ELEMENTOS DE CÁLCULO NUMÉRICO (B) - 2do. cuatrimestre 2019

Práctica 3 - Matrices

- 1. Dadas las matrices $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$ y $C = \begin{pmatrix} -1 & 0 \\ -1 & 0 \end{pmatrix}$, calcular:
 - (a) A + 3B 3C.

(c)
$$A - (B - 2C)$$
.
(d) $A - B + 2C$.

(b)
$$A + 3(B - C)$$
.

(d)
$$A - B + 2C$$

- 2. Se consideran matrices de los siguientes tamaños: $A \in \mathbb{R}^{4\times 5}$, $B \in \mathbb{R}^{5\times 7}$, $C \in \mathbb{R}^{7\times 5}$. Indicar cuáles de las siguientes operaciones son posibles. En caso afirmativo, indicar el tamaño (número de filas y de columnas) de la matriz resultado.
 - (a) $A \cdot B$.
- (c) $B \cdot C$.
- (e) $A \cdot B \cdot C$.

- (b) $B \cdot A$.
- (d) $C \cdot B$.
- (f) $B \cdot C \cdot A$.
- (h) $B \cdot C \cdot B \cdot C$.
- 3. Cuando sea posible, calcular $A \cdot B$ y $B \cdot A$. ¿Vale la igualdad entre estos productos?

(a)
$$A = \begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & -2 & 2 \\ 1 & 0 & -1 \end{pmatrix}$.

(b)
$$A = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} -2 \\ 4 \\ 1 \end{pmatrix}$.

(c)
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & -1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 1 & 4 \\ 3 & 0 & -1 \\ 4 & -1 & 5 \end{pmatrix}$.

- 4. Dadas las matrices $A = \begin{pmatrix} 0 & 3 & 1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{pmatrix}$ y $B = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 0 & 3 \\ 3 & 1 & 0 \end{pmatrix}$, calcular:
 - (a) A^2 .
 - (b) B^3 .
 - (c) $-2A^2 + B^3A$.
- 5. Mostrar, dando un contraejemplo, que la propiedad " $A \cdot B = 0 \Rightarrow A = 0$ ó B = 0" no es válida para matrices.
- 6. Dadas las matrices $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ y $B = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$ analizar si son válidas (para matrices) las fórmulas clásicas de factorización:

1

- (a) $(A+B) \cdot (A-B) = A^2 B^2$
- (b) $(A+B)^2 = A^2 + 2AB + B^2$
- 7. Sean $A = \begin{pmatrix} 1 & -4 \\ -2 & 1 \\ 2 & 0 \end{pmatrix}$ y $B = \begin{pmatrix} 2 & -3 & 4 \\ -1 & 0 & 3 \end{pmatrix}$. Calcular:
 - (a) $A^t y B^t$.

- (b) $(A \cdot B)^t \vee B^t \cdot A^t$.
- 8. Dar ejemplos, si existen, de matrices $A \in \mathbb{R}^{2 \times 2}$ tales que $A \neq 0$ y $A \neq I$ (distinta de la matriz nula y de la matriz identidad) que cumplan:
 - (a) $A^2 = I$. (b) $A^2 = 0$.

- (c) $A^2 = A$. (d) $A \cdot B = B \cdot A$ para toda matriz $B \in \mathbb{R}^{2 \times 2}$.
- 9. Dada una matriz $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, calcular los siguientes productos y analizar el resultado en términos de la matriz A. ¿Qué cambios producen los productos en la matiz A?

 - (a) $A \cdot \begin{pmatrix} k & 0 \\ 0 & j \end{pmatrix}$ y $\begin{pmatrix} k & 0 \\ 0 & j \end{pmatrix} \cdot A$. (c) $A \cdot \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$ y $\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} \cdot A$.

 - (b) $A \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ y $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot A$. (d) $A \cdot \begin{pmatrix} 1 & 0 \\ k & 1 \end{pmatrix}$ y $\begin{pmatrix} 1 & 0 \\ k & 1 \end{pmatrix} \cdot A$.
- 10. Calcular, si es posible, la matriz inversa de cada una de las siguientes matrices verificando que la matriz hallada es efectivamente la inversa.

 - (a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. (c) $\begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$.

(e) $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 1 & 2 & 4 \end{pmatrix}$.

- (b) $\begin{pmatrix} 3 & 4 \\ 0 & 0 \end{pmatrix}$. (d) $\begin{pmatrix} 3 & 0 & 0 \\ 0 & -1/2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$. (f) $\begin{pmatrix} 1 & 2 & -1 \\ -1 & 0 & 2 \\ 0 & 2 & 1 \end{pmatrix}$.
- 11. Verificar que las matrices $A = \begin{pmatrix} 1 & 2 \\ -1 & -1 \end{pmatrix}$ y $B = \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix}$ son inversibles y calcular:
 - (a) A^{-1} v B^{-1} .
 - (b) $(AB)^{-1} \vee B^{-1} \cdot A^{-1}$
- 12. Dada la matriz $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}^{2 \times 2}$, verificar que:
 - (a) si $ad bc \neq 0$, entonces A es inversible con inversa $A^{-1} = \frac{1}{ad bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.
 - (b) si ad bc = 0, entonces A no es inversible.
- 13. Considerar el sistema lineal

$$S: \begin{cases} 2x_1 - 5x_2 + x_3 + x_4 &= 2\\ x_1 - x_2 + x_3 - x_4 &= 6\\ -x_1 - 3x_2 + 3x_3 + x_4 &= 0 \end{cases}.$$

Reescribir el sistema como producto de matrices (notación matricial). Hacer lo mismo para el sistema homogéneo asociado.

14. Reescribir, mostrando las ecuaciones, el sistema lineal $A \cdot \bar{x} = b$ en cada uno de los siguientes casos:

$$A = \begin{pmatrix} 1 & -2 & -2 \\ 0 & -2 & 1 \\ 3 & -4 & -5 \end{pmatrix}; \qquad b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \qquad b = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}, \qquad b = \begin{pmatrix} 16 \\ 12 \\ -5 \end{pmatrix}.$$

2

15. En cada uno de los siguientes casos hallar **todas** las matrices $X \in \mathbb{R}^{2\times 2}$ o $X \in \mathbb{R}^{3\times 3}$, según corresponda, tales que:

(a)
$$\begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix} \cdot X = \begin{pmatrix} 5 & 1 \\ 0 & 2 \end{pmatrix}$$
. (c) $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \cdot X = X \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

(b)
$$X \cdot \begin{pmatrix} -2 & 1 \\ 3 & 4 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 2 & -4 \\ 3 & 7 \end{pmatrix}$$
. (d) $\begin{pmatrix} -2 & 1 \\ 2 & -1 \end{pmatrix} \cdot X = X \cdot \begin{pmatrix} -2 & 1 \\ 2 & -1 \end{pmatrix}$.

16. Hallar **todas** las matrices $X \in \mathbb{R}^{2 \times 2}$ que verifican $A \cdot X + 2X = B^t \cdot X + \frac{1}{2}C$ para

$$A = \begin{pmatrix} 0 & -1 \\ -1 & 1 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \text{ y } C = \begin{pmatrix} -2 & 4 \\ -1 & 6 \end{pmatrix}.$$

17. Hallar **todas** las matrices $X \in \mathbb{R}^{3 \times 3}$ que verifican $A \cdot X = 2X + B^t$ para

$$A = \begin{pmatrix} 2 & 2 & -1 \\ 3 & 3 & 2 \\ 1 & 0 & 3 \end{pmatrix} \quad \mathbf{y} \quad B = \begin{pmatrix} 1 & 0 & -1 \\ 3 & 1 & 0 \\ 1 & -2 & -1 \end{pmatrix}.$$