a+b:ac AAbec B}

* Subtraction. A — B:={a—b:a € AAbc (Q)\ B)} where Q \ B denotes the relative complement
of BinQ, {z: 2 € QAz ¢ B}

* Negation is a special case of subtraction: —B:={a —b:a<0Abe (Q\ B)}

* Defining multiplication is less straightforward.[l]

« if AB>0thenAXx B:={axb:a>0ANac ANb>0AbeB}U{zcQ:z2<0}

» ifeither 4 or R is negative, we use the identities
Ax B=—(Ax —B)=—(—Ax B) =(—A x —B)toconvert 4 and/or J to positive
numbers and then apply the definition above.

¢ We define division in a similar manner:




« if A>0and B> 0then A/B:={a/b:ac ANb<c (Q\ B)}
« ifeither 4 or Bis negative, we use the identities A/B = —(A/—B) = —(-A/B) = —A/—Bto
convert 4 to a non-negative number and/or R to a positive number and then apply the definition above.
e Supremum. If a nonempty set § of real numbers has any upper bound in R, then it has a least upper bound in

R that is equal to U g

As an example of a Dedekind cut representing an irrational number, we may take the positive square root of 2. This
can be defined by the set A = {x eEQ:z<0vVxz< 2} 211t can be seen from the definitions above
that A is a real number, and that 4 x A = 2. However, neither claim is immediate. Showing that A is real

requires showing that for any positive rational x with 7 X x < 2, there is a rational Y with T < Y and

2¢ + 2

T+

y X y < 2.The choice y = works. Then 4 x A < 2but to show equality requires showing that if 7

is any rational number less than 2, then there is positive zin 4 with r < z X x .
An advantage of this construction is that each real number corresponds to a unique cut.

Stevin's construction

3 that real numbers can be represented by decimals. We can take the infinite

It has been known since Simon Stevin
decimal expansion to be the definition of a real number, defining expansions like 0.9999... and 1.0000... to be
equivalent, and define the arithmetical operations formally. This is equivalent to the constructions by Cauchy
sequences or Dedekind cuts and incorporates an explicit modulus of convergence. Similarly, another radix can be
used. Weierstrass attempted to construct the reals but did not entirely succeed. He pointed out that they need only be

thought of as complete aggregates (sets) of units and unit fractions.[*!

This construction has the advantage that it is close to the way we are used to thinking of real numbers and suggests
series expansions for functions. A standard approach to show that all models of a complete ordered field are
isomorphic is to show that any model is isomorphic to this one because we can systematically build a decimal

expansion for each element.

Construction using hyperreal numbers

As in the hyperreal numbers, one constructs the hyperrationals *Q from the rational numbers by means of an
ultrafilter. Here a hyperrational is by definition a ratio of two hyperintegers. Consider the ring B of all limited (i.e.
finite) elements in *Q. Then B has a unique maximal ideal /, the infinitesimal numbers. The quotient ring B/ gives
the field R of real numbers. Note that B is not an internal set in *Q. Note that this construction uses a non-principal

ultrafilter over the set of natural numbers, the existence of which is guaranteed by the axiom of choice.

It turns out that the maximal ideal respects the order on *Q. Hence the resulting field is an ordered field.

Completeness can be proved in a similar way to the construction from the Cauchy sequences.

Construction from surreal numbers

Every ordered field can be embedded in the surreal numbers. The real numbers form a maximal subfield that is
Archimedean (meaning that no real number is infinitely large). This embedding is not unique, though it can be

chosen in a canonical way.

Construction from the group of integers

A relatively less known construction allows to define real numbers using only the additive group of integers with

different versions.'"! The construction has been formally verified by the IsarMathLib project.[g]

Let an almost homomorphism be a map f:Z — Z such that the set

{f(n+m) — f(m) — f(n) : n,m € Z} is finite. We say that two almost homomorphisms f, g are almost




equal if the set { f(n) — g(n) : n € Z} is finite. This defines an equivalence relation on the set of almost homomorphisms. Real nus
defined as the equivalence classes of this relation. To add real numbers defined this way we add the almost

homomorphisms that represent them. Multiplication of real numbers corresponds to composition of almost

homomorphisms. If [ f] denotes the real number represented by an almost homomorphism f we say that () < [ f ] if fis bounded or
takes an infinite number of positive values on Z+. This defines the linear order relation on the set of real numbers

constructed this way.

Other constructions

Few mathematical structures have undergone as many revisions or have been presented in as many guises as the real numbers. Every
generation reexamines the reals in the light of its values and mathematical objectives.

A number of constructions have been given.[lo] (11} (1211131 [14]

As a reviewer of one noted: "The details are all included, but as usual they are tedious and not too instructive."[ls]
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