
Probabilidades y Estadística (M) Práctica 7
2◦ cuatrimestre 2018 Cadenas de Markov

De los ejercicios de abajo (sacados del libro de Georgii, Stochastics) se proponen los siguientes:

6,2, 6,3, 6,7, 6,8, 6,9, 6,10, 6,14, 6,19(a), 6,20, 6,26.
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Finally we use the spatial homogeneity, which is expressed by the fact that Xn coincides
with the random walk Sn for n ≤ τ0 (by (6.33)). This implies that Ey(τy−1) = E1(τ0).
Altogether, we find that Ey(τ0) = y E1(τ0) for y ≥ 1. Substituting this into (6.39) we
arrive at equation (6.38).

Suppose now that 0 is positive recurrent. Then, (6.33) yields

0 = E1(Xτ0) = E1
(
1 +

τ0∑
k=1
(Zk − 1)

)
= 1 +

∑
k≥1

E1(Zk 1{τ0≥k}
)− E1(τ0)

= 1 +
∑
k≥1

E(�) P1(τ0 ≥ k)− E1(τ0)

= 1 + (E(�)− 1)E1(τ0) .

The third step follows because E1(τ0) < ∞ by (6.38), and because the Zk are non-
negative so that Theorem (4.7c) can be applied. The fourth identity uses the fact that the
event {τ0 ≥ k} can be expressed in terms of Z1, . . . , Zk−1, and so, by Theorem (3.24),
it is independent of Zk . The equation just proved shows that E(�) < 1. In particular
we get E1(τ0) = 1/(1 − E(�)) and, by (6.38), E0(τ0) = 1/(1 − E(�)) as well. That
is, the closer the average influx of customers per time approaches the serving rate 1,
the longer the average ‘busy period’.

Conversely, suppose that E(�) < 1. The same calculation as above, with τ0 ∧ n :=
min(τ0, n) in place of τ0, then shows that

0 ≤ E1(Xτ0∧n) = 1 + (E(�)− 1)E1(τ0 ∧ n) ,

thusE1(τ0∧n) ≤ 1/(1−E(�)). For n →∞ it follows thatE1(τ0) ≤ 1/(1−E(�)) <∞
and so, by (6.38), that 0 is positive recurrent.

Problems

6.1. Iterated random functions. Let E be a countable set, (F,F ) an arbitrary event space,
f : E × F → E a measurable function, and (Ui )i≥1 a sequence of i.i.d. random variables
taking values in (F,F ). Let (Xn)n≥0 be recursively defined by X0 = x ∈ E , and Xn+1 =
f (Xn,Un+1) for n ≥ 0. Show that (Xn)n≥0 is a Markov chain and determine the transition
matrix.

6.2. Functions of Markov chains. Let (Xn)n≥0 be a Markov chain with countable state space
E and transition matrix , and ϕ : E → F a mapping from E to another countable set F .

(a) Show by example that (ϕ ◦ Xn)n≥0 is not necessarily a Markov chain.

(b) Find a (non-trivial) condition on ϕ and  under which (ϕ ◦ Xn)n≥0 is a Markov chain.
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6.3. Embedded jump chain. Let E be countable and (Xn)n≥0 a Markov chain on E with
transition matrix  . Let T0 = 0 and Tk = inf{n > Tk−1 : Xn �= Xn−1} be the time of the kth
jump of (Xn)n≥0. Show that the sequence X∗

k := XTk , k ≥ 0, is a Markov chain with transition
matrix

 ∗(x, y) =
{
 (x, y)/(1 − (x, x)) if y �= x ,
0 otherwise.

Show further that, conditional on (X∗
k )k≥0, the differences Tk+1 − Tk − 1 are independent and

geometrically distributed with parameter 1 − (X∗
k , X∗

k ).

6.4. Self-fertilisation. Suppose the gene of a plant can come in two ‘versions’, the alleles
A and a. A classical procedure to grow pure-bred (i.e. homozygous) plants of genotype AA
respectively aa is self-fertilisation. The transition graph

1/41
1/4

1

1/2

AA Aa aa

describes the transition from one generation to the next. Let (Xn)n≥0 be the corresponding
Markov chain. Calculate the probability pn = P Aa(Xn = Aa) for arbitrary n.

6.5. Hoppe’s urn model and Ewens’ sampling formula. Imagine a gene in a population that can
reproduce and mutate at discrete time points, and assume that every mutation leads to a new allele
(this is the so-called infinite alleles model). If we consider the genealogical tree of n randomly
chosen individuals at the times of mutation or birth, we obtain a picture as in Figure 6.7. Here,
every bullet marks a mutation, which is the starting point of a new ‘clan’ of individuals with the
new allele. Let us now ignore the family structure of the clans and only record their sizes. The
reduced evolution is then described by the following urn model introduced by F. Hoppe (1984).

Let ϑ > 0 be a fixed parameter that describes the mutation rate. Suppose that at time 0 there
is a single black ball with weight ϑ in the urn, whereas outside there is an infinite reservoir of
balls of different colours and weight 1. At each time step, a ball is drawn from the urn with a
probability proportional to its weight. If it is black (which is certainly the case in the first draw),
then a ball of a colour that is not yet present in the urn is put in. If the chosen ball is coloured,
then it is returned together with another ball of the same colour. The number of balls in the urn
thus increases by 1 at each draw, and the coloured balls can be decomposed into clans of the same

n

(1)

(21)

(21)(3)

(241)(3)

(241)(53)

(241)(53)(6)

(2741)(53)(6)

(2741)(53)(86)

(2741)(593)(86)

Figure 6.7. A genealogical tree in the infinite alleles model, with corresponding descrip-
tion in terms of cycles as in the Chinese restaurant process from Problem 6.6.
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colour. The size distribution of these clans is described by a sequence of the form x = (xi )i≥1,
where xi specifies the number of clans of size i . The total number of coloured balls after the
nth draw is N (x) := ∑

i≥1 i xi = n. Formally, the model is described by the Markov chain
(Xn)n≥0 with state space E = {x=(xi )i≥1 : xi ∈ Z+, N (x) <∞} and transition matrix

 (x, y) =
⎧⎨⎩
ϑ/(ϑ + N (x)) if y1 = x1 + 1 ,
j xj/(ϑ + N (x)) if yj = xj − 1, yj+1 = xj+1 + 1, 1 ≤ j ≤ N (x) ,
0 otherwise.

(The first case corresponds to drawing a black ball, the second to drawing a coloured ball from
one of the xj clans of size j , so that the size of this clan increases to j + 1.) Let 0 = (0, 0, . . . )
be the initial state, in which the urn does not contain any coloured balls. Show by induction on
n ≥ 1 for arbitrary x ∈ E with N (x) = n:

(a) P0(Xn = x) = �n,ϑ (x), where

�n,ϑ (x) :=
n!
ϑ(n)

∏
i≥1

(ϑ/ i)xi

xi !
.

Here, ϑ(n) := ϑ(ϑ + 1) . . . (ϑ + n − 1). Hence, �n,ϑ is the size distribution of the clans
of a random sample of n individuals from a population with mutation rate ϑ . This is the
sampling formula by W.J. Ewens (1972).

(b) If Y = (Yi )i≥1 is a sequence of independent random variables with Poisson distributions

P ◦ Y−1
i = Pϑ/ i , then �n,ϑ (x) = P(Y = x |N (Y ) = n).

6.6. Chinese restaurant process and random permutations. The Hoppe model from Problem
6.5 can be slightly refined by taking the family structure of the clans into consideration. The
balls in Hoppe’s urn are labelled in the order in which they arrived in the urn. The state of the
urn after the nth draw is written as a permutation in cycle notation as in Figure 6.7: For a new
colour at time n we add (n) as a new cycle and otherwise the label of the ball is written to the
left of the label of the ‘mother ball’ in its respective cycle. Let Zn be the permutation created
after n draws. The sequence (Zn)n≥0 was introduced by D. J. Aldous (1984) as the ‘Chinese
restaurant process’; the labels are interpreted as the guests of a Chinese restaurant (in the order
of their appearance), and each cycle as the seating order at a (round) table. Show the following:

(a) (Zn)n≥0 is a Markov chain. For which E and  ?

(b) For each permutation π of {1, . . . , n} with k cycles, P(Zn = π) = ϑk/ϑ(n), where ϑ(n)

is as in Problem 6.5(a). So, Zn is uniformly distributed when ϑ = 1.

(c) Deduce that the number of all permutations of {1, . . . , n} that have xi cycles of length i is
equal to n!/∏n

i=1(i
xi xi !) for all 1 ≤ i ≤ n.

6.7. The Wright–Fisher model in population genetics. Suppose a gene has the two alleles A
and a. So in a population of N individuals with a diploid set of chromosomes, the gene occurs
2N times. Assume each generation consists of N individuals and is created from the previous
generation by random mating: Each gene of the offspring generation ‘selects’, independently
of all others, a parental gene and adopts its allele. Let Xn be the number of A-genes in the
nth generation. Clearly, Xn is a Markov chain on E = {0, . . . , 2N }. Determine the transition
matrix and compute the absorption probabilities

h2N (x) := Px (Xn = 2N for all sufficiently large n) , x ∈ E .
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6.8. Let (Xn)n≥0 be a Markov chain with transition matrix on a countable set E , and suppose
that Px (τy < ∞) = 1 for all x, y ∈ E . Let h : E → [0,∞[ be harmonic, in that  h = h.
Show that h must be constant.

6.9. The asymmetric ruin problem. A well-known dexterity game consists of a ball in a ‘maze’
of N concentric rings (numbered from the centre to the outside) that have an opening to the next
ring on alternating sides. The aim of the game is to get the ball to the centre (‘ring no. 0’) by
suitably tilting the board. Suppose that the ball is initially in the mth ring (0 < m < N ), and that
with probability 0 < p < 1 the player manages to get the ball from the kth to the (k − 1)st ring,
but that with probability 1− p the ball rolls back to the (k+1)st ring. The player stops if the ball
enters either into ring 0 (so that the player succeeds), or into the N th ring (due to demoralisation).
Describe this situation as a Markov chain and find the probability the probability of success.

6.10. Find the extinction probability for a Galton–Watson process with offspring distribution
� in the cases

(a) �(k) = 0 for all k > 2,

(b) �(k) = bak−1 for all k ≥ 1 and a, b ∈ ]0, 1[ with b ≤ 1 − a. (According to empirical
studies by Lotka in the 1930s, for a = 0.5893 and b = 0.2126 this � describes the
distribution of the number of sons of American men quite well, whereas, according to
Keyfitz [34], the parameters a = 0.5533 and b = 0.3666 work best for the number of
daughters of Japanese women.)

6.11. Total size of a non-surviving family tree. Consider a Galton–Watson process (Xn)n≥0
with offspring distribution �, and suppose that E(�) ≤ 1 and X0 = 1. Let T = ∑

n≥0 Xn be
the total number of descendants of the progenitor. (Note that T <∞ almost surely.) Show that
the generating function ϕT of T satisfies the functional equation ϕT (s) = s ϕ� ◦ ϕT (s), and
determine E1(T ), the expected total number of descendants.

6.12. Branching process with migration and annihilation. Consider the following modification
of the Galton–Watson process. Given N ∈ N, assume that at each site n ∈ {1, . . . , N } there is a
certain number of ‘particles’ that behave independently of each other as follows. During a time
unit, a particle at site n first moves to n − 1 or n + 1, each with probability 1/2. There it dies and
produces k offspring with probability �(k), k ∈ Z+. If n − 1 = 0 or n + 1 = N + 1, the particle
is annihilated and does not produce any offspring. Let ϕ(s) = ∑

k≥0 �(k)s
k be the generating

function of � = (�(k))k≥0, and for 1 ≤ n ≤ N let q(n) be the probability that the progeny of a
single particle at n becomes eventually extinct. By convention, q(0) = q(N + 1) = 1.

(a) Describe the evolution of all particles by a Markov chain on ZN+ and find the transition
matrix.

(b) Justify the equation q(n) = 1
2ϕ(q(n − 1))+ 1

2ϕ(q(n + 1)), 1 ≤ n ≤ N .

(c) In the subcritical case ϕ′(1) ≤ 1, show that q(n) = 1 for all 1 ≤ n ≤ N .

(d) On the other hand, suppose that ϕ(s) = (1 + s3)/2. Show that q(1) = q(2) = 1 when
N = 2, whereas q(n) < 1 for all 1 ≤ n ≤ 3 when N = 3.

6.13. Let E be finite and  a stochastic matrix on E . Show that  satisfies the assumptions
of the ergodic theorem (6.13) if and only if  is irreducible and aperiodic in the sense that for
one (and thus all) x ∈ E the greatest common divisor of the set {k ≥ 1 :  k(x, x) > 0} is 1.
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6.14. Random replacement I. Consider an urn containing at most N balls. Let Xn be the number
of balls in the urn after performing the following procedure n times. If the urn is non-empty, one
of the balls is removed at random; by flipping a fair coin, it is then decided whether or not the
ball is returned to the urn. If the urn is empty, the fair coin is used to decide whether it remains
empty or whether it is filled with N balls. Describe this situation as a Markov chain and find the
transition matrix. What is the distribution of Xn as n → ∞?

6.15. Random replacement II. As in the previous problem, we are given an urn holding at most
N balls, but now they come in two colours, either white or red. If the urn is non-empty, a ball
is picked at random and is or is not replaced according to the outcome of the flip of a fair coin.
If the urn is empty, the coin is flipped to decide whether the urn should be filled again; if so,
it is filled with N balls, each of which is white or red depending on the outcomes of further
independent coin flips. Let Wn and Rn be the numbers of white and red balls, respectively, after
performing this procedure n times. Show that Xn = (Wn, Rn) is a Markov chain, and determine
its asymptotic distribution.

6.16. A variant of Pólya’s urn model. Again, we are given an urn containing no more than
N > 2 balls in the colours white and red; suppose it contains at least one ball of each colour. If
there are less than N balls, one of them is chosen at random and returned together with a further
ball of the same colour (taken from an external reserve). If there are already N balls in the urn,
then by tossing a coin it is decided whether the urn should be modified. If so, all balls except
one of each colour are removed. Let Wn and Rn be the respective numbers of white and red
balls after performing this procedure n times. Show the following:

(a) The total number Yn := Wn + Rn of balls is a Markov chain. Find the transition matrix.
Will the chain eventually come to an equilibrium? If so, which one?

(b) Xn := (Wn, Rn) is also a Markov chain. Find the transition matrix and (if it exists) the
asymptotic distribution.

6.17. A cycle condition for reversibility. Under the assumptions of the ergodic theorem (6.13),
show that has a reversible distribution if and only if

 (x0, x1) . . . (xn−1, xn) =  (xn, xn−1) . . . (x1, x0)

for all n ≥ 1 and all cycles x0, . . . , xn−1 ∈ E with xn = x0. Check whether this holds for the
house-of-cards process in Example (6.29).

6.18. Time reversal for renewals. In addition to the age process (Xn) in Example (6.29),
consider the process Yn = min{Tk − n : k ≥ 1, Tk ≥ n} that indicates the remaining life span
of the appliance used at time n.

(a) Show that (Yn)n≥0 is also a Markov chain, find its transition matrix  ̃ and re-derive the
renewal theorem.

(b) Find the stationary distribution α of (Xn)n≥0 and show that α is also a stationary distri-
bution of (Yn)n≥0.

(c) Which connection does α create between the transition matrices  and  ̃ of (Xn)n≥0
and (Yn)n≥0?
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6.19. (a) Random walk on a finite graph. Let E be a finite set and ∼ a symmetric relation on
E . Here, E is interpreted as the vertex set of a graph, and the relation x ∼ y means that x and
y are connected by an edge. Suppose that each vertex is connected by an edge to at least one
other vertex or to itself. Let d(x) = |{y ∈ E : x ∼ y}| be the degree of the vertex x ∈ E , and
set  (x, y) = 1/d(x) if x ∼ y, and  (x, y) = 0 otherwise. The Markov chain with transition
matrix is called the random walk on the graph (E,∼). Under which conditions on the graph
(E,∼) is irreducible? Find a reversible distribution for .

(b) Random walk of a knight. Consider a knight on an (otherwise empty) chess board, which
chooses each possible move with equal probability. It starts (i) in a corner, (ii) in one of the 16
squares in the middle of the board. How many moves does it need on average to get back to its
starting point?

6.20. Let 0 < p < 1 and consider the stochastic matrix on E = Z+ defined by

 (x, y) = Bx,p({y}) , x, y ∈ Z+ .

Find  n for arbitrary n ≥ 1. Can you imagine a possible application of this model?

6.21. Irreducible classes. Let E be countable,  a stochastic matrix on E , and Erec the set of
all recurrent states. Let us say a state y is accessible from x , written as x → y, if there exists
some k ≥ 0 such that  k(x, y) > 0. Show the following:

(a) The relation ‘→’ is an equivalence relation on Erec. The corresponding equivalence
classes are called irreducible classes.

(b) If x is positive recurrent and x → y, then y is also positive recurrent, and

Ex ( τx∑
n=1

1{Xn=y}
) = Ex (τx )/Ey(τy) .

In particular, all states within an irreducible class are of the same recurrence type.

6.22. Extinction or unlimited growth of a population. Consider a Galton–Watson process
(Xn)n≥0 with supercritical offspring distribution �, i.e., suppose E(�) > 1. Show that all states
k �= 0 are transient, and that

Pk(Xn → 0 or Xn → ∞ for n → ∞) = 1 .

6.23. Birth-and-death processes. Let  be a stochastic matrix on E = Z+. Suppose that
 (x, y) > 0 if and only if either x ≥ 1 and |x − y| = 1, or x = 0 and y ≤ 1. Find a necessary
and sufficient condition on under which has a stationary distribution α. If α exists, express
it in terms of the entries of .

6.24. A migration model. Consider the following simple model of an animal population in
an open habitat. Each animal living there leaves the habitat, independently of all others, with
probability p, and it stays with probability 1 − p. At the same time, a Poisson number (with
parameter a > 0) of animals immigrates from the outside world.

(a) Describe the number Xn of animals living in the habitat by a Markov chain and find the
transition matrix .

(b) Calculate the distribution of Xn when the initial distribution isPλ, the Poisson distribution
with parameter λ > 0.

(c) Determine a reversible distribution α.
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6.25. Generalise Theorem (6.30) as follows. For x, y ∈ E , let F1(x, y) = Px (τy < ∞) be
the probability that y can eventually be reached from x , Ny = ∑

n≥1 1{Xn=y} the number of
visits to y (from time 1 onwards), F∞(x, y) = Px (Ny = ∞) the probability for infinitely many
visits, and G(x, y) = δxy + Ex (Ny) the expected number of visits (including at time 0), the
so-called Green function. Show that

Px (Ny ≥ k + 1) = F1(x, y) P y(Ny ≥ k) = F1(x, y) F1(y, y)k

for all k ≥ 0, and therefore

F∞(x, y) = F1(x, y) F∞(y, y) , G(x, y) = δxy + F1(x, y)G(y, y) .

What does this mean when y is recurrent and transient, respectively?

6.26. Excursions from a recurrent state. Consider a Markov chain with a countable state space
E and transition matrix  that starts in a recurrent state x ∈ E . Let T0 = 0 and, for k ≥ 1, let
Tk = inf{n > Tk−1 : Xn = x} be the time of the kth return to x and Lk = Tk − Tk−1 the length
of the kth ‘excursion’ from x . Show that, under Px , the random variables Lk are (almost surely
well-defined and) i.i.d.

6.27. Busy period of a queue viewed as a branching process. Recall Example (6.32) and
the random variables Xn and Zn defined there. Interpret the queue as a population model, by
interpreting the customers newly arriving at time n as the children of the customer waiting at the
front of the queue; a generation is complete if the last member of the previous generation has
been served. Correspondingly, define Y0 = X0, Y1 = ∑Y0

n=1 Zn , and for general k ≥ 1 set

Yk+1 =
∑
n≥1

1{ k−1∑
i=0

Yi < n ≤
k∑

i=0
Yi

} Zn .

Show the following:

(a) (Yk) is a Galton–Watson process with offspring distribution �.

(b) Px -almost surely for every x ≥ 1, one has Yk+1 = XTk for all k ≥ 0, and therefore

{Xn = 0 for some n ≥ 1} = {Yk = 0 for all sufficiently large k} .

Here, the random times Tk are recursively defined by setting T0 = X0, Tk+1 = Tk + XTk .
(Verify first that these times are not larger than the first time τ0 at which the queue is
empty.)

Deduce (without using the result from Example (6.32)) that the queue is recurrent if and only if
E(�) ≤ 1. (In this case, Problem 6.11 yields the average number of customers that are served
during a busy period, and so gives an alternative proof for the result from Example (6.37).)

6.28. Markov chains in continuous time. Let E be countable and G = (G(x, y))x,y∈E a matrix
satisfying the properties

(i) G(x, y) ≥ 0 for x �= y,

(ii) −a(x) := G(x, x) < 0,
∑

y∈E G(x, y) = 0 for all x , and

(iii) a := supx∈E a(x) <∞.


