
Probabilidades y estad́ıstica (M)
Segundo cuatrimestre 2018

Práctica 6

De la lista de ejercicios de abajo (sacados del libro ‘Stochas-
tics’ de Georgii), hacer los siguientes:

5.1, 5.2, 5.6, 5.7, 5.10, 5.12, 5.13, 5.15, 5.17-5.19, 5.22-5.24.
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In the limit as n → ∞ and p = pn → 0 such that npn → λ > 0, we get back our earlier
Theorem (2.17). In fact we obtain the error bound  Bn,pn − Pλ ≤ 2(np2n + |npn − λ|); see
the subsequent Remark (5.34). By the way, in the discrete case of probability measures on
Z+, the convergence with respect to the so-called total variation distance  ·  used here is
equivalent to convergence in distribution, see Problem 5.24. We also note that the preceding
proof can be directly generalised to the case of Bernoulli variables Xi with distinct success
probabilities pi . The distribution of the sum S = �n

i=1 Xi is then no longer binomial, but can
still be approximated by the Poisson distribution P�

i pi
up to an error of at most 2

�
i p
2
i .

(5.34) Remark. Variation of the Poisson parameter. If λ, δ > 0 then

 Pλ+δ − Pλ ≤ 2δ .

For, if X and Y are independent with distribution Pλ and Pδ respectively, X + Y has the
distribution Pλ+δ , and arguing as in the above proof one �nds that  Pλ+δ −Pλ is bounded by
2 P(Y ≥ 1) = 2(1− e−δ) ≤ 2δ.

When is the Poisson distribution appropriate to approximate the binomial distribu-
tion, and when the normal distribution? By (5.33) the Poisson approximation works
well when np2 is small. On the other hand, the Berry�Esséen theorem discussed in
Remark (5.30c) shows that the normal approximation performs well when

p(1− p)3 + (1− p)p3

(p(1− p))3/2
1√
n
= p2 + (1− p)2√

np(1− p)

is small, and since 1/2 ≤ p2+(1− p)2 ≤ 1, this is precisely the casewhen np(1− p) is
large. If p is very close to 1, then neither approximation is appropriate. But thenwe can
replace p by 1−p and k by n−k to obtain Bn,p(n−k) = Pn(1−p)({k})+O

�
n(1−p)2

�
.

Problems

5.1. The Ky Fan metric for convergence in probability. For two real-valued random variables
X, Y on an arbitrary probability space let

d(X, Y ) = min{ε ≥ 0 : P(|X − Y | > ε) ≤ ε} .

Show the following:

(a) The minimum is really attained, and d is a metric on the space of all real-valued random
variables.

(b) For every sequence of real-valued random variables on 
 we have Yn
P−→ Y if and only

if d(Yn, Y ) → 0.

5.2. Collectibles. Consider the problem of collecting a complete series of stickers, as described
in Problem 4.20. What is the minimal number of items you have to buy, so that with probability
at least 0.95 you have collected all N = 20 stickers? Use Chebyshev�s inequality to give a best
possible lower bound.
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5.3. (a) A particle moves randomly on a plane according to the following rules. It moves one
unit along a randomly chosen direction �1, then it chooses a new direction �2 and moves one
unit along that new direction, and so on. We suppose that the angles �i are independent and
uniformly distributed on [0, 2π ]. Let Dn be the distance between the starting point and the
location after the nth step. Calculate the mean square displacement E(D2n).

(b) At the centre of a large plane there are exactly 30 particles at time t = 0, which move
according to the rules set out in (a). For every step they take, the particles need one time unit.
Determine, for every n ≥ 1, the smallest number rn > 0 with the following property: With
probability ≥ 0.9 there are, at time t = n, more than 15 particles in a circle of radius rn around

the centre of the plane. Hint: Determine �rst some δ > 0 such that P
��30

i=1 Zi > 15
�

≥ 0.9

for any Bernoulli sequence Z1, . . . , Z30 with parameter p ≥ 1
2 + δ.

5.4. Large deviations of empirical averages from the mean. Let (Xi )i≥1 be a Bernoulli se-
quence with 0 < p < 1. Show that for all p < a < 1 we have:

P
� 1
n

n�
i=1

Xi ≥ a
�

≤ e−nh(a;p) ,

where h(a; p) = a log a
p + (1− a) log 1−a1−p . Show �rst that for all s ≥ 0

P
� 1
n

n�
i=1

Xi ≥ a
�

≤ e−nas E(esX1)n .

5.5. Convexity of the Bernstein polynomials. Let f : [0, 1] → R be continuous and convex.
Show that, for every n ≥ 1, the corresponding Bernstein polynomial fn is also convex. Hint:
Let p1 < p2 < p3, consider the frequencies Zk = �n

i=1 1[0,pk ] ◦Ui , k = 1, 2, 3, and represent
Z2 as a convex combination of Z1 and Z3. Use that the vector (Z1, Z2− Z1, Z3− Z2, n− Z3)
has a multinomial distribution!

5.6. Law of large numbers for random variables without expectation. Let (Xi )i≥1 be i.i.d.
real-valued random variables having no expectation, i.e., Xi �∈ L 1. Let a ∈ N be arbitrary.
Show the following:

(a) P(|Xn | > an in�nitely often) = 1. Hint: Use Problem 4.5.

(b) For the sums Sn = �n
i=1 Xi we have P(|Sn | > an in�nitely often) = 1 and thus

lim supn→∞ |Sn |/n = ∞ almost surely.

(c) If all Xi ≥ 0, we even obtain Sn/n → ∞ almost surely.

5.7. Renewals of, say, light bulbs. Let (Li )i≥1 be i.i.d. non-negative random variables with
�nite or in�nite expectation. One can interpret Li as the life time of the i th light bulb (which is
immediately replaced when it burns out); see also Figure 3.7. For t > 0 let

Nt = sup
�
N ≥ 1 :

N�
i=1

Li ≤ t
�

be the number of bulbs used up to time t . Show that limt→∞ Nt/t = 1/E(L1) almost surely;
here we set 1/∞ = 0 and 1/0 = ∞. (In the case E(L1) = ∞ use Problem 5.6(c); the case
E(L1) = 0 is trivial.) What does the result mean in the case of a Poisson process?
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5.8. Inspection, or waiting time, paradox. As in the previous problem, let (Li )i≥1 be i.i.d.
non-negative random variables representing the life times of machines, or light bulbs, which
are immediately replaced when defect. (In a waiting time interpretation, one can think of the
Li as the time spans between the arrivals of two consecutive buses at a bus stop.) We assume
0 < E(Li ) < ∞. For s > 0, let L(s) be the life time of the machine working at instant s; so
L(s) = Li for s ∈ [Ti−1, Ti [, where the Ti are de�ned as in Figure 3.7 on p. 74. Use Problem 5.7
and the strong lawof large numbers to show that, for every randomvariable f : [0, ∞[ → [0, ∞[,

1

t

� t

0
f (L(s)) ds −→

t→∞
E

�
L1 f (L1)

�

E(L1)
almost surely.

For f = Id this means that, for large t , the life time of the machine inspected at a random instant
in [0, t] is approximately equal to E(L21)/E(L1), which is larger than E(L1) unless L1 is almost
surely constant. Compare this result with Example (4.16), where the Li are exponentially
distributed. The probability measure Q(A) := E(L11{L1∈A})/E(L1) on ([0,∞[, B[0,∞[),
which shows up in the above limit when f = 1A, is called the size-biased distribution of Li , and

with slightly more effort one can even show that 1t
� t
0 δL(s)

ds
d−→ Q almost surely for t → ∞.

5.9. Let (Xn)n≥1 be a sequence of independent random variables that are exponentially dis-
tributed with parameter α > 0. Show that

lim sup
n→∞

Xn/log n = 1/α and lim inf
n→∞ Xn/log n = 0 almost surely.

5.10. Expectation versus probability. Bob suggests the following game to Alice: �Here is a
biased coin, which shows heads with probability p ∈ ]1/3, 1/2[. Your initial stake is e 100;
each time the coin shows heads, I double your capital, otherwise you pay me half of your capital.
Let Xn denote your capital after the nth coin �ip. As you can easily see, limn→∞ E(Xn) = ∞,
so your expected capital will grow beyond all limits.� Is it advisable for Alice to play this game?
Verify Bob�s claim and show that limn→∞ Xn = 0 almost surely.

5.11. Asymptotics of the Pólya model. Consider Pólya�s urn model with parameters a = r/c
and b = w/c, as introduced in Example (3.14). Let Rn be the number of red balls drawn after
n iterations.

(a) Use Problem 3.4 and the law of large numbers to show that Rn/n converges in distribution
to the beta distribution βa,b.

(b) What does this mean for the long-term behaviour of the competing populations? Consider
the cases (i) a, b < 1, (ii) a, b > 1, (iii) b < 1 < a, (iv) a = b = 1.

5.12. Give a sequence of random variables in L 2 for which neither the (strong or weak) law
of large numbers nor the central limit theorem holds.

5.13. Decisive power of determined minorities. In an election between two candidates A
and B one million voters cast their votes. Among these, 2 000 know candidate A from his
election campaign and vote unanimously for him. The remaining 998 000 voters are more or
less undecided and make their decision independently of each other by tossing a fair coin. What
is the probability pA of a victory of candidate A?



146 5 The Law of Large Numbers and the Central Limit Theorem

5.14. Local normal approximation of Poisson distributions. Let λ > 0 and xn(k) =
(k − λn)/

√
λn. Show that, for any c > 0,

lim
n→∞

max
k∈Z+:|xn(k)|≤c

&&&
√

λn Pλn({k})
φ(xn(k))

− 1
&&& = 0 .

5.15. Asymptotics of %. Establish the sandwich estimate

φ(x)

�
1

x
− 1

x3

�
≤ 1− %(x) ≤ φ(x)

1

x
for all x > 0,

and hence the asymptotics 1− %(x) ∼ φ(x)/x for x → ∞. Hint: Compare the derivatives of
the functions on the left- and right-hand sides with φ.

5.16. Effect of the discreteness corrections. Determine a lower bound for the error term in (5.23)
when the discreteness corrections ±1/2 are omitted, by considering the case k = l = np ∈ N.
Compare the result with Figure 5.6.

5.17. No-Shows. Frequently, the number of passengers turning up for their �ight is smaller
than the number of bookings made. This is the reason why airlines overbook their �ights (i.e.,
they sell more tickets than seats are available), at the risk of owing compensation to an eventual
surplus of people. Suppose the airline has an income of a = 300e per person �ying, and for
every person that cannot �y it incurs a loss of b = 500e; furthermore, suppose that every person
that has booked shows up for the �ight independently with probability p = 0.95. How many
places would you sell for an

(a) Airbus A319 with S = 124 seats,

(b) Airbus A380 with S = 549 seats

to maximise the expected pro�t?
Hint: Let (Xn)n≥1 be a Bernoulli sequence with parameter p, and SN = �N

k=1 Xk . The
pro�t GN by selling N places then satis�es the recursion

GN+1 − GN = a 1{SN<S}XN+1 − b 1{SN≥S}XN+1 .

Deduce that E(GN+1) ≥ E(GN ) if and only if P(SN < S) ≥ b/(a + b), and then use the
normal approximation.

5.18. Estimate the error of a sumof rounded numbers as follows. The numbers R1, . . . , Rn ∈ R
are rounded to the next integer, i.e., they can be represented as Ri = Zi +Ui with Zi ∈ Z and
Ui ∈ [−1/2, 1/2[. The deviation of the sum of rounded numbers �n

i=1 Zi from the true sum�n
i=1 Ri is Sn = �n

i=1Ui . Suppose the (Ui )1≤i≤n are independent random variables having
uniform distribution on [−1/2, 1/2[. Using the central limit theorem, determine a bound k > 0
with the property P(|Sn | < k) ≈ 0.95 for n = 100.

5.19. In a sales campaign, a mail order company offers their �rst 1000 customers a compli-
mentary ladies� respectively men�s watch with their order. Suppose that both sexes are equally
attracted by the offer. Howmany ladies� and howmanymen�s watches should the company keep
in stock to ensure that, with a probability of at least 98%, all 1000 customers receive a matching
watch? Use (a) Chebyshev�s inequality, (b) the normal approximation.



Problems 147

5.20. A company has issued a total of n = 1000 shares. At a �xed time, every share is sold
with probability 0 < p < 1, independently of all other shares. Every shareholder decides for
each share with probability 0 < p < 1 to sell it. This decision is independent for every share.
The market can take in s = 50 shares without the price falling. What is the largest value of p
such that the price remains stable with 90% probability?

5.21. Error propagation for transformed observations. Let (Xi )i≥1 be a sequence of i.i.d.
random variables taking values in a (possibly unbounded) interval I ⊂ R, and suppose the
variance v = V(Xi ) > 0 exists. Let m = E(Xi ) and f : I → R be twice continuously
differentiable with f �(m) �= 0 and bounded f ��. Show that

√
n/v

f �(m)

�
f ( 1n

n�
i=1

Xi ) − f (m)



d−→ N0,1 for n → ∞.

Hint: Use a Taylor�s expansion of f at the point m and control the remainder term by means of
Chebyshev�s inequality.

5.22. Brownianmotion. A heavy particle is randomly hit by light particles, so that its velocity is
randomly reversed at equidistant time points. That is, its spatial coordinate (in a given direction)

at time t satis�es Xt =
��t�

i=1 Vi with independent velocities Vi , where P(Vi = ±v) = 1/2 for
some v > 0. If we pass to a macroscopic scale, the particle at time t can be described by the

random variable B
(ε)
t = √

εXt/ε , where ε > 0. Determine the distributional limit Bt of B
(ε)
t

for ε → 0 and also the limiting Lebesgue density �t . Verify that this family of densities satis�es
the heat equation

∂�t (x)

∂t
= −D

2

∂2�t (x)

∂x2

for some appropriately chosen diffusion coef�cient D > 0.

5.23. Convergence in probability versus convergence in distribution. Let X and Xn , n ≥ 1,
be real-valued random variables on the same probability space. Show the following:

(a) Xn
P−→ X implies Xn

d−→ X .

(b) The converse of (a) does not hold in general, but it does when X is almost surely constant.

5.24. Convergence in distribution of discrete random variables. Let X and Xn , n ≥ 1, be
random variables on the same probability space that take values in Z. Prove that the following
statements are equivalent:

(a) Xn
d−→ X for n → ∞.

(b) P(Xn = k) → P(X = k) for n → ∞ and every k ∈ Z.

(c)
�

k∈Z |P(Xn = k) − P(X = k)| → 0 for n → ∞.

5.25. The arcsine law. Consider the simple symmetric random walk (Sj )j≤2N introduced in
Problem 2.7, for �xed N ∈ N. Let L2N = max{2n ≤ 2N : S2n = 0} be the last time both
candidates have the same number of votes before the end of the count. (In amore general context,
one would speak of the last visit of the random walk to 0 before time 2N .) Show the following.

(a) For all 0 ≤ n ≤ N , P(L2N = 2n) = unuN−n , where uk = 2−2k
�2k
k

�
.


