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Survey of the Stability of Linear Finite Difference 
Equations* 

P. I>. LAX and R. D. RICHTMYEK 

PART I 

AN EQUIVALENCE THEOREM 

1. Introduction 
Beginning with the discovery by Courant, Friedrichs and Lewy [l] 

of the conditional stability of certain finite difference approximations to 
partial differential equations, the subject of stability has been variously 
discussed in the literature (see bibliography at  end). The present paper is 
concerned with the numerical solution of initial value problems by finite 
difference methods, generally for a finite time interval, by a sequence of 
calculations with increasingly finer mesh, Thus if t is the time variable 
and dt its increment, we are concerned with limits as At -+ 0 for fixed t ,  
not with limits as t+co for fixed At (although often the stability con- 
siderations are similar). The basic question is whether the solution con- 
verges to the true solution of the initial value problem as the mesh is 
refined. The term stabiZity, as usually understood, refers to a property 
of the finite difference equations, or rather of the above mentioned sequence 
of finite difference equations with increasingly finer mesh. We shall give a 
definition of stability in terms of the uniform boundedness of a certain set 
of operators and then show that under suitable circumstances, for linear 
initial value problems, stability is necessary and sufficient for convergence 
in a certain uniform sense for arbitrary initial data. The circumstances 
are first that a certain consistency condition must be satisfied which 
essentially insures that the difference equations approximate the differen- 
tial equations under study, rather than for exampre some other differentid 
equations, and secondly that the initial value problem be properly posed, 
in a sense to be defined later. 

We shall not be concerned with rounding errors, and in fact assume 
that all arithmetic steps are carried out with infinite precision. But it will 

*The work for this paper was done under Contract AT-(3@-1)-1480 of the Atomic 
Energy Commission. 
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be evident to the reader that there is an intimate connection between 
stability and practicality of the equations from the point of view of the 
growth and amplification of rounding errors. Indeed, O’Brien, Hyman and 
Kaplan [8] defined stability in terms of the growth of rounding errors. 
However, we have a slight preference for the definition given below, because 
it emphasizes that stability still has to be considered, even if rounding 
errors are negligible, unless, of course, the initial data are chosen with 
diabolical care so as to be exactly free of those components that would 
be unduly amplified if they were present. 

The basic notions will be spelled out ill considerable detail below in 
an attempt to motivate the definitions given and to justify the approach 
via the theory of linear operators in Banach space. We shall then give 
the usual definition of a properly posed initial value problem, define the 
consistency of a finite difference approximation, define the stability of a 
sequence of finite difference equations, and prove the equivalence theorem. 

2. The Function Space of an Initial-Value Problem 
In the solution of an initial-value problem the time variable t plays a 

special role. An instantaneous state of the physical system is described 
by one or more functions of certain other variables which we shall call space 
variables. At any stage of a machine- or hand-calculation one has at hand 
a numerical representation (e.g. in tabular form) of these functions, that is, 
of the state of the system at some time t. As time goes on, the state of the 
system changes according to certain differential or integro-differential equa- 
tions. It is convenient to think of these functions, for a fixed t ,  as an 
element or point in a function space @ and to denote them by a single 
symbol u. 

The initial-value problems under consideration are linear and we 
suppose 3? to be linear also. This may force us to accept as elements of L4Y 
some functions not having direct significance as states of a physical system , 
e.g., functions having negative values for inherently positive quantities 
Iike temperature and particle density. But it is convenient to admit such 
functions as representing generalized states‘of the system, and also to admit 
complex valued functions. If sums and differences of elements of ~?2’ are 
defined in the obvious manner by sums and differences of the corresponding 
functions, and if multiplication of an element of @ by a number is defined 
in the equally obvious manner as multiplication of the corresponding func- 
tions by that number, it is clear that 93’ is a linear vector space. 

For a discussion of approximation and errors, one needs a measure 
of the difference of two states u and v, and it is clear that this measure 
should have the properties of a norm of the element ze~ = 14 - v; we there- 
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fore denote this quantity by I /  w I /  and suppose that a is a Banach space. 
The specific choice of norm may vary from one application to another; 
in many cases it can be identified with energy. Our assumption that is 
complete with respect to the norm plays an important role in the equivalence 
theorem of Section 8. 

3. The Initial Value Problem 

Let '4 denote a linear operator that transforms the element u into 
the element A u  by spatial differentiations, matrix-vector multiplications 
and the like. The initial value problem is to find a one-parameter set of 
elements u(t)  such that 

d 
dt 
-u( t )  = Au(t) ,  0 s t 5 Cl', 

(2) u(0) = uo 

where uo represents a preassigned initial state of the system. 
Systems involving higher order derivatives with respect to t can be 

put into the above form in the usual way by introducing the lower order 
derivatives as further unknown functions. 

All the general considerations in the present discussion apply as well 
when the operator A depends explicitly on t ,  and in fact were originally 
presented in that generality1 , but in the interest of simplicity of the for- 
mulas we discuss here only the case of an operator A not depending on the 
parameter t. 

If there are boundary conditions in the problem, it is assumed that they 
are linear homogeneous and are taken care of by restricting the domain 
of A to functions satisfying the conditions. 

By a genuine solutiolz of (1)  we mean a one-parameter set ?t ( t )  such 
that first, u(t)  is in the domain of A for 0 5 t 5 T and secondly 

Au(t)  11 -+ 0 uniformly in t ,  0 5 t 5 T.  

If we pick an element G~ not in the domain of A (e.g., if A is a differen- 
tial operator and the functions represented by z+, are nondifferentiable at 
one or more points), we obviously cannot find a genuine solution satisfying 
(2) ,  but we assume that zd0 can always be approximated, as closely as one 
desires, by an element N,, for which a unique genuine solution exists. That 

'P. D. Lax, Seminar, New York University, January 1954. 
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is, if we define an operator Eo(t )  - really a one-parameter family of operators 
- so that 

u ( t )  = Eo(t)u(O), O s t S T ,  
for any genuine solution of (1) depending uniquely on u(O), we assume that 
the domain of E,,(t) is dense in a. 

I t  is also desirable that the solution depend continuously on the initial 
data. If we alter the initial date zdo by addition of vo , we want to guarantee 
that the alteration of the solution is small if vo is small, i.e., that there 
should be a constant K such that 

II Eo(t)vo II 5 I I  vo I 1 7  O I t S T .  
We therefore assume that the operators E,(t) are uniformly bounded, 

for 0 5 t I T .  
The foregoing assumptions characterize a properly 9osed problem. 

For such a problem, E,(t) has a bounded linear extension E( t )  whose domain 
is the entire space and whose bound is the same as that of E,(t), because 
a bounded linear operator with a dense domain can always be so extended. 
Then, for arbitrary uo , the one-parameter set of elements of a, u(t) ,  given by 

is interpreted as a generalized solution of the initial value problem ( I ) ,  (2). 
u(t) = E(t)uo 

4. Finite Difference Approximations 
When an approximate solution is obtained by finite difference 

methods, the time variable t, in the first place, assumes discrete values 
t = t o ,  tl , , tn  , - * * , where t" = nzdt, and correspondingIy, one deals 
with a discrete sequence uo , zdl , - * - , un , - - , of states of the physical 
system. 

In the second place, the space variables are also discrete so that the 
functions describing a state of the system are specified only at the points 
of a lattice or net of values of the space variables. However, we may still 
regard such a specification (although imperfect) as represented by a point 
in the same function space 9, by adopting some rule for specifying function 
values between the points of the space lattice, for example linear inter- 
polation. Such a rule, if chosen with reasonable care, will not interfere with 
the linearity or boundedness of the operators dealt with. (Some authors, 
such as L. V. Kantorovitch [5] prefer to represent the sates un in a different 
Banach space W' , and to establish suitable homomorphisms between &7 
and 9' .) 

The finite difference equations are: 

(4) z P + ~  = B(dt ,  A X ,  Ay ,  * * - ) u " ,  



STABILITY OF DIFFERENCE EQUATIONS 27 1 

where u" is (it is hoped) an approximation to u(t"), and B denotes a linear 
finite difference operator which depends, as indicated, on the size of the 
time increment At and on the sizes of the space increments A z ,  d y ,  - - - . 

Contrary to possible appearance, this formulation is not restricted to 
explicit difference systems. If the system is implicit, the operator B will 
contain the inverse of a (possibly infinite) matrix, but for present purposes 
it is not necessary to suppose that B can be easily written in explicit form. 
Whatever the calculation procedure may be which leads to u"+l when u" 
is known, it results in a transformation in A? and this transformation is 
denoted by B. 

We do assume, however, that the calculation procedure is a definite 
one which can be applied to any function u" and that the result un+l depends 
linearly and continuously on u" , as is clearly the case for any reasonable 
scheme. In other words, for any fixed At, Ax and Ay,  B is a bounded linear 
transformation whose domain is the whole Banach space. 

The concepts of stability and convergence with which we deal here 
suppose an infinite sequence of calculations with increasingly finer mesh. 
We assume relations 

= g,(dt), 

4 = g z ( 4 1  

. . . . . . . .  
which tell how the space increments approach zero as the time increment 
goes to zero along the sequence, and we set 

B ( 4  g,(At), g z ( N  * * - 1 = C ( 4 ,  
so that 
(5  ) ?d"+l = C(At)u". 

5. The Consistency Condition 

Un+l - U n  
Since 

At  
is to be an approximation to the time derivative, 

C(dt)u - u 
At 

must be an approximation, in some sense, to Au. We cannot expect this 
to be true for all u in L%, because in general Au is not even defined for all 
$4 in a But we want it to be true for nearly ail u that can appear in a 
genuine solution of the initial value problem; and for any particular genuine 
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solution we want the approximation to be uniformly good for all t in 
0 5 t 5 T. Specifically, we shall call the family of operators C(dt) a 
consistent approximation for the initial value problem, if for some class U 
of genuine solutions it is true that, for any u(t) in this class, 

= 0 uniformly in t, 0 5 E I T ,  
C ( A t )  - I 

A t + O  
(6) 

provided that the class U is sufficiently wide and that its initial elements 
u(0) are dense in a. 

In applications, A is usually a differential and C a difference operator 
in the space variables. To verify the consistency condition (6), Au has 
to be compared to (C(Ai) -I )u /Ai ;  to carry out this comparison expand 
each term in C(At)u into a finite Taylor series (take two or three terms, 
depending on the order of the differential operator A ) ,  obtaining a differen- 
tial operator. The error in replacing C.u by such a differential expression 
can be estimated, by Taylor’s theorem, for sufficiently smooth functions. 
Therefore the comparison can be carried out for all sufficiently smooth 
solutions, and it is well known that the smooth solutions are dense among 
all solutions. 

(6) is called the consistency condition. 

6 .  Convergence 
Operating n times on uo with C(dt )  gives un = C(At)”u, which, it is 

hoped, approximates u(ndt). Since u(t) = E(t)G0, we therefore make the 
following definition: the family of operators C ( A t )  provides a convergent 
approximation for the initial value problem if for any u, in ~39 and for 
any sequences A,t , n, such that A,t tends to zero and n,A,t += t where 
0 5 t 5 T then 

! I [  C(A,t)  p0 - E ( t ) U O  --f 0, I 0 5 t 5 T.  

Note that we require (7) to hold for every uo in B if C(At)  is to be 

(7)  

called a convergent approximation. 

7. Stability 

In a sequence of calculations with A j t  --f 0, if each calculation is carried 
from t = 0 to t M T ,  the operators which are used are those belonging to  
the set 

all applied to ? t o .  The idea of stability is that there should be a limit to 
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the extent to which any component of an initial function can be amplified 
in the numerical procedure. Therefore the approximation C ( A ,  t )  is said to 
be stable if the operators of the above set are uniformly bounded, Note 
that we make no reference here to the differential equation whose solution 
is desired so that stability, as defined, is a property solely of a sequence of 
difference equation systems. 

In practice the bound of (C(d t ) } "  is generally a continuous function 
of At  in some interval, 0 < A t  5 t, so that we may equivalently define the 
approximation C(dt )  to be stable if for some z > 0, the set of operators 

O < A t S T  
O I n A t S T  

is uniformly bounded. 

8. The Equivalence Theorem 

Given a properly posed initial value problem (I), (2) and a finite dif- 
ference apfroximation C ( A t )  to i t  that satisfies the consistency condition, 
stability i s  a necessary and sulficient condition that C ( A t )  be a convergent 
approximation. 

According to the definition of Section 6, this involves convergence 
for an arbitrary initial element %,. In principle, an unstable scheme can 
sometimes give convergence for special initial elements. (Such schemes 
are not generally very useful in practise, because the initial data seldom 
have the required properties, and even if they do, round-off errors are 
likely to perturb the calculation enough to throw it into a neighboring 
divergent situation. ) 

We now prove the first part of the theorem: a convergent scheme is 
necessarily stable. 

We start bv showing that for a convergent scheme, the set of elements 

(10) C"W)u,  I nAt 5 T 

are bounded for each fixed 21, in i%. For, assume to the contrary that for 
;t sequence n,, d , t ,  n , A j t  T ,  the norms of the elements Cnf(djt)uo tend 
to infinity. Select a subsequence such that n,A,t tends to some limit t ;  
since the scheme was assumed convergent, C"j(A, t)u, would have to tend 
to  E ( t ) u o ,  which it couldn't if it were unbounded. 

We now appeal to the principle of uniform boundedness, which says 
that if each operator L of a set is bounded and if there exists a function 
K(zt) such that / I  Lu 1 1  5 K(u)  for all L in the set and all zt in .g, then 
the set is uniformly bounded. Applying this to the present case, we see 
that the set (8) is uniformly bounded, and the approximation is stable. 
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To prove that, conversely, stability implies convergence, let ec(t)=E(t)zco 
be a genuine solution belonging to the set U referred to in the definition 
of consistency. Then, for any positive E ,  

for sufficiently small At .  Also, from the definition of a genuine solution, 

for sufficiently small At ,  so that by the triangle inequality, 

( 1 1 )  1 )  ( C ( 4  - E ( 4 )  u(t) 1 )  < &At, O S t S T ,  

for sufficiently small At. This last inequality might have been taken as 
the basis of the definition of consistency, but the definition given in Section 5 
is preferred for practical applications because it involves the operator A 
rather than the generally unknown solution operator E(t ) .  Set 

Yj = [F(4 t ) P  - - W , A i t ) l z t ,  

The equality of the second and third members of this equation results from 
cancellation of all except the first and last terms of the third member, when 
written out in full. The norm of yj can be estimated by use of inequality 
(11) with the help of the triangle inequality: 

nj-1 

0 
( 1  ~5 11 < K E A j t  = Km,Ajt < KET, 

for sufficiently small A,t ,  where K denotes the uniform bound of the set (8). 
Therefore, since E was arbitrary, 

(12) / J y , J / + o  as d,t+O. 

Now suppose that n,d,t 3 t as f+co, where t is a number in the inter- 
val (0, T ) .  The difference {E(n,A,t)  - E(t)}u,  may be written in either 
of two ways, depending on which of the two arguments n,A,t and t is the 
larger, that is, as 

t’ --1 f, 

t’ = n,d j l .  

(E(s )  - I)E(t’)u, if s = n5d,t - t 2 0, 

- ( E ( s )  - I)E(t’)uo if s = t - njd,t > 0, 
or as 

(The reason for making the distinction is that the solution operator E( t )  
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is generally defined only for non-negative arguments.) In either case, 

It ( E ( W v )  - E(t))uo II < KE I t  (E(s )  - o%ll 
which goes to zero as s -+ 0 and therefore as i -+ CQ. Thus, combining this 
result with (12), 

(13) 1 1  [(C(d,t)}"f - E(t)]uo ( 1  + 0 as j -+ co 
for any uo which can be the initial element of a genuine solution of the 
class U. But these initial elements are dense in 3Y) so that if u is any element 
of LB' there is a sequence u l ,  u 2 ,  - converging to u, each ui the initial 
element of a genuine solution for which (13) holds. Then 

[ { C ( ~ I j t ) ) ~ j  - E(t)Ju = [{C(djt)]"j - E(t)]zt, 
+ ( C ( 4 t ) p ( U  - u,) + E( t )  (a - %I%). 

The last. two terms on the right of this equation can be made as small as 
one pleases by choosing m sufficiently large, on account of uniform boun- 
dedness of the operators C" and of E(t ) .  Then the first term on the right 
can be made as small as one pleases by choosing d,t sufficiently small. 
Therefore the left member of the above equation goes to zero as j -+ 00. 

Since u was arbitrary, it is now established that C(dt) is a convergent 
approximation as defined in Section 6, and the equivalence theorem is 
established. 

The zbove sufficiency proof is an operator-theoretic analogue of Fritz 
John's result relating the uniform boundedness of the values of the ap- 
proximate solution to convergence in the maximum norm. 

PART I1 

PARTIAL DIFFERENTIAL EQUATIONS WITH 
CONSTANT COEFFICIENTS 

9. Introduction 

Here the stability requirement as defined in Part I, and whose signifi- 
cance is indicated by the equivalence theorem, is applied to a special class 
of linear initial value problems - those of partial differential equations with 
constant coefficients and with auxiliary conditions permitting the use of 
Fourier series or integrals. If the space variables are restricted to a finite 
domain and the boundary conditions are of such a nature that they can be 
represented as a periodicity condition, Fourier series are used. If the domain 
is infinite, but the functions are quadratically integrable, Fourier integrals 
are used, via Plancherel's theorem. Combinations are also possible, in which 
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some of the space variables have finite domain and others are unlimited. 
All these cases lead to exactly the same results, and our discussion will be 
based on Fourier series. 

We shall be dealing with the following Banach space g: if 9 is the 
number of functions used to describe a state of the physical system, and d 
is the number of space variables, a point in 9 represents a $-vector function 
defined in a d-dimensional unit cube (or rectangular parallelopiped). We 
suppose that these functions are in L2 over this cube and that the square of 
the Banach norm is given by equation (14). 

The advantage of this norm over, for example, the maximum norm is 
that the P a r s e d  equation then shows that the Fourier transform establishes 
a norm-preserving isomorphism between A? and the space A?' of the Fourier 
coefficients. The stability requirement takes on a particularly simple form 
in 9' leading immediately to the Von Neumann condition as a necessary 
condition for stability. 

Of course, the choice of a norm is restricted by the nature of the problem; 
i.e., the solution operators E ( t )  have to be bounded with respect to the norm. 
In most problems of mathematical physics, the La norm can be used. 

We give several sufficient conditions for stability; these are mostly 
of the nature of an auxiliary condition under which the Von Neumann con- 
dition is also sufficient for stability. 

One may perhaps surmise that in all practical cases (including problems 
with variable coefficients,, and even nonlinear problems) the Von Neumann 
condition is both necessary and sufficient for stability. Such a surmise 
has often been made (so far apparently without misfortune) by people 
who have to make actual calculations, and one can construct a good bit 
of heuristic evidence for it. But the purpose of the present discussion is 
to discuss only certain cases that can be treated rigorously. A few simple 
applications will be given. 

10. Notation; Fourier Series 

Let x == (xl , x8, * * - , zd) be a vector (vectors will be denoted by bold 
face type) whose components xl, x2 , - - - , x, are the space variables of the 
problem. Suppose that the functions with which we deal are periodic with 
periods L ,  , L,  , * - * L, in the space variables. Consider a series 

c(k)eik'" 

*Fritz John has succeeded in proving in his important paper [13] that for parabolic 
equations a mildly strengthened form of Von Neumann's condition is sufficient for stability 
even for operators with variable coefficients. A similar result for a certain class of hyperbolic 
equations with variable coefficients has been obtained by Peter Lax [14]. 
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where k is a d-component vector whose components are 2nl,lL, , - , 2nla/La 
and where the summation is understood to be over all such vectors obtained 
by letting I ,  , I ,  , * - - , I ,  run independently over all positive and negative 
integers and where c(k) is a complex-valued function defined on the lattice 
of these vectors. This is a general trigonometrical series with the periodicity 
described above. In our applications there are $ functions of the x's; we 
treat them as the components of a $-component vector f(x). For any 
vector y we denote by 1 y I the square root of the sum of the squares of the 
absolute values of the components. Therefore, if f(x) can be expanded as 

f(x) = '&) c(k)eik'", 

the Parseval equation is 

where V = L,L, - - L, . 
Any periodic f(x) for which the left member of (14) exists will be called 

an element of 9? and the square root of that member will be called its norm. 
Similarly, any set of coefficients for which the right member of (14) exists 
will be called an element of @' and the square root of that member will 
be called its norm. Then the Fischer-Riesz theorem says that it? is a com- 
plete space and the Riesz-Fischer theorem says that there is a one-to-one 
correspondence between elements of 9' and of 8, if we adopt the usual 
agreement that functions f(x) which differ only on a set of measure zero 
are regarded as identical - this agreement is reasonable, because the 
corresponding states of the physical system would be physically indistin- 
guishable. The Parseval equation (14) shows that the correspondence 
between a and 9' is norm-preserving. Statements of convergence, bounded- 
ness and the like can be taken over directIy from 9 to L4Y' or from # to g. 

11. Properly Posed Problems 

The general linear differential operator with constant coefficients can 
be otained formally by taking a function D(k) or D(K, , k, , - * , kd)  which 

and substituting a/az, for k,  , a/&, for k, , etc. If A is such an operator 
and we apply it to the element veik*= where v is a constant vector, the 
result is simply the product of this element and D(ik) .  Therefore the 
solution of the initial value problem 

is a $ x $ matrix whose elements are polynomials in k ,  , K ,  , * . , k,  I 

a 
-u(x, t )  = Au(x, f), 
at (15) 
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where 

The first requirement for a properly posed problem (see Section 3) ,  
namely that the domain of the solution operator be dense in a, is auto- 
matically satisfied for the problems considered here, because the above 
solution (equations (17) and (18)) is certainly valid whenever the initiai 
element u o ( x )  is a trigonometric polynomial and the trigonometric polyno- 
mials are dense in 9. 

The second requirement for a properly posed problem takes the form 
that 1 1  etD(ik)II should be a bounded function of k and that the bound should 
be uniform in t .  (It should be obvious to the reader that if M is a p x p 
matrix and we write 1 1  M 1 1  we mean the bound of the tran'sformation 
corresponding to M in a p-dimensional vector space with complex Euclidean 
norm.) Whether this condition is satisfied must usually be investigated 
separately in each case. 

12. Finite Difference Equations 
Just as the differential operator A is represented, in the space 9' , 

by the matrixD(ik), the finite-difference operator B(dt ,  Ax) will be represen- 
ted in 9' by a matrix G(At,  Ax, k) whose elements are functions of the 
components of k as well as of the parameters At, Ax. One reason for making 
the Fourier transformation is that the elements of G(At ,  Ax, k) can generally 
be found easily, even though B(dt ,  Ax) represents an implicit system of 
difference equations. 

Each difference equation equates to zero a certain linear combination 
of the components of un and of un+1 at a group of neighboring points of the 
net used for the numerical work. Specifially, let this group of points be 
referred to a particular point of the group with coordinates x ,  , z2,  - * xa 
so that a typical neighbor of this point in the group has coordinates 
x1 + p1 Ax, , - - - , xa + pa Axa where p1 , - - - , pd are integers. The difference 
equations can then be written in the form 

(19) & 9 1 , . . . , & )  [A(/& > * * - > Ba)un+l(xl + B l A X l >  * - . 7 x, + BaJx,) + B(81, - - - , B d ) U " ( X ,  + B l d X , ,  * - * > xa + B d d X d ) ]  -: 0, 
where A and B are p x p matrices whose elements depend on the pi and 
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on At and the Axi but not on t (i.e. n) or the xi themselves. The summation 
is over a finite number of neighbors - that is over a finite number of sets 
of values of /I1, * * , / Id .  

This system is in general implicit, because in the numerical work the 
unknowns are the values of the components of un+l a t  the various net 
points, and each equation contains generally several of the unknowns. We 
assume, however, that the system is such that if u"(x) is given as any 
element of g, then un+l(x) is uniquely determined by the difference equa- 
tions (19) and the periodicity requirement. 

(20) U"(X) = &k)VfL(k)eik'x 

and a similar one for un+l(x) are substituted into (19), the typical term 
contains a factor 

If the Fourier series 

exp {W% + BldX1) + * * - + Kd(Xd + P d X d ) j I  

from which we cancel out the common part eik'x from all the terms of the 
equation. What is left can be written as 

H,v"+'(k) + H,v"(k) = 0 

where H ,  is an abbreviation for the matrix 

~ Z ~ , . . . , P , ) A ( B 1 l " ' J B d )  exp{i[kl/I1dzl+ f K d 1 6 d d z d l )  

and H ,  is similar. The solvability assumption made in the preceding 
paragraph is tantamount to the assumption that H ,  has an inverse. There- 
fore we can write 

(21) V"+'(k) = Gv"(k) 
where the matrix G is given by 

(22) G = G(At ,  AX, k) = - HT'H,. 

G will be called the am$lification matrix: it is the representation in 9 of 
the operator B(dt,  Ax). Therefore the stability requirement is that if the 
manner of refinement of the mesh is given by Ax = g ( A t ) ,  the set of matrices 

should be uniformly bounded for all k with real components, the bound 
being uniform in k. As in Part I of this paper A,t  is a sequence tending 
to zero as j + co and corresponding to  each j there is a net or grid of space 
points such that each g, ( A , t )  = Ax,, g, ( A , t )  = Ax,, etc. also tends to  zero. 

The problem of stability is thus reduced to that of finding estimates 
for the bounds of powers of the amplification matrix G. 
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13. The Von Neumann (Necessary) Condition for Stability 

A lower limit for the bounds of the powers of G is easily given. Let 
the eigenvalues of G be If1) , A@) , - - , A ( P )  (not assumed real, not assumed 
distinct). The spectral radius of G is 

r1 = r,(At,  Ax, k) = Max(,, [ P  I . 
Suppose the A's so ordered that I A ( l )  1 = r, and let dl) be an eigenvector 
corresponding to eigenvalue If1) . Then 

or generally the spectral radius is a lower bound for the bound of a matrix. 
If G is raised to any power, each of its eigenvdues gets raised to the same 
power, and therefore the spectral radius G" is r; . Therefore 

II Gn 11 2 ~7 . 
We call 

R, = R, (A t )  = Max(,) r, (At, g ( A t ) ,  k), 

where the maximum is with respect to all k with real components. The 
stability requirement of uniform boundedness of the set (23) implies that 
for some K, 

At > 0, 
0 5 nAt 5 T ,  

but this is equivalent to the condition 

(24) R,(dt) 5 1 + O ( d t )  

where O(At )  denotes a quantity bounded by a constant times At .  This is 
the Von Neumann necessary condition for stability. 

14. A Sufficient Condition for Stability 

Let the eigenvalues of G*G be denoted by p( l )  , + - - , p ( P )  . The bound 
of G is 

r, = r,(dt, Ax, k) = 1 1  G 1 1  = Max(,, I , a t i )  . 
Since 1 1  G"II 5 1 1  GI/", if we call 

R, = R, (At)  = Max(,) r, (A t ,  

the stability requirement is satisfied provided 
%(At)> k), 
there is a K such that 

At > 0, 
0 I nAt 5 T.  
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but this is equivalent to the condition 

(25 ) R,(dt) 5 1 + O(dt). 

Consequently, we have 

THEOREM 1. Colzditiolz (25) ds sufficielzt for stability. 
If G is a normal matrix (i.e., one that commutes with its Hermitian 

conjugate), the eigenvalues of G*G are just the squares of the absolute 
values of the eigenvalues of G (because G* and G can be reduced to diagonal 
form by the same unitary transformation), so that R,(dt) = R,(dt). There- 
fore, we can state the 

COROLLARY. If G is a normal matrix, the V m  Neamunn condition (24) 
i s  sufficient as well as necessary for stability. 

15. A Second Sufficient Condition for Stability 

As noted in the corollary, the case in which G is a normal matrix 
is an important special case, and in that case there is a complete orthogonal 
set of eigenvectors of G. Even if G is not normal, there may  be a complete 
set of linearly independent eigenvectors (not generally orthogonal). A 
stability condition will now be given for such cases. 

Let $(I) , - a - , $(*) denote a set of normalized, linearly independent 
eigenvectors of G. Let T be the matrix having these eigenvectors as columns, 
so that Ti j  = #{); and let A denote the determinant of T. T provides a 
similarity transformation (not in general unitary) that diagonalizes G. 
That is, 

2'1' . 
G = T-l( . . T ,  

and therefore 
P=T-I(  A(1' * ' . A(p:)nT. 

(26) 

The inverse of T has elements given by 

algebraic cofactor of TiP 
A (T-lL, = 

If the columns (or rows) of any determinant are regarded as a set of vectors, 
the absolute value of the determinant does not exceed the product of the 
lengths of the vectors (corresponding to the interpretation of the determinant 
ns the volume of a multidimensional parallelopiped of which the vectors 
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form a set of coterminous edges). Each column of the cofactor mentioned 
above consists of p - 1 of the components of a normalized eigenvector of 
G and hence has length less than or equal to 1. Consequently, 

Clearly, the absolute va1ue:of an element of T cannot exceed 1, so from (26), 

p= 1 (Gn)$$ I 5 (dI ry J 

where the factor p z  comes from the fact that there are f i g  terms in the 
expansion of the matrix product (26). Since the bound of a f i  x p matrix 
does not exceed p times its absolutely largest element, 

The determinant A of course is a function of At and k, but if it is 
bounded away from zero, we can replace 15 I by its greatest lower bound 
in the above inequality and use the same reasoning that led to (25) in 
Section 14, to prove 

THEOREM 2 .  If there is  a constant a such that I A I > a > 0 for all 
real k and all sufficiently small At,  where A i s  the determinant of the normalized 
eigenvectors of the amplification matrix G (At,  g (A t ) ,  k), the Von Neumann 
condition (24) i s  sufficient as well as necessary for stability. 

16. A Third Sufficient Condition for Stability 
In some cases of practical importance the determinant d vanishes for 

certain values of k so that a different criterion must be found. To find 
one, we start from Schur's theorem that any square matrix A can be 
reduced to triangular form by a unitary transformation 

B = U"AU 
where B is the triangular matrix: 

B =  

whose diagonal elements are the eigenvalues of -4 and such that Bi j  = 0 
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f0r.i > i. Since no element of U can exceed 1 in absolute value 

(27) 
The general element of the n-th power of B has the form 

summed over the indices k,  , k, , . . . , kn-* , arranged in every possible way, 
provided 

i 5 k,  5 k,  5 - k,+l j .  

No matter how large n is, at most j - i of the factors in the above product 
can be off-diagonal elements of B. This will enable us to obtain a satis- 
factory bound for Bn by imposing restrictions on the diagonal elements 
only. We assume that 

(29 ) 

and call 
Max (I 1, 1 )  = 2".  

We focus our attention temporarily on those factors of the typical 
product in (28) which are off-diagonal elements of B, disregarding the 
diagonal elements occurring in the product. The number of such factors 
can be 7 where 0 5 7 5 j - i ;  let N;-{ be the number of distinct ways 
of choosing these 7 factors from among the off-diagonal elements of B ,  
taking into account the chain rule for subscripts in matrix multiplication. 

(Except for the trivial cases in which i - i = 0 or r = 0, N:-i is just the 
\ 

binomial coefficient (' ,:, ')) . 
Having chosen the r off-diagonal elements, we consider the various 

ways in which they can be combined with diagonal elements to make the 
general typical product in (28) with the factors in the order shown there. 
One arrangement is with the off-diagonal elements crowded together at the 
right side of the product and preceded by a suitable power of A(i) on their 
left. Other arrangements can be obtained from this one by decreasing the 
power of Ati) and inserting suitable diagonal elements in positions to the 
right of the leftmost off-diagonal element. The first such factor can be 
inserted in any one of Y positions, the next in any one of Y + 1 positions, 
the next in any one of r + 2 positions, and so forth. 
sertion is irrelevant, so the number of distinct ways in 
can be inserted is 

1 ( r +  l ) ( r  + 2) * * * (Y j- q - 1 )  

But the order of in- 
which q such factors 
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The inserted factors are all eigenvalues with index greater than i (because 
of their positions in the product) hence with index greater than 1. There- 
fore, by (29), the inserted factors, when multiplied together, are bounded 
by yQ . Now the series 

being a hypergeometric series, is convergent to a finite limit because y < 1. 
Let that limit be denoted by F,,(y). The power of A ( d )  occurring in the 
product is in any case bounded by (A* ) .  , so, finally 

5-1 

f (Bn),,( 5 (A*)% Z ( r )  V1 (Max I Bsi I )r F r  
1 8. t 

This expansion is clearly maximized by taking j - 1 = p - 1. Then, 
since the bound of a matrix does not exceed p times the absolute value 
of its largest element, and using (27) and the fact that the bound is invariant 
under a unitary transformntion, we find 

¶+I 

11 A" I (  ('*)" $ Z(+) Nf-l (p2 Max I (y). 
1 8, t 

To apply this result to the stability problem, we interpret A as the 
amplification matrix G(At,  Ax, k). The factor (A*)% is then bounded for 
the set (23) if the Von Neumann condition is satisfied, and the other factors 
in the above expression are bounded if y < 1 and the A,, are bounded. 
The following theorem results: 

THEOREM 3. If the elements of the amplification matrix G(At,  g ( d t ) ,  k) 
aye bounded functions of k and At for all real k and all sufficiently small 
positive At ,  and if there i s  a constant y such that 

I Y"'(dt, g (A t ) ,  k, I 5 Y < ' J  i = 2, 3, - - -, 9, 
then the V o n  Neumann conditiotz (24) is sufficient as well as necessary for 
stability. 

Roughly speaking, one eigenvalue is permitted to get up to 1, or even 
1 + e(&) provided the bound of the others is less than 1. 

17. The Wave Equation 
As a first example to illustrate the foregoing ideas we consider the 

wave equation 
a2yr $.-- = 0. a2Y 

at2 ax2 
_ _ -  

A satisfactory formulation is obtained by making the further definition 
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w = c +/ax, whereupon the equations become 

a4 aw 
at ax 
aw a4 
at ax 

= c-, - 

= c - ,  - 

and we now have a properly posed problem. In this case the square of the 
norm is the energy of the wave motion and by conservation of energy the 
solution operator is bounded with bound unity. 

The first choice of the finite difference equations that we wish to 
consider is 

The amplification matrix is 

G(Adt, AX, R 

Zi - sin 1 I A x ’  2 

as found by substituting a Fourier term 

for (5) into (32) and solving for (i:::) in terms of (;:) as 

(;:::)= G(;:). 

The quantity R, = R , ( A t )  defined in Section 13 and appearing in the Von 
Neumann condition, namely the maximum with respect to R of the spectral 
radius of G. is -- 

cAt 

and we reach the well known conclusion that the difference equations (32) 
are unstable, a t  least if cdt/Az is kept a t  any constant value as At and 
Ax -+ 0. 

In this example the Von Neumann condition could be satisfied by 
making At  and Ax --f 0 in such a way that dt / (~Ix )~  is constant, but there 
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is not much point in pursuing this lead because we all know perfectly well 
that there is a much better difference scheme than (32) .  

According to the scheme usual in fluid dynamical calculations, the 
differential equations (21) are approximated by 

+"+1(X) = +"(x)  + cAt [ ( A;) - w n  (x - 31 , 
w n  x + - 

A x  (33) 

A x  

This scheme differs from (32 )  only in the superscripts on 4 in the second 
equation. (The equations would have a more centered look if we had used 
the notation and #*--% in place of +"+l and 4"). The amplification 
matrix is 

(34) G = (  ,ia 1 - a2 

2cAt KAx 
A x  2 '  

where u is an abbreviation for __ sin - 

and G*G = 

The characteristic equations of these matrices are 

(35) 
and 

A2 - (2 - a2)A + 1 = 0 

(30) p2 - (2 + u4)p + 1 = 0. 

For each of these characteristic equations the product of the roots is 1. 
In (35) the sum of the roots is 2 - a2; consequently the roots lie on the unit 
circle if u2 S 4. In (36) the roots are real. We find, for the quantities 
R,(dt)  and R , ( A t )  introduced in Sections 13 and 14 

The Von Neumann condition is satisfied for cAt /Ax 5 1 but not for any 
other fixed value of cAt /Az .  

The sufficient condition for stability given in Section 14, namely 
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R,(At) 5 I + O(dt), requires At = O (  ( A Z ) ~ )  as At, A s  -+ 0, which is much 
more stringent than the Von Neumann condition. But the sufficient con- 
dition given in Section 15 gives what we want. The normalized eigen- 
vectors of the matrix (34) are easily found, and their determinant has the 
absolute value 

This is bounded away from zero if cAt < Ax.  We arrive thus at the con- 
clusion, first stated in the Courant-Friedrichs-Lewy paper, that equations 
(33) are stable if c d t / d x  = constant < 1 but not if cAt/Ax = constant > 1. 
The case cAt/Ax = 1 (stable according to Courant, Friedrichs and Lewy) 
is not handled by our method. 

Lastly, we consider the implicit system 

as approximation to the differential equations (31). (Equations of this type 
have been used, for 
of the dynamics of 

example, by Arthur Carson of Los Alamos in studies 
stellar interiors.) The amplification matrix is 

and G*C is the unit matrix. The criterion of Section 14 is always satisfied 
and the equations (37) are stable as At -+ 0, As --f 0, no matter what are 
the relative rates at which At and A x  approach zero. 

18. Diffusion Equation; Two Level Formulas 
Consider the equation 

(38) 
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where the quadratic form (A, B, C) is required to be positive definite; this 
makes the differential equation parabolic. In consequence of this require- 
ment, the differential equation provides a properly posed initial value 
problem; for example in the space $6' of functions 'u(x, y) in L2 over a 
rectangle in the x, y-plane. 

We consider in this section a certain class of difference equations in 
which un(x, y) and unfl(z, y) are connected directly. (In the two following 
sections we will consider some schemes in which un, un+l and un-l all appear 
in the same equation; these will be referred to as three-level formulas.) 

Introduce the following abbreviations: 

u:, for an(%, y), 

z& for un(x + dz, g), 
uFj+l for an(%, y + Ay), etc., 

and 

The class of finite difference equations we wish to consider is 

(39) 

where 8 is a non-negative constant. The choice 8 = 0 gives the usual ex- 
plicit system and the choices 0 = *, 0 = 1 give the two favorite implicit 
sys terns. 

(As is well known, if B = C = 0, so that the problem reduces to that 
of one space variable, the implicit equations can be readily solved by a 
simple algorithm. For two or more space variables it is wise to solve the 
implicit equations approximately by a relaxation technique; this is of course 
much more labor than required, per cycle, by the explicit equations, but 
it is nevertheless worthwhile, in some cases, to use the implicit equations 
provided the relaxation is done by some method like the extrapolated 
Liebmann method.) 

Since there is only one dependent Variable, the amplification matrix 
has just one element: 
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where 

1 2A 2B 2c 
(COS k ,  A S -  I )  - __ sin R, Ax sin R,Ay+ (cos R, d y  - 1)  . 

AxAy 
From the positive definite character of the quadratic form (A, B, C), it 
follows, after a little calculation, that 

5 w r o .  A 

1 + (1  - e)w 
1 -ew The expression is an increasing function of W in the above 

interval and has the value 1 at W = 0. Therefore we will have 
I G 1 5 1 if this expression is 2 - 1 when W has its most negative value. 
From this the Von Neumann condition is found to be: 

1) if 
2) if 0 5 6 and if we suppose d t / ( A ~ ) ~  and Llt/(Ay)* kept 

5 0, no restriction on the way At, Ax, A y  go to zero, 

constant as At ,  Ax,  Ay -+ 0, then 
1 

2-. A C 
2At [pp + ml - 1 - 2 e  

Since the matrix G has only one element, G commutes with G* (in 
this particular example G = G*), so that the Von Neumann condition is 
sufficient as well as necessary for stability. 

This example can be generalized in various ways. For example one 

may include lower order terms, D- + E - + Fu, where D, E ,  F are 

constants, in the differential equation (38), and investigate their in- 
fluence on stability. This is easily done because G is still a one-element 
matrix, but we omit details. It is found that for any reasonable manner of 
treating these terms in the finite difference equation, the stability con- 
dition is the same as before, except that sometimes the sign 5 in (40) 
has to be replaced by <. We may note, however, that if F > 0 it is im- 
portant to have the Von Neumann condition in the form R,(At)  l+O(dt) 
rather than merely R,(At)  5 1, because there are then generally true 
solutions of the differential equation which increase exponentially as t 
increases, and clearly we cannot expect (nor do we nish) to exclude such 
solutions from the numericd work. 

19. The Du Fort-Frankel Equations 

au au 
ax a y  

Du Fort and Frankel [12] have approximated the diffusion equation 

(u = constant > 0) 
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by the difference equation 

2oAt 
(42) u"+' (z) -u"-~ ( x )  = - [u" ( X  + A X )  -u"+' (x) - u"-' ( x )  +u" ( X  - A X ) ] .  

(Ax)2  
This system is of interest for two reasons, the first having to do with 

consistency and the second with stability. It is readily verified that the 
consistency condition of Section 5 is satisfied if and only if AtlAx -+ 0 as 
At ,  A X  --f 0. In fact, if At /Ax  + ,u where ,u is a constant, it is clear that 
the difference equation (42) approximates the differential equation 

au a224 8224 _ -  - g - - - 2 -  
at ax2 at2 

rather than (41). Just how large values of A f / A z  can be tolerated in practice 
is of course not settled by our argument. 

To write (42) in the form required by our general theory, we must 
introduce another dependent variable, say +(x), as follows: 

2oAt 
P + l ( X )  = $"(Z) + ~ [u"(z + A X )  - I L ~ + ' ( x )  - $"(x)  + U ~ ( X  - A X ) ] ,  

( A x )  
+"+l(X) = un(x) .  

The amplification matrix is 

(43) 
cos kAx __ 

0 
2oAt 

where y = - 
  AX)^ ' 

The characteristic values of G are 

(44) 
I f Y  

and it is readily found that a )  the Von Neumann condition is always 
satisfied, and in fact R l ( A l )  = 1, b) for any fixed value of y, R 2 ( A t )  = 
constant > 1 so that condition (25)  of Section 14 is of no use, c) the deter- 
minant A of the normalized eigenvectors of G vanishes when y sin k A x  = 1, 
so that the condition (Theorem 2 )  of Section 15 is of no use, d)  the criterion 
of Section 16 is satisfied because the lesser of the roots (44) is always 

bounded, in absolute value, by ~ - ~ "', so that the Von Neumann con- 

dition is again sufficient as well as necessary for stability. 
Therefore, the Du Fort-Frankel equations are always stable, but the 

time increment must be limited on account of the consistency condition. 

lL+ 11 
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20. Positive Operators 

In this section we present a sufficient condition, due to Friedrichs 
[a], for the stability of certain difference schemes. The schemes considered 
are explicit two level schemes for vector-valued unknowns; i.e., the value 
of the approximate solution at  time t + h and position x is expressed as a 
linear combination of its computed values a t  the time t :  

(45) ~ ( t  + A t )  = 1 C, U(X + Aid,) = C(At)u. 

In Friedrichs’ theory the displacement vectors d, (finite in number) need 
not lie on a lattice. The coefficient matrices c, are functions of x, and are 
required to satisfy the following conditions: 

2 c,(x) = I  (the identity matrix), 

c,(x) is symmetric and positive definite, 
c,.(x) is a Lipschitz continuous function of the vector variable x. 

r 

i)  

ii) 
iii) 

Conclusion: The difference scheme (45)  is stable. 

We reproduce Friedrichs’ proof, and show that the norm of C ( d t )  

7 

with respect to the L2 norm over the whole space, is bounded by 

( 46) I C ( d t )  I 5 1 + Adt,  
where the constant A depends on the Lipschitz constant of the c,, and 
on the number of coefficients. Since stability means the uniform bounded- 
ness of I C”(dt)  1 ,  ndt 5 T ,  and I C.(dt) I 5 I C ( d t )  I ? & ,  the estimate (46) 
implies stability. 

To estimate I I C 1 1 ,  Friedrichs uses this characterization of the norm 
of an operator: 

I1 c / I  = sup  (u, C V ) ,  
/ I  u / I  = I IV  II = 1, 

where the bracket denotes the L2 scalar product over the peiiod paral- 
lelogram : 

(47) (u, Cv) = Cu’(x)c,(x)v(x + dfd,)dx. 

It follows from this characterization of the norm of C that any upper bound 
for (u, Cv) valid for all vectors u and v of unit length is an upper bound 
for 1 1  C 1 1 .  We shall find an upper bound for (u, Cv) from (47). Since the 
matrices c were assumed to be positive, we can apply the Schwarz inequality 
to the terms u’cv in the integrand. We get, after throwing in the inequality 
about the arithmetic and the geometric mean, 

u’cv 5 +U’CU + * v’cv. 
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Substituting this into the integrand in (47) we have the following inequality: 

(48) (u, Cv) 5 *z u’(x)c,(x)u(x) + 1 v‘(x + dWc,(x)v’(x + did,). 

The first term on the right in (48) is, on account of the requirement that 
Zc,(x) is the identity, just Q(u, u) which is 4, since u has unit norm. In  
the second group of terms introduce x‘ = x + Atd, as new independent 
variable; we obtain 

kz 1 v‘(x’)c,(x’ - dtd,)v(x’). 

If in the above expression we replace c,(x’ - dtd,) by c,(x’), the error 
committed is at  most a constant times At ,  on account of the assumed Lip- 
schitz continuity of the coefficients c. Imagine such a substitution performed, 
and treat the resulting group of terms the same way as the first group 
of terms. This way we find that the value of the second group of terms is 
at  most 1/2 + const. At ,  and have the desired 1 + const. At estimate for 
the whole expression (48). 

Such symmetric positive difference operators come up in difference 
approximations to solutions of symmetric hyperbolic systems, ix., equations 
of the form 

(49) u, + akuZk + 6u = 0, 

where the coefficients a, are symmetric matrices. A majority of the equa- 
tions of mathematical physics which describe reversible phenomena are of 
this form; the general theory of such equations has been developed by 
Friedrichs (loc. cit), where he gives a recipe for associating a positive 
symmetric operator to  each symmetric hyperbolic operator. We give here 
such a recipe: 

Take for the displacement vectors d, the 2d vectors 

d, = (0, 0, * - * 1,. , 0, * + *, 0 ) ,  1== I ; * . , d .  

Here the R, are arbitrary constants, the side Iengths of a rectangular Iattice 
in x-space. Replace the x-space derivative U,X in the differential equation 
(49) by centered difference quotients between x + did,  and x - dtd,  , 
and the time derivative by the forward difference quotient u(x, t + A t )  
- u(x, t )  where u is the weighted average &tku(x & hd, , t ) ,  the sum of 
the weights ci being one. The resulting difference equation can be solved 
for u(x,  t -t A t ) :  

- 

U ( Z ,  t + A t )  = CU(Z,  t )  = 2 C ~ , U ( X  f A,At) ,  
where3 C*, = + (KJ F R;l ar). 

31;or the sake of simplicity we have taken b, the coefficient of  u in (40). to be zero. 
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Clearly, if the u, are fixed positive constants, the coefficients c*, can 
be made positive definite by taking 1, large enough. Of course in practice 
it is the space mesh that stays constant and At is made small enough. 
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