Probabilidades y Estadística (c)

Para una variable aleatoria X, la función generadora de momentos (fgm) $M_X(t)$ se define como $M_X(t) := \mathbb{E}(e^{tX})$. Se llama así porque genera los momentos: $M_X^{(n)}(0) = \mathbb{E}[X^n]$. Valen además las siguientes propiedades:

- Si las variables aleatorias X e Y son independientes, entonces $M_{X+Y}(t) = M_X(t)M_Y(t)$.
- Sean X e Y variables aleatorias con fgm M_X y M_Y respectivamente. Supongamos que existe $\varepsilon > 0$ tal que M_X y M_Y son finitas y coinciden en $(-\varepsilon, \varepsilon)$. Entonces X e Y tienen la misma distribución.

Ejercicios

- 1. De la tabla del ejercicio 24 de la práctica 4, hacer los casos Bi(n, p), $N(\mu, \sigma^2)$ y $\Gamma(\alpha, \lambda)$. Obtener las esperanzas y las varianzas a partir de las funciones generadoras de momentos.
- 2. Suponiendo que la variable aleatoria X tiene $fgm\ M_X(t)=e^{3(e^t-1)}$, calcular P[X=0].
- 3. Sean $X \sim \text{Bi}(m,p)$ e $Y \sim \text{Bi}(n,p)$ independientes. Hallar la distribución de X+Y calculando su fgm.
- 4. ¿Cuál es la distribución de suma de Poissones independientes? ¿Y la de normales independientes?