ÁLGEBRA III - 2DO C. 2020 - CLASE 13 - 13/10/2020

9.3 Cuerpos de Galois y elementos primitivos

Todo cuerpo finito de característica p es algún $\mathbb{F}_{p^n} = \mathbb{F}_p(X^{p^n} - X)$, que es Galois sobre \mathbb{F}_p , y por lo tanto es una extensión simple de \mathbb{F}_p , que tiene elementos primitivos.

¿Cómo se determinan elementos primitivos?

Busco $\theta \in \overline{\mathbb{F}_p}$ tal que $\mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$.

Podemos conseguir θ por ejemplo usando el hecho que $\mathbb{F}_{p^n}^{\times}=\langle\theta\rangle$ es un grupo cíclico, y entonces

$$\mathbb{F}_{p^n} = \{0, 1, \theta, \dots, \theta^{p^n - 2}\} = \mathbb{F}_p(\theta).$$

Pero esto es matar una hormiga con un camión, además de que hay muchos más elementos primitivos para $\mathbb{F}_{p^n}/\mathbb{F}_p$ que generadores del grupo cíclico $\mathbb{F}_{p^n}^{\times}$, y además, no sabemos quién es realmente ese θ ya que no sabemos bien quienes son los elementos de \mathbb{F}_{p^n} ...

Ejemplo (\mathbb{F}_9)

- $\mathbb{F}_9^{\times} \simeq \mathbb{Z}/8\mathbb{Z}$ que tiene 4 generadores: 1,3,5 y 7.
- Pero \mathbb{F}_9 tiene 9 elementos y una única subextensión que es \mathbb{F}_3 .

Por lo tanto los 6 elementos de $\mathbb{F}_9 \setminus \mathbb{F}_3$ generan \mathbb{F}_9 sobre \mathbb{F}_3 :

hay entonces 6 elementos primitivos.

¿Cuáles son?

En $\mathbb{F}_3[X]$,

$$X^9 - X = (X^3 - X)(X^6 + X^4 + X^2 + 1) = (X^3 - X)(X^2 + 1)(X^2 + X + 2)(X^2 + 2X + 2).$$

El primer polinomio X^3-X define \mathbb{F}_3 dentro de \mathbb{F}_9 y los otros 3 polinomios son irreducibles de grado 2, y por lo tanto cada una de sus raíces genera \mathbb{F}_9 , i.e. para cada θ raiz de X^2+1 o de X^2+X+2 o de X^2+2X+2 , se tiene que

$$\mathbb{F}_9 = \mathbb{F}_3(\theta).$$

Fijarse que efectivamente aunque no esté presentado en forma normal, $\mathbb{F}_3(\theta)$ es normal, pues (además de ser una extensión de grado 2) si θ es raíz de $X^2 + X + 2$ por ejemplo, la otra es $2\theta + 2 \dots$

Observación 9.3.1 (Elementos primitivos en \mathbb{F}_{p^n})

Sea $f \in \mathbb{F}_p[X]$ un polinomio irreducible de grado n y sea $\alpha \in \overline{\mathbb{F}_p}$ raíz de f. Entonces

$$\mathbb{F}_{p^n} = \mathbb{F}_p(\alpha).$$

En particular $f \mid X^{p^n} - X$ en $\mathbb{F}_p[X]$.

Prueba.-

 $\mathbb{F}_p(\alpha)$ es un cuerpo finito, extensión de \mathbb{F}_p de grado n, y por lo tanto tiene p^n elementos.

Como hay un único cuerpo finito de p^n elementos, $\mathbb{F}_{p^n} = \mathbb{F}_p(X^{p^n} - X)$, se tiene que $\mathbb{F}_p(\alpha) = \mathbb{F}_{p^n}$, y además $f \mid X^{p^n} - X$.

¡Acabamos de decir que todo polinomio irreducible de grado n es un divisor de $X^{p^n}-X$ en $\mathbb{F}_p[X]$!

Más aún ¿podemos sacar de esto como se factoriza $X^{p^n} - X$ en $\mathbb{F}_p[X]$?

Ejemplo (\mathbb{F}_{25})

¿Cuántos elementos primitivos tiene \mathbb{F}_{25} ?

¿Cuántos polinomios mónicos de grado 2 hay en $\mathbb{F}_5[X]$?

¿Cuántos son irreducibles?

$$X^{25} - X = (X^5 - X)q$$

donde q de grado 20 se factoriza como ¿cuántos polinomios de qué grado en $\mathbb{F}_5[X]$? ¿Por qué sólo esos grados?

Otro ejemplo (\mathbb{F}_{5^6})

¿Cuáles son las subextensiones de \mathbb{F}_{56} ?

¿Cuántos elementos primitivos tiene \mathbb{F}_{5^6} ?

¿Cuántos polinomios mónicos de grado 6 hay en $\mathbb{F}_5[X]$?

¿Cuántos son irreducibles?

$$X^{5^6} - X = (X^5 - X) \cdot \frac{X^{25} - X}{X^5 - X} \cdot \frac{X^{125} - X}{X^5 - X} \cdot q$$

donde q tiene grado

Las raíces de q no pertenecen ni a \mathbb{F}_5 , ni a \mathbb{F}_{25} ni a \mathbb{F}_{125} .

Por lo tanto q es el producto de polinomios irreducibles de grado y hay polinomios irreducibles mónicos de grado 6 en $\mathbb{F}_5[X]$.

Observación 9.3.2 Sea $n \in \mathbb{N}$ y sea q_d el producto de todos los polinomios irreducibles mónicos de grado d en $\mathbb{F}_p[X]$. Entonces

$$X^{p^n} - X = \prod_{d \mid n} q_d.$$

Ejercicio

El polinomio $X^4 + 1$ es irreducible en $\mathbb{Q}[X]$, pues $X^4 + 1 = \Phi_8(X)$.

¿Para qué primos p es $X^4 + 1$ irreducible en $\mathbb{F}_p[X]$?

 $X^4 + 1$ irreducible en $\mathbb{F}_p[X]$ define el cuerpo $\mathbb{F}_{p^4} = \mathbb{F}_p(X^{p^4} - X)$,

o sea $X^4+1\mid X^{p^4}-X$ pero además X^4+1 no define una subextensión propia de $\mathbb{F}_{p^4}\colon X^4+1\nmid X^{p^2}-X$.

Para p = 2, $X^4 + 1 = (X + 1)^4$ no es irreducible.

Para p impar,

$$p \equiv 1 \ (2) \implies p^2 \equiv 1 \ (8) \implies p^2 - 1 = 8k.$$

Esto implica

$$X^4 + 1 | X^8 - 1 | X^{8k} - 1 = X^{p^2 - 1} - 1 \implies X^4 + 1 | X^{p^2} - X$$

siempre. O sea que X^4+1 no es irreducible en ningún $\mathbb{F}_p[X]$.

Ejercicio

Probar que para todo $p \neq 2, 3$, el polinomio $X^4 - X^2 + 1$ es reducible en $\mathbb{F}_p[X]$.

9.4 El grupo de Galois de \mathbb{F}_{p^n}

Observación-Definición 9.4.1 (El automorfismo de Frobenius)

Sea K cuerpo con car(K) = p, y sea

$$\Phi_p: K \longrightarrow K
\alpha \longmapsto \alpha^p.$$

Resulta que $\Phi_p \in \operatorname{End}(K/\mathbb{F}_p)$:

Y por lo tanto, $\forall k \in \mathbb{N}$, $\Phi_p^k \in \text{End}(K/\mathbb{F}_p)$ también.

Se tiene $\Phi_p^k(\alpha) = \alpha^{p^k}, \ \forall k \in \mathbb{N}.$

Más aún, si K es finito o algebraico sobre \mathbb{F}_p , entonces Φ_p y Φ_p^k para $k \in \mathbb{N}$ son \mathbb{F}_p -automorfismos de K.

En ese caso Φ_p se llama el automorfismo de Frobenius de K, por Ferdinand Georg Frobenius, matemático alemán, 1849-1917.

¿Por qué tan importante ese automorfismo? ¡Porque genera $\operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p)!$

Teorema 9.4.2 Sea $n \in \mathbb{N}$. Entonces $Gal(\mathbb{F}_{p^n}/\mathbb{F}_p)$ es un grupo cíclico de orden n generado por el automorfismo de Frobenius:

$$\operatorname{Gal}(\mathbb{F}_{n^n}/\mathbb{F}_n) = \langle \Phi_n \rangle$$

donde recuerdo que $\Phi_p(\alpha) = \alpha^p$.

En particular, $\Phi_p^n = \{ id_{\mathbb{F}_{p^n}} \}$.

Prueba.-

Sabemos que $\operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p)$ es un grupo de orden n pues $\mathbb{F}_{p^n}/\mathbb{F}_p$ Galois implica $|\operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p)| = [\mathbb{F}_{p^n} : \mathbb{F}_p] = n$.

Para probar que $\operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p) = \langle \Phi_p \rangle$, probemos que

$$\{\mathrm{id}, \Phi_p, \Phi_p^2, \dots, \Phi_p^{n-1}\}$$

son todos automorfismos distintos.

Para ello se los aplicamos a un generador θ del grupo multiplicativo $\mathbb{F}_{p^n}^{\times}$ que sabemos que es cíclico. O sea

$$\mathbb{F}_{n^n} = \{0, 1, \theta, \dots, \theta^{p^n - 2}\}.$$

Se tiene $\Phi_p^k(\theta) = \theta^{p^k}$ para $0 \le k < n$, y se puede verificar que el conjunto

$$\{\theta, \theta^p, \theta^{p^2}, \dots, \theta^{p^{n-1}}\}$$

es un subconjunto de elementos distintos en \mathbb{F}_{p^n} , pues $p^{n-1} \leq p^n - 2$ para $n \geq 2$.

9.5 El polinomio $X^p - X - a \in \mathbb{F}_p[X]$

Sabemos que para a=0 el polinomio X^p-X define \mathbb{F}_p :

$$X^p - X = \prod_{\alpha \in \mathbb{F}_p} (X - \alpha).$$

Y para $a \in \mathbb{F}_p$, $a \neq 0$, $X^p - X - a$ no tiene raíces en \mathbb{F}_p y es separable: tiene p raíces distintas en $\overline{\mathbb{F}_p}$.

Proposición 9.5.1 (Irreducibilidad de $X^p - X - a$ para $a \neq 0$ en $\mathbb{F}_p[X]$) Sea $a \in \mathbb{F}_p$, $a \neq 0$. Entonces el polinomio $X^p - X - a$ es irreducible en $\mathbb{F}_p[X]$, y por lo tanto define la extensión \mathbb{F}_{p^p} .

Prueba.-

Sea $\alpha \in \overline{\mathbb{F}_p}$ raíz de $X^p - X - a \in \mathbb{F}_p[X]$ con $a \neq 0$. Entonces $\alpha \notin \mathbb{F}_p$ y

$$2 \leq [\mathbb{F}_p(\alpha) : \mathbb{F}_p] \leq p$$
 pues $f(\alpha, \mathbb{F}_p) | X^p - X - a$.

Recordando que $\mathbb{F}_p(\alpha)$ es Galois sobre \mathbb{F}_p , esto implica que

$$|\mathrm{Gal}(F_p(\alpha)/\mathbb{F}_p)| \le p$$

y por otro lado, $\operatorname{Gal}(\mathbb{F}_p(\alpha)/\mathbb{F}_p) = \langle \Phi_p \rangle$.

¿Qué orden tiene el automorfismo de Frobenius Φ_p ?

- $\Phi_p(\alpha) = \alpha^p = \alpha + a$ pues α es raíz de $X^p X a$.
- $\Phi_p^2(\alpha) = \Phi_p(\alpha + a) = \Phi_p(\alpha) + a = \alpha + 2a$, y así sucesivamente
- $\Phi_p^k(\alpha) = \alpha + k a \text{ para } k \in \mathbb{N}.$

Se tiene

$$\Phi_p^k(\alpha) = \Phi_p^j(\alpha) \iff \alpha + k \, a = \alpha + j \, a$$

$$\iff k \, a = j \, a \ \text{en } \mathbb{F}_p$$

$$\iff_{a \neq 0 \ (p)} \quad k \equiv j \ (p).$$

Por lo tanto

$$\Phi_p(\alpha) = \alpha + a, \dots, \Phi_p^{p-1}(\alpha) = \alpha + (p-1)a, \Phi_p^p(\alpha) = \alpha$$

son todos distintos:

$$\operatorname{Gal}(\mathbb{F}_p(\alpha)/\mathbb{F}_p) = \langle \Phi_p \rangle = \{ \operatorname{id}_{\mathbb{F}_p(\alpha)}, \Phi_p, \dots, \Phi_p^{p-1} \}$$

tiene orden p, y

$$f(\alpha, \mathbb{F}_p) = \prod_{\substack{\sigma \in \operatorname{Gal}(\mathbb{F}_p(\alpha)/\mathbb{F}_p) \\ = \prod_{0 \le k < p} (X - \Phi_p^k(\alpha))} (X - \sigma(\alpha))$$

$$= \prod_{0 \le k < p} (X - (\alpha + k a))$$

es un polinomio irreducible en $\mathbb{F}_p[X]$, que divide a $X^p - X - a$, y como tienen mismo grado (y son ambos mónicos) son iguales.

Así

$$X^p - X - a = \prod_{0 \le k < p} (X - (\alpha + k a))$$

es irreducible en $\mathbb{F}_p[X]$ y

$$\mathbb{F}_p(\alpha) = \mathbb{F}_{p^p}.$$

Notar que si $a \neq b \in \mathbb{F}_p$, ambos no nulos, entonces $X^p - X - a$ y $X^p - X - b$ son irreducibles distintos, y como la única subextensión de \mathbb{F}_{p^p} es \mathbb{F}_p , Se tiene que

$$X^{p^p} - X = (X^p - X)(X^p - X - 1) \cdots (X^p - X - (p-1))q(X)$$

donde q es el producto de $p^{p-1}-p$ polinomios irreducibles de grado p.