Primer parcial - Soluciones

Ejercicio 1. Sea E/F/K una torre de extensiones finitas. Probar que:

$$[E:K]_s = [E:F]_s \cdot [F:K]_s$$

Solución 1. Este es un ejercicio bastante teórico así que un par de observaciones y recordatorios no están de más. Recordemos que un cuerpo L es algebraicamente cerrado si todo polinomio no constante en L[x] tiene una raíz en L. Una clausura algebraica de K es una extensión algebraica de K que es algebraicamente cerrada. Gabriel probo en clase que la clausura algebraica de un cuerpo K es única a menos de isomorfismo, luego se justifica la notación \overline{K} . Una pequeña observación es que \overline{K} es clausura algebraica para cualquier extensión algebraica de K, ya que la clase de extensiones algebraicas es distinguida. En particular, \overline{K} es una clausura algebraica para cualquier extensión finita E/K pues una extensión de grado finito sobre K es algebraica sobre K. Entonces, si tenemos una torre de extensiones finitas E/F/K, podemos fijar \overline{K} que es una clausura algebraica para todos.

Recordemos el importante teorema que probo Gabriel:

Teorema: Sea E/K extensión algebraica, L algebraicamente cerrado y $\tau: K \to L$ morfismo de cuerpos. Entonces existe $\sigma: E \to L$ que extiende a τ .

Lema: Supongamos que tenemos E extensión de F, L y L' cuerpos algebraicamente cerrados y tenemos $\sigma: F \to L$ y $\tau: F \to L'$ morfismos de cuerpos. Entonces los conjuntos

$$S_{\sigma} = \{ f \in \text{Hom}(E, L) : f \text{ morfismo de cuerpos }, f|_F = \sigma \}$$

 $S_{\tau} = \{ f \in \text{Hom}(E, L') : f \text{ morfismo de cuerpos }, f|_F = \tau \}$

están en biyección.

En particular, resulta que $\#S_{\sigma} = \#S_{\tau}$. Es decir, la cantidad de extensiones no depende ni del cuerpo algebraicamente cerrado elegido ni del morfismo que estamos extendiendo: solo depende de la extensión E/F.

Dem: Como para cualquier $\overline{\sigma} \in S_{\sigma}$ la imagen $\overline{\sigma}(E)$ está contenida en una clausura algebraica de $\sigma(F)$, podemos asumir que L es una clausura algebraica de $\sigma(F)$.

Consideramos a σ como un isomorfismo correstringiendo $\sigma: F \to \sigma(F)$ así que lo podemos invertir y considerar σ^{-1} . Por el teorema enunciado podemos extender el morfismo $\tau \circ \sigma^{-1}: \sigma(F) \to L'$ a un isomorfismo $\lambda: L \to L'$ (resulta un isomorfismo porque L es algebraicamente cerrado).

El diagrama sería el siguiente:

$$\sigma(F) \xrightarrow{\tau \circ \sigma^{-1}} L'$$

$$\downarrow^{inc} \stackrel{\lambda}{\downarrow}$$

$$L$$

Ahora, si $\overline{\sigma} \in S_{\sigma}$, entonces $\lambda \circ \overline{\sigma} : E \to L'$ es tal que al restringirlo a F nos queda τ porque $\lambda \circ \overline{\sigma}|_F = \lambda \circ (\overline{\sigma}|_F) = \lambda \circ \sigma$, como λ está restringida ahora a $\sigma(F)$, por el diagrama resulta que $\lambda \circ \sigma = \tau \circ \sigma^{-1} \circ \sigma = \tau$, es decir $\lambda \circ \overline{\sigma} \in S_{\tau}$. Esto de hecho nos da una función de S_{σ} en S_{τ} definida por $\overline{\sigma} \mapsto \lambda \circ \overline{\sigma}$. Esta función es claramente inyectiva, luego $\#S_{\sigma} \leq \#S_{\tau}$.

Haciendo un argumento simétrico obtenemos la otra desigualdad, lo cual prueba la igualdad.

Notemos que, de yapa, esto demuestra la buena definición del grado de separabilidad que definió Gabriel $[E:K]_s = \#\operatorname{Hom}(E/K,\overline{K}/K)$ (tomando $L=\overline{K}$ y $L'=\overline{K'}$ y extendiendo $\iota:K\to\overline{K}$ donde ι es la inclusión y $\iota':K\to\overline{K'}$ también la inclusión).

Por otro lado, sean $\{\sigma_i\}_{1\leq i\leq [F:K]_s}$ todos los morfismos en $\operatorname{Hom}(F/K,\overline{K}/K)$ que son por definición la extensión de ι a un morfismo $\sigma_i:F/K\to\overline{K}/K$. Por el lema, cada σ_i se extiende de $[E:F]_s$ maneras a un $\sigma_{i,j}:E/K\to\overline{K}/K$ $(1\leq j\leq [E:F]_s$ sin importar quien era σ_i ni la clausura elegida) por lo tanto obtenemos $[E:F]_s.[F:K]_s$ morfismos distintos en $\operatorname{Hom}(E/K,\overline{K}/K)$. En definitiva, obtenemos que $[E:K]_s\geq [E:F]_s.[E:K]_s$.

Por otro lado, sea $\sigma \in \operatorname{Hom}(E/K, \overline{K}/K)$. Si lo restringimos a F tenemos un morfismo $\sigma|_F: F/K \to \overline{K}/K$, que es una extensión de $\iota: K \to \overline{K}$ y por lo tanto $\sigma|_F \in \operatorname{Hom}(F/K, \overline{K}/K)$. Además, $\sigma: E/K \to \overline{K}$ es una extensión de $\sigma|_F$, luego cualquier $\sigma \in \operatorname{Hom}(E/K, \overline{K}/K)$ se obtiene como una doble extensión de $\iota: K \to \overline{K}$ que nuevamente por el lema se puede hacer de $[E:F]_s[F:K]_s$ maneras y la igualdad se sigue.

Ejercicio 2. Sea K un cuerpo de característica positiva p, y sea $f = X^p - X - a \in K[X]$.

- 1. Probar que si f tiene una raíz en K, entonces tiene p raíces en K
- 2. Probar que si f no tiene raíces en K, entonces es irreducible. En este caso, probar que el cuerpo de descomposición de f es una extensión galoisiana de K, y calcular su grupo de Galois.

Solución 2. 1. Supongamos que $\alpha \in K$ es raíz de f. Digo que de hecho podemos conocer todas sus raíces, y estas son $\{\alpha, \alpha+1, \ldots, \alpha+(p-1)\}$ donde $1, 2, \ldots, (p-1)$ son, si pedimos toda la rigurosidad del mundo, los elementos del subcuerpo de K que se identifica con \mathbb{F}_p . Notemos que son todas distintas y que están en K, así que si probamos que son raíces habremos probado el ítem.

En efecto sea $b \in \{1, \dots, p-1\}$, entonces:

$$(\alpha+b)^p - (\alpha+b) + a \stackrel{Frob}{=} \underbrace{\alpha^p - \alpha + a}_0 + b^p - b = b^p - b \stackrel{P.T.F.}{=} b - b = 0$$

Así que en efecto si f tiene una raíz en K, entonces tiene a sus p raíces en K.

2. Supongamos que tenemos una factorización en irreducibles de f en K[x] de la forma $\prod_{i=1}^k f_i(x)$ donde cada f_i es un polinomio irreducible de grado d_i . Sea β una raíz de f_i que, obviamente, es también raíz de f, y por la misma cuenta que hicimos en el ítem anterior es de la forma $\beta = \alpha + b$ con $b \in \mathbb{F}_p$ donde α alguna raíz en una clausura algebraica de K (notar que la cuenta de la caracterización de todas las raíces no dependía en ningún momento de que $\alpha \in K$).

Como $K[\alpha + b] = K[\alpha]$, tenemos que $[K[\alpha + b] : K] = d_i = [K[\alpha] : K]$ pero entonces $d_i = d_j$ para todos $1 \le j, i \le k$.

Tomando grado, tenemos que $p = k.d_1$ lo cual es absurdo a menos que f se factorice en factores lineales en K[x] (este es el caso $d_1 = 1$ y k = p) o f sea irreducible en K[x] (este es el caso donde $d_1 = p$ y k = 1). Concluimos que si f no tiene una raíz en K, entonces es irreducible.

Sea E el cuerpo de descomposición de f. Ya probamos que es $K[\alpha]$, donde α es una raíz en alguna clausura algebraica. Esta extensión es claramente Galois pues es un cuerpo de descomposición de un polinomio separable. Luego $|Gal(K[\alpha]/K)| = [K[\alpha]:K] = p$, que es isomorfo a C_p .

Como la extensión es simple, si tenemos un automorfismo, este quedará determinado por a donde mandemos α . Como α solo puede ir a raíces de su minimal sobre K, solo podemos obtener a lo sumo p automorfismos y como $|Gal(K[\alpha]/K)| = p$, todos ellos deben definir automorfismos. Es decir, $Gal(K[\alpha]/K)$ son los p automorfismos definidos por $\sigma_b(\alpha) = \alpha + b$ con $b \in \mathbb{F}_p$, y está generado por σ_1 .

Ejercicio 3. Sea $P \in K[X]$ irreducible. Sea E/K una extensión normal, y supongamos que $P = \prod_{i=1}^{n} Q_i^{e_i}$ una factorización de P como producto de polinomios irreducibles en E[x].

- 1. Probar que para todos $1 \le i, j \le n$ se tiene que $\deg Q_i \deg Q_j$ y $e_i = e_j$
- 2. Mostrar que esto es falso si la extensión no es normal.

Solución 3.

1. Sea L el cuerpo de descomposición de f sobre K, que obviamente es normal sobre K. Usaremos la transitividad de $\operatorname{Aut}(L/K)$ sobre las raíces de $f \in K[x]$, para demostrar que $\operatorname{Aut}(L/K)$ actúa transitivamente sobre el conjunto de los Q_i .

Podemos suponer, sin pérdida de generalidad, que todos los polinomios involucrados son mónicos.

Consideramos Q_r y Q_s . Existen α y β en L raíces de Q_r y Q_s respectivamente.

Probamos en una clase que existe un automorfismo $\sigma: L/K \to L/K$ que manda $\alpha \mapsto \beta$ (usamos que existe un isomorfismo $\hat{\sigma}: K[\alpha]/K \to K[\beta]/K$ que manda $\alpha \mapsto \beta$ y el ejercicio 10 de la práctica 2)

Probamos también en el ejercicio 14 de la práctica 2 que $E \cap L$ es normal sobre K. Llamemos $F := E \cap L$.

Tenemos la torre L/F/K. Como los coeficientes de Q_r están en E y en L (están en L porque los coeficientes de un polinomio siempre se pueden pensar como productos y sumas de sus raíces) y como por normalidad $\sigma(F) \subseteq F$, resulta que $Q_r^{\sigma} \in E[x]$ y tiene como raíz a β . Luego $Q_s \mid Q_r^{\sigma}$. Siendo Q_r^{σ} irreducible, tenemos que $Q_s = Q_r^{\sigma}$. Hecho esto, digo que:

- (a) En particular, los grados de Q_r y Q_s deben ser iguales.
- (b) Tenemos que $f^{\sigma} = f$, es decir $\prod_{i=1}^{n} Q_i^{e_i} = \prod_{i=1}^{n} (Q_i^{\sigma})^{e_i}$. Por factorización única en E[x], debe ser $e_r = e_s$, ya que el exponente de Q_s en el miembro derecho de esta igualdad es e_r .
- 2. Usamos nuestro ejemplo preferido, el polinomio $x^3 2 \in \mathbb{Q}[x]$. Es irreducible en $\mathbb{Q}[x]$ pues no tiene raíces racionales y en $\mathbb{Q}[\sqrt[3]{2}]$ se descompone en irreducibles como

$$(x - \sqrt[3]{2})(x^2 + \sqrt[3]{2}x + \sqrt[3]{4})$$

(el factor $(x^2 + \sqrt[3]{2}x + \sqrt[3]{4})$ contiene a $\sqrt[3]{2}\xi_3$ y $\sqrt[3]{2}\xi_3^2$ raíces no reales, así que esto basta para ver que es irreducible en $\mathbb{Q}[\sqrt[3]{2}] \subseteq \mathbb{R}$ ya que es polinomio de grado 2)

Ejercicio 4. Sea E el cuerpo de descomposición del polinomio $f = (X^4 - 3)(X^3 - 2) \in \mathbb{Q}[X]$.

- 1. Probar que $[E:\mathbb{Q}]=24$
- 2. Hallar todas las subextensiones de E de grados 3 y 8

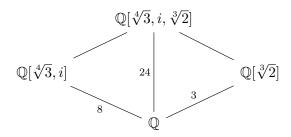
Solución 4.

1. Las raíces de $(x^4 - 3)(x^3 - 2)$ son $\left\{ \sqrt[4]{3}, -\sqrt[4]{3}, i\sqrt[4]{3}, -i\sqrt[4]{3}, \sqrt[3]{2}, \sqrt[3]{2}\xi_3, \sqrt[3]{2}\xi_3^2 \right\}$ Recordemos que $\xi_3 = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ y $\xi_3^2 = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$.

Notemos que $[\mathbb{Q}[\sqrt[4]{3},i]:\mathbb{Q}]=[\mathbb{Q}[\sqrt[4]{3},i]:\mathbb{Q}[\sqrt[4]{3}]]\cdot [\mathbb{Q}[\sqrt[4]{3}]:\mathbb{Q}]$. Tenemos que $[\mathbb{Q}[\sqrt[4]{3}]:\mathbb{Q}]=4$ pues el minimal es x^4-3 (Eisenstein), y también $[\mathbb{Q}[\sqrt[4]{3},i]:\mathbb{Q}[\sqrt[4]{3}]]=2$ porque el grado solo puede ser 1 o 2 $(x^2+1$ anula a i), pero como $\mathbb{Q}[\sqrt[4]{3}]\subseteq\mathbb{R}$ resulta que debe ser 2.

Es decir, $[\mathbb{Q}[\sqrt[4]{3}, i] : \mathbb{Q}] = 8$.

Entonces podemos hacer un diamante:



El 24 sale claramente de la coprimalidad del 8 con 3.

Faltaría ver que $\mathbb{Q}[\sqrt[4]{3}, i, \sqrt[3]{2}]$ es el cuerpo de descomposición de este polinomio. Es claro que $\mathbb{Q}[\sqrt[4]{3}, i, \sqrt[3]{2}] \subseteq E$, y también es claro que $E \subseteq \mathbb{Q}[\sqrt[4]{3}, i, \sqrt[3]{2}]$ porque con estos 3 elementos podemos armar cualquier raíz del polinomio (el único truquito aquí es que con $(\sqrt[4]{3})^2 = \sqrt{3}$ e i podemos recuperar a ξ_3).

2. Veamos cuantos 3-Sylows hay (o sea subgrupos de orden 3). En términos de la notación estándar, tenemos $n_3 \equiv 1 \mod 3$ y $n_3|8$, o sea que puede haber 1 o 4 subgrupos de orden 3. Digo que hay solo 1. Notemos que la extensión $\mathbb{Q}[\sqrt[4]{3},i]$ de grado 8 es normal, luego $\mathbb{Q}[\sqrt[4]{3},i] = E^H$ con H subgrupo normal de orden 3. Pero si un 3-Sylow es normal por los teoremas de Sylow concluimos que solo puede haber uno solo, ya que si agarramos otro 3-Sylow J, tenemos que $J = gHg^{-1} = H$. Concluimos que esta es la única extensión de grado 8.

Veamos cuantos 2—Sylows hay (o sea subgrupos de orden 8). Tenemos que $n_2|3$, por lo que puede haber 1 o 3 grupos de orden 8. Por la correspondencia de Galois, estos se corresponden con subextensiones de grado 3 sobre \mathbb{Q} . Notemos que tenemos a $\mathbb{Q}[\sqrt[3]{2}]$ que es de grado 3 sobre \mathbb{Q} , también $\mathbb{Q}[\sqrt[3]{2}\xi_3]$ es de grado 3 sobre \mathbb{Q} , y no hay dudas de que estas dos subextensiones son distintas (una está contenida en los reales y la otra no). Nos falta una tercera, que digo que es $\mathbb{Q}[\sqrt[3]{4}\xi_3]$ Notemos que el minimal de su generador es x^3-4 (Eisenstein), luego también es de grado 3. Por el mismo argumento de antes, no hay dudas de que $\mathbb{Q}[\sqrt[3]{4}\xi_3]$ y $\mathbb{Q}[\sqrt[3]{2}]$ son distintas. Solo falta ver que $\mathbb{Q}[\sqrt[3]{4}\xi_3]$ y $\mathbb{Q}[\sqrt[3]{2}\xi_3]$ no son la misma extensión. Si fueran la misma, entonces $[\mathbb{Q}[\sqrt[3]{4}\xi_3, \sqrt[3]{2}\xi_3]: \mathbb{Q}] = 3$, pero notemos que $(\sqrt[3]{2}\xi_3)^2 = \sqrt[3]{4}\xi_3^2$, luego en $\mathbb{Q}[\sqrt[3]{4}\xi_3, \sqrt[3]{2}\xi_3]$ podemos dividir por $\sqrt[3]{4}\xi_3$ para obtener que $\xi_3 \in \mathbb{Q}[\sqrt[3]{4}\xi_3, \sqrt[3]{2}\xi_3]$. Esto automáticamente nos dice que $[\mathbb{Q}[\sqrt[3]{4}\xi_3, \sqrt[3]{2}\xi_3]: \mathbb{Q}] = 6 \neq 3$ y terminamos.

Nota: Quizás es más natural elegir $\mathbb{Q}[\sqrt[3]{2}\xi_3^2]$ como la otra extensión de grado 3. Notemos que es igual a $\mathbb{Q}[\sqrt[3]{4}\xi_3]$ (la que yo usé) ya que $(\sqrt[3]{4}\xi_3)^2 = \sqrt[3]{2}\xi_3^2$ y $(\sqrt[3]{2}\xi_3^2)^2 = \sqrt[3]{4}\xi_3$, así que *don't panic* si dijeron que $\mathbb{Q}[\sqrt[3]{2}]$, $\mathbb{Q}[\sqrt[3]{2}\xi_3]$ y $\mathbb{Q}[\sqrt[3]{2}\xi_3^2]$ son las 3 subextensiones de grado 3.

Ejercicio 5. Sea K un cuerpo finito de q elementos y sea X trascendente sobre K. Sea G el subgrupo de Aut(K(X)/K) generado por los automorfismos f_a , g_b dados por

$$f_a(X) = aX, \quad a \in K^{\times};$$

 $q_b(X) = X + b, \quad b \in K;$

Probar que $K(X)^G = K(Y)$, con

$$Y = \frac{X^{q^2} - X}{X^q - X}$$

Solución 5. Notemos que por ejercicio 16 b) de la práctica 4 los automorfismos de K(x)/K quedan bien definidos por definir la acción en la indeterminada x y mandarla a un cociente de polinomios en K[x] de grado 1. Así, el automorfismo queda completamente y unívocamente determinado en cualquier elemento de K(x). Los elementos del enunciado cumplen esto $(a \in K^{\times}!)$, así que nos quedamos tranquilos de que definen automorfismos de K(x).

Veamos que Y queda fijo por cada f_a y cada g_b . En efecto, usando que Frobenius es un automorfismo de toda extensión de K,

$$g_b(Y) = \frac{g_b(x)^{q^2} - g_b(x)}{g_b(x)^q - g_b(x)} = \frac{(x+b)^{q^2} - (x+b)}{(x+b)^q - (x+b)} = \frac{x^{q^2} + b - x - b}{x^q + b - x - b} = Y,$$

$$f_a(Y) = \frac{f_a(x)^{q^2} - f_a(x)}{f_a(x)^q - f_a(x)} = \frac{(ax)^{q^2} - (ax)}{(ax)^q - (ax)} = \frac{ax^{q^2} - ax}{ax^q - ax} = Y.$$

De esto se sigue que Y queda fijo por el subgrupo G, por lo que $K(Y) \subseteq K(x)^G$. Por el teorema de Artin, la extensión $K(x)/K(x)^G$ es Galois con $[K(x):K(x)^G]=|G|$. Luego, para concluir la igualdad basta con probar que |G|=[K(x):K(y)].

Para calcular [K(x):K(Y)] vamos a "coprimalizar" la función racional Y, es decir escribir Y=f/g con $f,g\in K[x]$ coprimos. Notemos que de hecho todas las raíces de x^q-x son raíces de x^q-x que si α es raíz de x^q-x , entonces $\alpha^{q^2}=(\alpha^q)^q=(\alpha)^q=\alpha$. Además la derivada formal de x^q-x es -1, de modo que es un polinomio separable y de esta forma x^q-x divide a $x^{q^2}-x$. Luego Y es, más que una función racional, un polinomio un de grado q^2-q . De esta forma, por ejercicio 16 a) P4 (o 22 P1) tenemos que $[K(x):K(y)]=q^2-q$.

Para calcular el orden del grupo G, consideramos los subgrupos $\langle f_a \rangle_{a \in K^{\times}}$ y $\langle g_b \rangle_{b \in K}$, que tienen órdenes q-1 y q respectivamente. Notemos que $\langle g_b \rangle_{b \in K} \subseteq G$, ya que que $f_a \circ g_b \circ f_a^{-1} = g_{ab}$. Esto muestra que G tiene a lo sumo $q^2 - q$ elementos (lo cual alcanza para nuestros propósitos). Pero, más aún, como estos subgrupos se intersecan trivialmente, G tiene exactamente $q^2 - q$ elementos.