Intervalos y regiones de confianza

Estadística (M)

Mundo Normal

- $X_i \sim \mathcal{N}(\mu, \sigma^2)$ i.i.d. Buscamos intervalo de confianza para μ .
- σ conocido: IC nivel $1-\alpha$ para μ

$$\left(\bar{X}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} , \bar{X}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$$

- ullet longitud $ightarrow l = 2 \; z_{lpha/2} \; rac{\sigma}{\sqrt{n}} \leq l_o$
- Si queremos $l \leq l_o \rightarrow \frac{4z_{\alpha/2}^2\sigma^2}{l_o^2} \leq n$

Mundo Normal

- $X_i \sim \mathcal{N}(\mu, \sigma^2)$ i.i.d. Buscamos intervalo de confianza para μ .
- \bullet σ desconocidollegó la t...
- IC nivel $1-\alpha$ para μ

$$\left(\bar{X}_n - t_{n-1,\alpha/2} \frac{s_n}{\sqrt{n}} \quad , \quad \bar{X}_n + t_{n-1,\alpha/2} \frac{s_n}{\sqrt{n}}\right)$$

- longitud $\rightarrow L=2\ t_{n-1,\alpha/2}\ \frac{s_n}{\sqrt{n}}$
- L es una v.a. Si queremos que $l \leq l_o$ ¿Cómo hacemos?

Intervalo de longitud prefijada para μ en una $N(\mu,\sigma^2)$

Propuesta

- Tomemos una muestra inicial X_1, \ldots, X_n .
- Estimamos σ^2 por

$$s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

con

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

ullet Sea m tal que

$$\frac{2 s_n t_{\frac{\alpha}{2}, n-1}}{\sqrt{n+m}} \le l_o$$

m es una variable aleatoria

Intervalo de longitud prefijada para μ en una $N(\mu, \sigma^2)$

• Sea X_{n+1}, \ldots, X_{n+m} una muestra complementaria y

$$\bar{X}_{n+m} = \frac{1}{n+m} \sum_{i=1}^{n+m} X_i$$

El intervalo de confianza

$$[\bar{X}_{n+m} - t_{\frac{\alpha}{2},n-1} \frac{s_n}{\sqrt{n+m}}, \bar{X}_{n+m} + t_{\frac{\alpha}{2},n-1} \frac{s_n}{\sqrt{n+m}}]$$

tiene longitud menor o igual a l_o .

Probemos que la propuesta nos lleva a un IC de nivel $1-\alpha$.

Intervalo de longitud prefijada para μ en una $N(\mu, \sigma^2)$ Sean $X_1, ... X_n$ variables aleatorias independientes con distribución $N(\mu, \sigma^2)$ y sea m como antes.

(i)
$$W = (n-1)s_n^2/\sigma^2 \sim \chi_{n-1}^2$$

(ii)
$$V = \sqrt{m+n}(\bar{X}_{m+n} - \mu)/\sigma \sim N(0,1)$$

(iii) V y W son independientes

(iv)
$$\sqrt{m+n}(\bar{X}_{m+n}-\mu)/s_n \sim \mathcal{T}_{n-1}$$

Luego,

$$\left[\bar{X}_{n+m} - t_{\frac{\alpha}{2}, n-1} \frac{s_n}{\sqrt{n+m}}, \bar{X}_{n+m} + t_{\frac{\alpha}{2}, n-1} \frac{s_n}{\sqrt{n+m}}\right]$$

es un intervalo de confianza para μ de nivel $1-\alpha$ con longitud menor o igual a l_{α} .

Regiones de confianza con nivel asintótico $(1-\alpha)$

Sea X_1,X_2,\ldots,X_n m.a. $X_i\sim F(x,\pmb{\theta})$, $\pmb{\theta}\in\Theta$. Se dice que $S_n(X_1,\ldots,X_n)$ es una sucesión de regiones de confianza con nivel asintótico $1-\alpha$ si:

$$\lim_{n \to \infty} \mathbb{P}_{\boldsymbol{\theta}}(\boldsymbol{\theta} \in S_n(X_1, \dots, X_n)) = 1 - \alpha \quad \forall \, \boldsymbol{\theta} \in \Theta .$$

Procedimiento para obtener RC con nivel asintótico

Teorema Sea X_1,\ldots,X_n una muestra aleatoria de una distribución perteneciente a la familia $F(x,\pmb{\theta}),\ \pmb{\theta}\in\Theta.$ Supongamos que

- $\forall n, \exists \text{ v.a. } U_n = G_n(X_1, \dots, X_n, \theta) \text{ tales que } U_n \xrightarrow{D} U,$ donde U es una variable aleatoria con distribución independiente de θ
- A y B puntos de continuidad de F_U tales que $\mathbb{P}(A \leq U \leq B) = 1 \alpha$.

Luego, si

$$S_n(X_1,\ldots,X_n) = \{ \boldsymbol{\theta} : A \leq G_n(X_1,\ldots,X_n,\boldsymbol{\theta}) \leq B \}$$

 $S_n(\mathbf{X})$ es una sucesión de RC con nivel asintótico $(1-\alpha)$.

Ejemplos

• Consideremos el caso en que X_1,\ldots,X_n son una muestra aleatoria $\mathbb{E}(X_i)=\mu$ y $\mathbb{V}(X_i)=\sigma^2$, ambas desconocidas. Veremos que el intervalo

$$[\bar{X}_n - z_{\frac{\alpha}{2}} \frac{s_n}{\sqrt{n}}, \bar{X}_n + z_{\frac{\alpha}{2}} \frac{s_n}{\sqrt{n}}]$$

tiene nivel asintótico $1 - \alpha$.

Vayamos al pizarrón.

Ejemplos

•

- Consideremos el caso en que X_1,\ldots,X_n son una muestra aleatoria donde $x_i\sim Bi(1,p)$ Vamos a deducir dos intervalos de confianza asintóticos diferentes para p.
- $ullet [\widehat{p}_{1,n},\widehat{p}_{2,n}]$ raíces del polinomio en p

$$n\bar{X}_n^2 - p(2n\bar{X}_n + z_{\frac{\alpha}{2}}^2) + p^2(z_{\frac{\alpha}{2}}^2 + n)$$

$$[\bar{X}_n - z_{\frac{\alpha}{2}} \sqrt{\frac{\bar{X}_n(1 - \bar{X}_n)}{n}}, \bar{X}_n + z_{\frac{\alpha}{2}} \sqrt{\frac{\bar{X}_n(1 - \bar{X}_n)}{n}}]$$

Vayamos al pizarrón.

Usando la distribución asintótica de los EMV

 X_1, \ldots, X_n i.i.d. donde X_i tienen función de densidad o de probabilidad puntual $f(x, \theta)$.

Bajo condiciones de regularidad

• si
$$\widehat{\theta}_n = \widehat{\theta}_n^{EMV}$$
, entonces $\sqrt{n}(\widehat{\theta}_n - \theta) \stackrel{D}{\longrightarrow} N(0, \frac{1}{I_1(\theta)})$

•

$$\sqrt{n}\sqrt{I_1(\theta)}(\widehat{\theta}_n - \theta) \xrightarrow{D} N(0, 1)$$

La región

$$S(\mathbf{X}) = \{\theta : -z_{\frac{\alpha}{2}} \le \sqrt{n} \sqrt{I_1(\theta)} (\widehat{\theta}_n - \theta) \le z_{\frac{\alpha}{2}} \}$$

no tiene porqué ser un intervalo y puede ser difícil de calcular.

Usando la distribución asintótica de los EMV

• Si $I_1(\theta)$ es una función continua de θ , como $\widehat{\theta}_n \xrightarrow{p} \theta$, bajo condiciones de regularidad obtendremos que $I_1(\widehat{\theta}_n) \xrightarrow{p} I_1(\theta)$, luego

$$\sqrt{n}\sqrt{I_1(\widehat{\theta}_n)}(\widehat{\theta}_n - \theta) \xrightarrow{D} N(0, 1)$$

ullet Entonces, un intervalo de nivel asintótico 1-lpha será

$$[\widehat{\theta}_n - z_{\frac{\alpha}{2}} \sqrt{\frac{1}{n \ I_1(\widehat{\theta}_n)}}, \widehat{\theta}_n + z_{\frac{\alpha}{2}} \sqrt{\frac{1}{n \ I_1(\widehat{\theta}_n)}}]$$

Otra mirada...

$POBLACION \leftrightarrow F$	MUESTRA $X_1, \ldots X_n$ i.i.d. $X_i \sim F$
Parámetro: Valor asociado de F	
$\theta = \theta(F)$	
heta: valor poblacional	

Funcionales

$$\mathbb{E}_F(X) \iff \mathbb{E}(X) \text{ cuando } X \sim F.$$

$$\mathbb{E}_F(X) = \mu(F) = \int x \, dF(x)$$

$$\mathbb{V}_F(X) = \sigma(F) = \int (x - \mu)^2 dF(x)$$

Consideramos funcionales de la forma

$$T(F) = \int r(x) \ dF(x)$$

Otra mirada...

$POBLACION \leftrightarrow F$	MUESTRA $X_1, \ldots X_n$ i.i.d. $X_i \sim F$			
Parámetro: Valor asociado de F	Estimador:estadístico para estimar $ heta$			
$\theta = \theta(F)$	$\widehat{\theta}_n = \widehat{\theta}_n(X_1, \dots, X_n)$			
heta: valor poblacional	$\widehat{ heta}_n$ nueva variable aleatoria			

Sean X_1, X_2, \ldots, X_n i.i.d., $X_i \sim F$. Definimos

$$\widehat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{\{X_i \le t\}}$$

- $\widehat{F}_n(t)$ es una función aleatoria.
- \bullet $\widehat{F}_n(t)$ representa a una acumulada que da peso 1/n a $X_1,X_2,\dots,X_n.$

$$\mathbb{P}_F(X \in A) \iff \mathbb{P}(X \in A) \text{ cuando } X \sim F.$$
 $\mathbb{E}_F(X) \iff \mathbb{E}(X) \text{ cuando } X \sim F.$

$$\begin{split} \mathbb{E}_F \left\{ g(X_1, \dots, X_n) \right\} &\iff \mathbb{E} \left\{ g(X_1, \dots, X_n) \right\} \;, \\ & \text{cuando} \; X_1, \dots, X_n \; \text{i.i.d.,} \; X_i \sim F. \end{split}$$

t	X_1							X_n
p(t)	1/n	1/n	1/n	1/n	1/n	1/n	1/n	1/n

- ? $\mathbb{P}_{\widehat{F}_n}(A) = \dots$
- ? $\mathbb{E}_{\widehat{F}_{-}}(X) = \dots$
- ? $\mathbb{V}_{\widehat{F}_n}(X) = \dots$

Sean X_1, X_2, \dots, X_n i.i.d., $X_i \sim F$. Definimos

$$\widehat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{\{X_i \le t\}}$$

- $\widehat{F}_n(t)$ es una función aleatoria.
- \bullet $\widehat{F}_n(t)$ representa a una acumulada que da peso 1/n a $X_1,X_2,\ldots,X_n.$
- Ley de los Grandes Números:

$$\widehat{F}_n(t) \stackrel{p}{\longrightarrow} F(t)$$

•
$$\mathbb{E}(\widehat{F}_n(t)) = F(t)$$

 $\mathbb{V}(\widehat{F}_n(t)) = \frac{F(t)(1 - F(t))}{n}$

Sean X_1, X_2, \ldots, X_n i.i.d., $X_i \sim F$. Definimos

$$\widehat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{\{X_i \le t\}}$$

- $\widehat{F}_n(t)$ es una función aleatoria.
- \bullet $\widehat{F}_n(t)$ representa a una acumulada que da peso 1/n a $X_1,X_2,\dots,X_n.$
- Ley de los Grandes Números:

$$\widehat{F}_n(t) \stackrel{p}{\longrightarrow} F(t)$$

• Glivenko Cantelli:

$$\lim_{n\to\infty} \sup_{t\in\mathbb{R}} |\widehat{F}_n(t) - F(t)| = 0 \;, \quad \text{c.s}$$

Estimación Plug-in

Nos interesa estimar un funcional T(F).

El procedimiento $\mathbf{plug\text{-}in}$ propone estimar $\theta=T(F)$ con

$$\widehat{\theta}_n = T(\widehat{F}_n)$$